

Discussion on the Complex Structure of Nilpotent Lie Groups *G_k*

Caiyu Du, Yu Wang

College of Mathematics and Statistics, Sichuan University of Science and Engineering, Zigong, China Email: 13118475629@163.com

How to cite this paper: Du, C.Y. and Wang, Y. (2024) Discussion on the Complex Structure of Nilpotent Lie Groups G_k . Open Journal of Applied Sciences, **14**, 1401-1411. https://doi.org/10.4236/ojapps.2024.146092

Received: May 18, 2024 **Accepted:** June 8, 2024 **Published:** June 11, 2024

Copyright © 2024 by author(s) and Scientific Research Publishing Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0).

http://creativecommons.org/licenses/by/4.0/

Open Access

Abstract

Consider the real, simply-connected, connected, s-step nilpotent Lie group G endowed with a left-invariant, integrable almost complex structure J, which is nilpotent. Consider the simply-connected, connected nilpotent Lie group G_k , defined by the nilpotent Lie algebra g/a_k , where g is the Lie algebra of G, and a_k is an ideal of g. Then, J gives rise to an almost complex structure J_k on G_k . The main conclusion obtained is as follows: if the almost complex structure J of a nilpotent Lie group G is nilpotent, then J can give rise to a left-invariant integrable almost complex structure J_k on the nilpotent Lie group G_k , and J_k is also nilpotent.

Keywords

Almost Complex Structure, Nilpotent Lie Group, Nilpotent Lie Algebra

1. Introduction

In the year 2000, Cordero and others [1] conducted research on nilpotent complex structures on connected simply connected real even-dimensional nilpotent Lie groups *G* with left-invariant integrable almost complex structures. They provided definitions for an ascending sequence $\{a_k, k \ge 0\}$ compatible with the integrable almost complex structure *J* of *G*, as well as the definition of nilpotent complex structure. Building upon Cordero *et al.*'s research on nilpotent complex structures, this paper demonstrates that if the left-invariant integrable almost complex structure *J* on the Lie group *G* is nilpotent, then *J* can induce a left-invariant integrable almost complex structure J_k on G_k , and J_k is also nilpotent. The study of nilpotent complex structures on the nilpotent Lie group G_k can further investigate topics such as spectral sequences, Dolbeault cohomology groups, and minimal models of compact nilpotent manifolds discussed in references [2] [3] [4].

The aim of this paper is to investigate the scenario of a connected simply-connected s-step nilpotent Lie group G with a left-invariant integrable almost complex structure J, where J is nilpotent. Through the examination of the connected simply-connected nilpotent Lie group G_k defined by the nilpotent Lie algebra g/a_k , the objective is to ascertain whether J can induce an almost complex structure J_k on G_k , and further demonstrate that J_k is also nilpotent.

In addressing this issue, the paper is divided into two parts. The first part serves as background knowledge, introducing fundamental concepts related to connected simply connected s-step nilpotent Lie groups G with left-invariant integrable almost complex structures. The second part provides evidence that if the left-invariant integrable almost complex structure J is nilpotent, then J can induce a left-invariant integrable almost complex structure J_k on G_k , and J_k is also nilpotent.

2. Background Knowledge

2.1. Integrable Complex Structure

Let *V* connected simply connected 2n-dimensional real vector space. The so-called complex structure *J* on *V* is a linear transformation $J: V \rightarrow V$, satisfying:

$$J^2 = -\mathrm{id}: V \to V$$

Let *M* be a 2n-dimensional smooth manifold, and *J* be a smooth (1,1)-type tensor field on *M*. For each point $x \in M$, J_k a linear transformation from the tangent space T_xM to itself. If each $J_k(x)(x \in M)$ is a complex structure on the tangent space T_xM , then the tensor field *J* is called a almost complex structure on *M*. The smoothness of the tensor field *J* implies that if *X* is a smooth tangent vector field on *M*, then *JX* is also a smooth tangent vector field on *M*.

