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Abstract 
This paper presents a new approach to synthesize admittance function poly-
nomials and coupling matrices for coupled resonator filters. The N + 2 trans-
versal network method is applied to study a coupled resonator filter. This 
method allowed us to determine the polynomials of the reflection and trans-
mission coefficients. A study is made for a 4 poles filter with 2 transmission 
zeros between the N + 2 transversal network method and the one found in 
the literature. A MATLAB code was designed for the numerical simulation of 
these coefficients for the 6, 8, and 10 pole filter with 4 transmission zeros. 
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1. Introduction 

Terrestrial and space communications have undergone significant development 
in recent years thanks to the use of increasingly sophisticated equipment, among 
which are prominently those that provide signal processing such as filters [1] [2]. 
The integration of wireless transmission systems in the radiofrequency and mi-
crowave domains requires the reduction of the dimensions of each elementary 
function of the transmission-reception chain [3] [4]. The ever-increasing num-
ber of users of the frequency spectrum in these areas has created new constraints 
on the end elements of telecommunication systems [5]. Electrical performance, 
increased selectivity and miniaturization to be improved are the main constraints. 
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The problems of increasing selectivity have led in recent years to the develop-
ment of an original topology aimed at improving electrical responses both in the 
bandpass and in the attenuated band. 

It is with this in mind that many techniques and electromagnetic modeling 
methods have been developed in recent decades, with the aim of designing 
small-sized elements while increasing their performance and minimizing their 
cost. 

The study of coupled resonator filters has been the subject of much work in 
recent years [6] [7]. Researchers have developed numerical methods to solve 
various complex problems. But the determination of poles, transmission zeros 
and the important rejection level for a limited filter order and consequently, a 
reduced loss level are still a major challenge. The objective of this work is to ap-
ply the N + 2 transversal network method to coupled resonator filters prior to 
their design and realisation for use in the millimetre band. 

In this frequency band, we are faced with technological difficulties. Indeed, 
given the wavelengths involved, the technological dispersion must be as low as 
possible to ensure that the device operates correctly. Furthermore, for similar 
reasons, the use of such components requires an in-depth study of these resona-
tor filters before they can be produced. Specialised methods must therefore be 
applied to improve the electromagnetic characteristics of the filters. 

2. Theory 

The starting point for the synthesis of the circuit coupling matrix is the deter-
mination of the transfer and reflection polynomials which can be written in the 
general form [8]: 

( ) ( )
( )11

r

P s
S s

E sε
=                         (1) 

And 

( ) ( )
( )21

F s
S s

E sε
=                         (2) 

The functions P(s), F(s) and E(s) are polynomials depending on the complex 
frequency s. For the filter to be stable E(s) must be a Hurwitz polynomial [9]. 

The polynomials E(s) and F(s) are of degree N while P(s) is of degree Nfz. N 
being the order of the filter and Nfz the number of transmission zeros if fzN N<  
and 1rε = . 

The filter is said to be canonical if fzN N=  and 1rε ≠ . For the purpose of 
this synthesis, we will restrict ourselves to the case of the circuit consisting of an 
array of N coupled lossless resonators. 

Let’s consider a network of coupled resonators whose equivalent circuit is 
made of N loops. It has two accesses (Figure 1), at the input we have an imped-
ance R1 and at the output the load RN. These accesses can be normalized to 1 by 
inserting transformers at the input and output, filter synthesis based on such a 
network was first introduced by [10]. 
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Figure 1. Equivalent circuit of a filter with N coupled resonators. 
 

By applying the law of meshes to each resonator to the internal circuit of Fig-
ure 1, we have the following relations:  
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where [R] is the resistance matrix, [M] is the mutual coupling matrix of order N 
between resonators of elements Mij designating the coupling between resonators 
i and j, assumed independent. 

[I] is the identity matrix and o

o

jS
ωω

ω ω ω
 

= − 
 

 is the common resonance  

pulsation of the synchronized resonators. To obtain an operation of the network 
of coupled resonators in short-circuit, it is enough to pose, R1 = RN = 0 (i.e. R = 
0) in Equation (4). Under these conditions the current [I] is given by: 

[ ] [ ][ ]tI jM SI V= +                        (5) 
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2.1. Determination of the Matrix [YN] from the Transmission and 
Reflection Coefficients S21(s) and S11(s) 

The considered network being symmetrical and reciprocal, we can put the ad-
mittance matrix [YN] of the whole network in the form (Figure 2) [10]. 
 

 
Figure 2. Canonical transverse array, (a) transverse array matrix N; (b) equivalent cir-
cuit of the Kth. 
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The real constant 0K∞ =  was introduced here to account for the number of 
transmission zeros 0K∞ = , the fully canonical case where the number of finite 
transmission zeros (Nfz) is equal to the filter degree N. In this case, the degree of 
the numerator of Y21(s) is equal to that of its denominator. We calculate the 
coefficient K∞  such that: 

1
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2.2. Synthesis of the N + 2 Transversal Matrix 

The elements of the coupling matrix are given by the relation (7). 
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The residues 21kr  and 22kr  and the eigen values kλ  are determined from the 
polynomials of the transmission coefficients S21(s) and reflection coefficients S11(s) 
of the filter and thus, by equating the real and imaginary parts, it is possible to 
obtain the coupling coefficients Mij between the different resonators [11]. 

( ) 21

21
22

22

1, ;

et 1, 2, ,

k k kk k Sk Lk k

k
Lk k Sk

k

C B M M M r
r

M r M k N
r

λ = ≡ = − =

 = = =




            (8) 

2.3. Similarity Transformation and Annihilation of Matrix 
Elements 

In a similarity (rotation) transformation on an N + 2 coupling matrix, M1 is 
performed by pre- and post-multiplying the original matrix M0 by an N + 2 ro-
tation matrix, R and its transpose Rt [12]. 

1 1 0 1
tM R M R=                          (8) 

where M0 is the original matrix, M1 is the matrix after the transformation opera-
tion and R is the rotation matrix defined as shown by the matrix in Figure 3. 
 

 
Figure 3. 7th degree rotation matrix Rr pivot. 

3. Results and Discussion 
3.1. Application of the N + 2 Transversal Network Method 

In order to master the filter synthesis process, using the N + 2 transversal net-
work method, we will first validate this method by an application on the filter 
proposed by R. Cameron [10]. Finally, we will synthesize and analyze a filter of 
order 6 and order 8. 
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Filter Proposed by R. Cameron 
In this section we will make a comparative study of resonator filters using the N 
+ 2 transversal network method and the one proposed by R. Cameron. We con-
sider the following specifications: 
• The order of filter is 4 and has 2 transmission zeros: +j1, 3217 and +j1, 8082; 
• The reflection corresponds to 22 dB in the passband. By following the differ-

ent steps previously mentioned to determine the coupling matrix with the N 
+ 2 transversal array method, we obtained the following coupling matrix: 

[ ]0

0.000 0.6037 0.3048 0.4860 0.7130 0.000
0.6037 1.5535 0.000 0.000 0.000 0.6037

0.3048 0.000 1.1981 0.000 0.000 0.3028
0.4860 0.000 0.000 1.0883 0.000 0.4860

0.7130 0.000 0.000 0.000 0.0263 0.7130
0.000 0.6037 0.3028 0.4860 0

M

− −
−

−
=

− −
−

.7130 0.000

 
 
 
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 
 
 
 
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   (9) 

[M0] is a 4-pole coupling matrix of the R. Cameron resonator filter [10]. The 
first row and the first column correspond to the numbering of the poles and the 
input/output ports [13]. 

This matrix is symmetrical with respect to its transpose. The coupling matrix 
(4) is selected according to the homogeneity of its coupling values. Indeed, the 
couplings for this matrix are between 0.6037 and 0.3048 while they are between 
0.4860 and 0.7130 for the second solution. There is a coupling matrix topology 
that characterizes the filter architecture. A rotation sequence is applied to this 
matrix to change its topology and therefore adapt the filter architecture to the 
implementation technology. We proceeded to 4 rotations of the matrix [M0] to 
obtain the following coupling matrix [M1] which will allow us to realize the filter 
with the desired configuration as shown in Figure 4. 
 

 
Figure 4. Coupling diagram (4-2). 