Let *G* be a Lie group with a left-invariant almost complex structure, g = LieG. Then, we can define a linear map $J: g \to g$ and $J^2 = -id$. *J* is called a complex structure on *g*. If *J* satisfies:

$$[JX, JY] = [X, Y] + J[JX, Y] + J[X, JY] \text{ for any } (X, Y \in g), \qquad (1)$$

then J is integrable. Without distinction, the left-invariant integrable almost complex structure on G and the integrable complex structure on g are both denoted by J.

2.2. On Sequences of Nilpotent Lie Algebras

Let g be a Lie algebra. Suppose

$$g^{0} = g, g^{1} = [g^{0}, g], \dots, g^{l} = [g^{l-1}, g], \dots$$
 (2)

It can be easily proven that g^i is an ideal of g, and $g^i \subseteq g^{i-1}$. The sequence $\{g^k, k \ge 0\}$ is called the descending central series of g. If there exists an $s \in N$

such that $g^s = \{0\}$ and $g^{s-1} \neq \{0\}$, then g is called an s-step nilpotent Lie algebra [5] [6].

Let G be a 2n-dimensional real nilpotent Lie group with a left-invariant integrable almost complex structure, g = LieG, and g^* be the dual space of g. Let $\{w_1, w_2, \dots, w_n\}$ denote a complex basis, and $\{w_1, \overline{w}_1, w_2, \overline{w}_2, \dots, w_n, \overline{w}_n\}$ denote a corresponding real basis. Therefore,

$$dw_{i} = \sum_{j < k} A_{ijk} w_{j} \wedge w_{k} + \sum_{j,k} B_{ijk} w_{j} \wedge \overline{w}_{k} + \sum_{j < k} C_{ijk} \overline{w}_{j} \wedge \overline{w}_{k} \left(1 \le i \le n \right),$$
(3)

because $d\alpha(X,Y) = -\alpha([X,Y])(X,Y \in g^{C}, \alpha \in (g^{C})^{*})$, we use the exterior derivative on g^{*} to describe the Lie bracket on g.

Property 1 [7]. Let *G* be a real nilpotent Lie group, g = LieG. *G* has a left-invariant integrable almost complex structure if and only if $C_{iik} = 0$, *i.e.*

$$dw_i = \sum_{j < k \le n} A_{ijk} w_j \wedge w_k + \sum_{j,k \le n} B_{ijk} w_j \wedge \overline{w}_k \quad (1 \le i \le n).$$
(4)

The structure equation can define connected and simply connected nilpotent Lie groups left-invariant integrable almost complex structure, so we can study some properties of Lie groups through this structure equation.

Definition 1 [8]. Let *G* be a connected simply connected s-step nilpotent Lie group, g = LieG. Define a sequence in *g* as

$$g_{0} = 0, g_{1} = \{X \in g \mid [X, g] \subseteq g_{0}\}, \cdots, g_{k} = \{X \in g \mid [X, g] \subseteq g_{k-1}\}, \cdots.$$
(5)

Then g_1 is the center of g, where $g_1 \neq \{0\}$. $g_s = g$, $g_k \subseteq g_{k+1}$, and for any $k(0 \le k \le s-1)$ chosen such that $\dim g_k < \dim g_{k+1}$. Thus, there exists an ascending central series

$$g_0 = 0 \subset g_1 \subset g_2 \subset \cdots \subset g_{s-1} \subset g_s = g.$$
(6)

Property 2.If the sequence $\{g_k, k \ge 0\}$ satisfies Equation (5), then:

a) g_1 is the center of g and $g_1 \neq 0$;

b) For any $k \ge 0$, $g_k \subseteq g_{k+1}$;

c) For any $k(0 \le k \le s-1)$ such that $\dim g_k < \dim g_{k+1} (0 \le k \le s-1)$. We have $g_0 = 0 \subset g_1 \subset g_2 \subset \cdots \subset g_{s-1} \subset g_s = g$.

Proof. a) Since $g_0 = \{0\}$, then $g_1 = \{X \in g \mid [X,g] = 0\} = C(g)$. Moreover, since g is a nilpotent Lie algebra, $C(g) \neq 0$, hence g_1 is the center of g and $g_0 \subset g_1$.

b) We use induction to prove $g_k \subseteq g_{k+1}$ $(k \ge 0)$.

For k = 0, by a), we have $g_0 \subset g_1$. Assume that when k = i holds, $g_i \subseteq g_{i+1}$. We'll prove that for k = i+1, $g_{i+1} \subseteq g_{i+2}$. For any $x_1 \in g_{i+1}$ and $x \in g$, we have $[x_1, x] \in g_i \subseteq g_{i+1}$. According to Equation (5), $x_1 \in g_{i+2}$, thus $g_{i+1} \subseteq g_{i+2}$, hence $g_k \subseteq g_{k+1}$ $(k \ge 0)$.

c) First, we'll prove that there exists an integer *s* such that $g_s = g$.

Since g is an s-step nilpotent Lie algebra, there exists a descending central series

$$g^0 = g \supset g^1 = \left[g, g^0\right] \supset \cdots \supset g^{k+1} = \left[g, g^k\right] \supset \cdots g^s = \{0\}$$

Next, we'll use induction to prove $g^{s-i} \subseteq g_i$. When k = 0, we have

 $g^{s} = \{0\} = g_{0}$. Assuming k = i holds, $g^{s-i} \subseteq g_{i}$, we'll prove that for k = i+1, $g^{s-i-1} \subseteq g_{i+1}$. According to Equation (2), we have $g^{s-i} = [g, g^{s-i-1}]$. Also, since $g^{s-i} \subseteq g_{i}$, then $g^{s-i-1} \subseteq g_{i+1}$. Thus, for any $i(0 \le i \le s)$ such that $g^{s-i} \subseteq g_{i}$, we have $g_{s} \supseteq g^{0} = g$, and since $g_{s} \subseteq g$, we conclude that $g_{s} = g$.

Next, we prove that $g_0 = 0 \subset g_1 \subset g_2 \subset \cdots \subset g_{s-1} \subset g_s = g$, namely, for any $k(0 \le k \le s-1)$ such that $\dim g_k < \dim g_{k+1}$, then $g_k \subset g_{k+1}$ is strict.

When k = 0, by conclusion (a), we have $g_0 \subset g_1$. Assuming for k = i holds, $g_i \subset g_{i+1}$, we'll prove that for k = i+1, $g_{i+1} \subset g_{i+2}$. According to Equation (5), we have $g_{i+1} = \{X \in g \mid [X,g] \subseteq g_i\}$, $g_{i+2} = \{X \in g \mid [X,g] \subseteq g_{i+1}\}$, thus $g_{i+1} \subset g_{i+2}$. Also, since $g_s = g$, then for any $k (0 \le k \le s-1)$ such that $\dim g_k < \dim g_{k+1}$, we have $g_k \subset g_{k+1}$ is strict. Thus, we have

$$g_0 = 0 \subset g_1 \subset g_2 \subset \cdots \subset g_{s-1} \subset g_s = g$$

holds.

Before introducing the nilpotent complex structure on G, let's first discuss under what conditions g is a complex Lie algebra. Let g^{C} denote the complexification of g, and let J be the complex structure on the Lie algebra g. Then we have $g^{C} = g^{-} \oplus g^{+}$, where $\pm i$ are the eigenvalues of J, and

 $g^- = \{X + iJX \mid X \in g\}$ and $g^+ = \{X - iJX \mid X \in g\}$ are the eigenspaces of J.

Property 3 [9]. The eigenspaces g^{\pm} of *J* are ideals of g^{C} .

Theorem 1. Let *J* be the integrable complex structure on the Lie algebra *g*. If J[X,Y] = [JX,Y] for all $X, Y \in g$, then *g* is a complex Lie algebra.