 

[ ]1

0.000 1.0963 0.000 0.000 0.000 0.000
1.0963 0.1535 0.9604 0.000 0.3604 0.000
0.000 0.9604 0.1432 0.2863 0.7740 0.000
0.000 0.000 0.2863 0.9243 0.5678 0.000
0.000 0.3604 0.7740 0.5678 0.1549 1.0958
0.000 0.000 0.000 0.000 1.

M

−
−

− −
=

− − −
−

0958 0.000

 
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  (10) 

Knowing the polynomials S11(s) and S21(s) of the reflection and transfer func-
tions, we will plot in Figure 5 and Figure 6 the filter responses given by [10] and 
our simulations. 
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Figure 5. Reflection frequency response of the 4-pole filter. 

 

 
Figure 6. Transmission frequency response of the 2-zero filter. 

 
Figure 5 and Figure 6 show a good agreement between our results and those 

proposed by R. Cameron [10]. This shows a good control of the method used. In 
the following we propose to analyze the synthesis of the 6th and 8th order filters. 

3.2. 6-Pole Bandpass Filter with 4 Transmission Zeros 

After studying the R. Cameron filter of order 2, we propose to analyze a band-
pass filter with coupled resonators, in order to obtain the transfer and reflection 
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polynomials with the bandpass filter using the six-pole coupling matrix whose 
characteristics are as follows: 
• It is of order 6 and has 4 transmission zeros: −j3.0431; −j1.8082; j1.3217 and 

j5.1910; 
• The reflection losses correspond to 20 dB; contains two transmission zeros 

on each side of the bandwidth. Using the same procedure we obtain the fol-
lowing matrix. 

[ ]0

0.000 0.3168 0.2935 0.4403 0.4538 0.4935 0.4934 0.000
0.3168 1.2104 0.000 0.000 0.000 0.000 0.000 0.3143
0.2935 0.000 1.1791 0.000 0.000 0.000 0.000 0.2989
0.4403 0.000 0.000 1.0804 0.000 0.000 0.000 0.4409
0.4538 0.000 0.000 0.

M

−
−

− −
=

000 1.0417 0.000 0.000 0.4534
0.4935 0.000 0.000 0.000 0.000 0.4639 0.000 0.4936
0.4934 0.000 0.000 0.000 0.000 0.000 0.3873 0.4933
0.000 0.3143 0.2989 0.4409 0.4534 0.4936 0.4933 0.000

 
 
 
 
 
 
 
 
 
 − 

− − −  

 (11) 

This matrix is not unfeasible in practice, so we will use the configuration 
shown in Figure 7. 
 

 
Figure 7. Coupling diagram (6-4). 

 
After all the rotations we have obtained the following matrix. 

[ ]1

0.000 1.0360 0.000 0.000 0.000 0.000 0.000 0.000
1.0360 0.0059 0.8663 0.000 0.000 0.000 0.0066 0.000
0.000 0.8663 0.0066 0.5912 0.000 0.1605 0.0120 0.000
0.000 0.000 0.5912 0.0623 0.7036 0.0889 0.000 0.000
0.000 0.000 0.000 0.

M

−
− − −

−
=

− 7036 0.1706 0.5829 0.000 0.000
0.000 0.000 0.1605 0.0889 0.5829 0.0122 0.8667 0.000
0.000 0.0066 0.0120 0.000 0.000 0.8667 0.0003 1.0369
0.000 0.000 0.000 0.000 0.000 0.000 1.0369 0.000

 
 
 
 
 
 
 − −
 

− − − 
 − − − − 

−  

 (12) 

After determining the coupling matrix we have represented the frequency re-
sponse of the filter shown in Figure 8. 

The analysis of these simulation results from Figure 8 presents 4 transmission 
zeros on both sides of the bandwidth as planned by the specifications, the reflec-
tion losses are estimated at 20 dB, the losses are 60 dB at the lower lobe and 30 
dB at the upper lobe. 
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Figure 8. Frequency response of 6 poles to 4 zeros. 

3.3. Analysis of an 8-Pole Filter with 4 Transmission Zeros 

This section presents the analysis of the filter using the same load book with the 
6 order filter. The transfer function meeting the electrical specifications has the 
following indications: 8 poles and 4 transmission zeros whose original matrix is 
as follows. 