Proof: Let $g^+ = \{X - iJX \mid X \in g\}$. According to Property 3, we have

$$[X,Y] \in g^+$$
 for all $X,Y \in g^+$

Let $g^- = \{X + iJX \mid X \in g\}$. According to Property 3, we have $[X, Y] \in g^-$ for all $X, Y \in g^-$.

Since $g \subset g^{C} = g^{-} \oplus g^{+}$, any $X, Y \in g$ satisfies $X = X_{1} + X_{2}$ $(X_{1} \in g^{-}, X_{2} \in g^{+}), Y = Y_{1} + Y_{2}$ $(Y_{1} \in g^{-}, Y_{2} \in g^{+}).$

According to Property 3, we have $[X_1, Y_2] \in g^+$ and $[X_1, Y_2] \in g^-$. Since $g^+ \cap g^- = \{0\}$, it follows that $[X_1, Y_2] = 0$ and $[X_2, Y_1] = 0$.

To prove that *g* is a complex Lie algebra, we need to show that the Lie bracket of *g* is *C*-linear, *i.e.*, $\lceil (a+ib)X,Y \rceil = (a+ib)\lceil X,Y \rceil$ ($X,Y \in g$).

$$\begin{split} \left[(a+ib)X,Y \right] &= \left[(a+ib)(X_1+X_2),Y_1+Y_2 \right] \\ &= \left[a(X_1+X_2),Y_1+Y_2 \right] + \left[ib(X_1+X_2),Y_1+Y_2 \right] \\ &= a[X_1+X_2,Y_1+Y_2] + b \left[i(X_1+X_2),Y_1+Y_2 \right] \\ &= a[X_1+X_2,Y_1+Y_2] + b \left[JX_1 - JX_2,Y_1+Y_2 \right] \\ &= a[X_1+X_2,Y_1+Y_2] + b \left[JX_1,Y_1+Y_2 \right] - b \left[JX_2,Y_1+Y_2 \right] \end{split}$$

$$= a [X_1 + X_2, Y_1 + Y_2] + bJ [X_1, Y_1 + Y_2] - bJ [X_2, Y_1 + Y_2]$$

$$= a [X_1 + X_2, Y_1 + Y_2] + bJ [X_1, Y_1] - bJ [X_2, Y_2]$$

$$= a [X_1 + X_2, Y_1 + Y_2] + ib [X_1, Y_1] + ib [X_2, Y_2]$$

$$= (a + ib) [X_1 + X_2, Y_1 + Y_2]$$

Therefore, the Lie algebra is C-linear, proving that g is a complex Lie algebra.

Suppose *G* is a connected simply connected nilpotent Lie group, g = LieG, and *g* has a complex structure *J*. Then *g* is a complex vector space, but generally not a complex Lie algebra. According to Theorem 1, if the complex structure satisfies J[X,Y] = [JX,Y] for all $X, Y \in g$, then *g* is a complex Lie algebra. To study the nilpotent complex structure of the Lie group *G*, we introduce the ascending sequence $\{a_k, k \ge 0\}$ related to the nilpotent Lie algebra *g*.

Definition 2 [10]. Let *G* be a connected simply connected s-step nilpotent Lie group, and suppose it has a left-invariant integrable almost complex structure. g = LieG and *J* is the complex structure on the Lie algebra *g*. *g* has the sequence

$$a_{0} = \{0\}, \dots, a_{k} = \{X \in g \mid [X, g] \subseteq a_{k-1}, [JX, g] \subseteq a_{k-1}\}, \dots,$$
(7)

called the compatible with the integrable almost complex structure J of G.

Property 4. If $\{a_k, k \ge 0\}$ is the compatible with the integrable almost complex structure *J* of *G*, then a_k is an ideal of *g*, $a_k \subseteq a_{k+1}$, and $a_k \subseteq g_k$ $(k \ge 0)$.