[ ]0

0.00 0.299 0.292 0.375 0.384 0.360 0.366 0.402 0.402 0.00
0.299 1.159 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.298
0.292 0.00 1.141 0.00 0.00 0.00 0.00 0.00 0.00 0.307
0.375 0.00 0.00 1.102 0.00 0.00 0.00 0.00 0.00 0.379
0.384 0.00 0.00 0.0

M

−
−

− −

=
0 1.091 0.00 0.00 0.00 0.00 0.382

0.360 0.00 0.00 0.00 0.00 0.781 0.00 0.00 0.00 0.360
0.366 0.00 0.00 0.00 0.00 0.00 0.742 0.00 0.00 0.366
0.402 0.00 0.00 0.00 0.00 0.00 0.00 0.302 0.00 0.402
0.402 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.254 0.

−
−

− −
402

0.00 0.298 0.307 0.379 0.382 0.360 0.366 0.402 0.402 0.00

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 − − − − 

 (13) 

From the original matrix [M0] we proceeded to a technique which consists in 
making 8 rotations to obtain couplings. The equivalent circuit consists of rec-
tangular half-wave resonators illustrated in Figure 9. 

The topology compatible with a filter realization presented in Figure 9, shows 
a bulky device and following the same procedure of the previous sections, we 
obtained the following rotation matrix. 
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Figure 9. Coupling diagram (8-4). 

 

[ ]1

0.000 1.025 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
1.025 0.002 0.849 0.000 0.000 0.000 0.000 0.000 0.000 0.000
0.000 0.849 0.002 0.597 0.000 0.000 0.000 0.002 0.000 0.000
0.000 0.000 0.597 0.000 0.541 0.000 0.118 0.006 0

M

−
− −

− − −

=

.000 0.000
0.000 0.000 0.000 0.541 0.036 0.649 0.066 0.000 0.000 0.000
0.000 0.000 0.000 0.000 0.649 0.134 0.535 0.000 0.000 0.000
0.000 0.000 0.000 0.118 0.066 0.535 0.010 0.595 0.000 0.000
0.000 0.000 0.002 0.006 0.000 0.000

− − −
− −

− − −
− − −0.595 0.006 0.852 0.000

0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.852 0.012 1.030
0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.030 0.000

 
 
 
 
 
 
 
 
 
 
 

− 
 − − 
  

 (14) 

This step of the synthesis allows us to find the dimensions between resonators 
that allow us to realize the different couplings Mij of the coupling matrix [M1]. 
Indeed, for a given dimension between resonators, the shape of the frequency 
response of the coupled resonators is given in Figure 10. 
 

 
Figure 10. Frequency response of 8 poles to 4 zeros. 

 
Therefore the frequency response corresponds to the coupling diagram (8-4) 

which has four transmission zeros on each side of the passband. The reflection 
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losses are estimated at 20 dB and the insertion losses are 80 dB at the lower lobe 
and 50 dB at the upper lobe. 

3.4. Comparison of Frequency Responses 

Figure 11 shows a comparative study of the transmission responses for different 
values of N with 4 transmission zeros. 

Table 1 shows a comparative study of 6, 8 and 10 order filters with 4 trans-
mission zeros. We see that the order of the filter influences the lobe levels and 
the bandwidth. The insertion loss increases as N increases. 
 

 
Figure 11. Comparison of 6, 8 and 10 order filters. 

 
Table 1. Comparative table of filters. 

Order of the 
N filter 

Insertion losses in 
the passband (dB) 

Lower lobe Upper lobe Bandwidth 

6 0.02625 55.73 30.16 2.2160 

8 0.02825 79.18 47.09 2.1270 

10 0.05723 104.1 65.78 2.0490 

4. Conclusion 

The work undertaken in this article is part of the analysis of microwave filters 
using the N + 2 transversal network method. First, we have validated this me-
thod by an application on the filter proposed by R. Cameron. A good control of 
the synthesis process has been observed. The filters of orders 6, 8 and 10 with 4 
transmission zeros have been studied. We found that the order of the filter in-
fluences the width of the bandwidth and the level of insertion losses. There are 
many prospects for this work. The filters studied in this article will be designed 
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and produced. Applying Gram Smith’s method to couple resonator filters; make 
a comparative study of resonator filters with 4, 6, 8 and 10 poles using the N + 2 
transversal network method in order to draw a conclusion on the bandwidth. 
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