Proof: We use induction to prove $a_k \subseteq a_{k+1}$.

When k = 0, because $[a_1, g] \subseteq a_0 = \{0\}$, then $[a_1, g] \subseteq a_0 \subseteq a_1$. Suppose that when k = i, $a_i \subseteq a_{i+1}$ holds, we need to prove that when k = i+1, $a_{i+1} \subseteq a_{i+2}$. According to Equation (7), we have $a_{i+2} = \{X \in g \mid [X,g] \subseteq a_{i+1}, [JX,g] \subseteq a_{i+1}\}$, $a_{i+1} = \{X \in g \mid [X,g] \subseteq a_i, [JX,g] \subseteq a_i\}$. Since $a_i \subseteq a_{i+1}$ holds, $a_{i+1} \subseteq a_{i+2}$, hence $a_k \subseteq a_{k+1}$ ($k \ge 0$).

To prove that a_k is an ideal of g, because $[a_k, g] \subseteq a_{k-1} \subseteq a_k$, a_k is an ideal of g. By induction, we prove $a_k \subseteq g_k$ $(k \ge 0)$.

When k = 0, since $a_0 = 0$, $g_0 = 0$, then $a_0 \subseteq g_0$. Suppose that when k = i, $a_i \subseteq g_i$ holds, we need to prove that when k = i+1, $a_{i+1} \subseteq g_{i+1}$.

According to Equations (5) and (7), we have

 $a_{i+1} = \left\{ X \in g \mid \left[X, g \right] \subseteq a_i, \left[JX, g \right] \subseteq a_i \right\}, \quad g_{i+1} = \left\{ X \in g \mid \left[X, g \right] \subseteq g_i \right\}.$

Since $a_i \subseteq g_i$ holds, $a_{i+1} \subseteq g_{i+1}$, which completes the proof.

Lemma 1 [1]. If there exists $k \ge 0$ such that $a_k = a_{k+1}$, then for any $r \ge k$, $a_r = a_k$.

Now let's look at some properties between the ascending sequence $\{a_k, k \ge 0\}$ and the ascending central sequence $\{g_k, k \ge 0\}$ of g.

Lemma 2 [1]. If $\{a_k, k \ge 0\}$ and $\{g_k, k \ge 0\}$ are respectively the ascending sequences of *g*, then the following three conclusions hold.

i) If there exists $k \ge 0$ such that $a_k = g_k$, then $g_k = J(g_k)$;

ii) If there exists k > 0 such that $a_{k-1} = g_{k-1}$, then $a_k = g_k$ if and only if

 $g_k = J(g_k);$

iii) If $a_{k-1} = g_{k-1}$, then a_k is the largest *J*-invariant subspace of g_k .

Under the conditions of Lemma 2 and according to Equations (5), (7), we know $a_0 = g_0 = 0$, then

a) If there exists $k \ge 0$ such that $J(g_k) \not\subset g_k$, then $a_k \subset g_k$ is strict;

b) If there exists an integer s such that $a_{s-1} = g_{s-1}$, then $a_s = g_s = g$;

c) a_1 is the largest *J*-invariant subspace of g_1 ;

d) If any term g_k of $\{g_k, k \ge 0\}$ is *J*-invariant, then for any $k \ge 0$, $a_k = g_k$ and $a_s = g_s = g$.

Next, consider some related properties between the ascending sequence

 $\{a_k, k \ge 0\}$ and the descending central sequence $\{g^l, l \ge 0\}$ of g. Under the conditions of Lemma 2, suppose $\{g^l, l \ge 0\}$ is the descending central sequence of g. Then we have

① If for some $k \ge 0$ and some $l \ge 0$, $g^l \subset a_k$ and $J(g^{l-1}) = g^{l-1}$, then $g^{l-1} \subset a_{k+1}$;

(2) If for some $k \ge 0$, $[g,g] \subseteq a_k$, then $a_{k+1} = g$;

(3) If any $g^l \in \{g^l, l \ge 0\}$ is *J*-invariant, then $a_s = g_s = g$ [1].

2.3. Nilpotent Complex Structure

Definition 3 [11]. Let *G* be a connected simply connected s-step nilpotent Lie group, and suppose it has a left-invariant integrable almost complex structure. g = LieG and *J* is the complex structure on the Lie algebra *g*. If there exists t > 0 such that $a_t = g$, then the left-invariant integrable almost complex structure *J* is called a nilpotent left-invariant complex structure.

Lemma 3 [1]. Let $\{w_i, 1 \le i \le n\}$ be a (1,0)-type left-invariant form complex basis for g^* , satisfying the structural equation

$$\sum_{j < k < i} A_{ijk} w_j \wedge w_k + \sum_{j,k < i} B_{ijk} w_j \wedge \overline{w}_k \quad (1 \le i \le n).$$

If $\{Z_i, \overline{Z}_i, 1 \le i \le n\}$ is a basis for g and dual to the basis $\{w_i, \overline{w}_i, 1 \le i \le n\}$, let $X_i = \operatorname{Re}(Z_i), Y_i = \operatorname{Im}(Z_i) (1 \le i \le n)$, then any term $a_l (1 \le l \le n)$ in the ascending sequence $\{a_l, l \ge 0\}$ contains at least generators $X_{n-l+1}, Y_{n-l+1}, \dots, X_n, Y_n$.

Proposition 1. Under the conditions of Lemm3, we have

(i) If a_k is a member of the sequence $\{a_k, k \ge 0\}$, and $a_k \ne g$, then dim $a_{k+1} \ge 2 + \dim a_k$;

(ii) If $\{g_k, k \ge 0\}$ is the ascending central sequence of *g*, then

 $\dim g_k \geq \dim a_k \geq 2k \ (1 \leq k \leq n);$

(iii) There exists a unique integer t such that $\dim a_{t-1} < \dim a_t$ and $a_t = g$ $(s \le t \le n)$.

Theorem 2 [1]. Let $\{a_k, k \ge 0\}$ be the compatible with the integrable almost complex structure *J* of *G*. If there exists a(1,0)-type left-invariant form complex basis $\{w_i, 1 \le i \le n\}$ for g^* such that the basis satisfies the structural equation

$$dw_i = \sum_{j < k < i} A_{ijk} w_j \wedge w_k + \sum_{j,k < i} B_{ijk} w_j \wedge \overline{w}_k \quad (1 \le i \le n),$$

then the left-invariant integrable almost complex structure is nilpotent if and only if it is almost nilpotent.

Raghunathan [12] concludes: let *G* be a connected simply connected nilpotent Lie group with Lie algebra g = LieG. *G* has a lattice *D* if and only if *g* admits a basis with rational structure constants. By applying Theorem 2, Theorem 3 can be obtained.

Theorem 3 [1]. Given the structure equations of Theorem 2:

$$dw_i = \sum_{j < k < i} A_{ijk} w_j \wedge w_k + \sum_{j,k < i} B_{ijk} w_j \wedge \overline{w}_k \quad (1 \le i \le n),$$

a connected simply connected nilpotent Lie group G with a left-invariant almost complex structure that is nilpotent can be defined, and its left-invariant complex structure is nilpotent. Then a complex structure, which is also nilpotent, can be defined on the compact homogeneous nilpotent manifold G/D. Conversely, if the left-invariant integrable almost complex structure of a connected simply connected nilpotent Lie group G is nilpotent, with structure equations

$$dw_i = \sum_{j < k < i} A_{ijk} w_j \wedge w_k + \sum_{j,k < i} B_{ijk} w_j \wedge \overline{w}_k \quad (1 \le i \le n),$$

then G has a left-invariant complex structure that is nilpotent.

3. Exploring Complex Structures on Nilpotent Lie Group G_k

This section mainly discusses that if the left-invariant integrable almost complex structure J on a Lie group G is nilpotent, then the nilpotent Lie group G_k has a left-invariant integrable almost complex structure J_k , and J_k is nilpotent (where k < t, and t is the smallest integer such that $a_i = g$). By Property 4, a_k is an ideal of g, and since g is a nilpotent Lie algebra, g/a_k is also a nilpotent Lie algebra. Let G_k be the connected simply connected nilpotent Lie group defined by the nilpotent Lie algebra g/a_k .

3.1. Complex Structure of Nilpotent Lie Group G_k

Definition 4. Let *G* be a connected simply connected nilpotent Lie group with a left-invariant integrable almost complex structure, g = LieG, and *J* be the complex structure on *g*. Define the mapping on g/a_k :

$$J_{k} : g/a_{k} \to g/a_{k}$$
$$\overline{x} \mapsto \tilde{J}(\overline{x}) = J(x) + a_{k}, \quad x \in g, \overline{x} \in g/a_{k}$$

Lemme 5. Suppose *G* is a connected simply connected nilpotent Lie group with a left-invariant integrable almost complex structure that is nilpotent, then G_k has a left-invariant integrable almost complex structure.

Proof: First, we prove that J_k is a complex structure. Since J is linear, and according to Definition 4,

$$J_{k}(\overline{x}) = J(x) + a_{k}, \quad x \in g, \overline{x} \in g/a_{k},$$

 J_k is linear. Next, we prove that J_k is a complex structure. Since

$$J_{k}(J_{k}(\overline{x})) = J_{k}(Jx + a_{k})$$
$$= J(Jx + a_{k}) + a_{k}$$
$$= J^{2}x + a_{k} = -\overline{x}$$

thus $J_k^2 = -id : g/a_k \to g/a_k$, so J_k is a complex structure on g/a_k . For any $\overline{X}, \overline{Y} \in g/a_k$, we have $\overline{X} = X + a_k$, $\overline{Y} = Y + a_k$ ($X, Y \in g$),

$$\begin{bmatrix} J_k(\overline{X}), J_k(\overline{Y}) \end{bmatrix} = \begin{bmatrix} JX + a_k, JY + a_k \end{bmatrix}$$

= $\begin{bmatrix} JX, JY \end{bmatrix} + a_k$
= $\begin{bmatrix} \overline{X}, \overline{Y} \end{bmatrix} + J \begin{bmatrix} JX, Y \end{bmatrix} + J \begin{bmatrix} X, JY \end{bmatrix} + a_k$
= $\begin{bmatrix} \overline{X}, \overline{Y} \end{bmatrix} + J_k (\begin{bmatrix} JX, Y \end{bmatrix} + a_k) + J_k (\begin{bmatrix} X, JY \end{bmatrix} + a_k)$
= $\begin{bmatrix} \overline{X}, \overline{Y} \end{bmatrix} + J_k (\begin{bmatrix} J_k(\overline{X}), \overline{Y} \end{bmatrix}) + J_k (\begin{bmatrix} \overline{X}, J_k(\overline{Y}) \end{bmatrix})$

so G_k has a left-invariant integrable almost complex structure.

We know that the left-invariant integrable almost complex structure J of the Lie group G induces a left-invariant integrable almost complex structure J_k on the Lie group G_k . Next, we first give a sequence $\{b_k, k \ge 0\}$ on g/a_k , and then use this sequence to prove that if J is nilpotent, then J_k is also nilpotent.

Definition 5. Let *G* be a connected simply connected nilpotent Lie group with a left-invariant integrable almost complex structure, g = LieG, *J* be the complex structure on *g*, and *J_k* be the complex structure on g/a_k . g/a_k has a sequence

$$b_0 = \{0\}, \dots, b_k = \left\{ \overline{X} \in g/a_k \mid \left[\overline{X}, g/a_k\right] \subseteq b_{k-1}, \left[\widetilde{J}(\overline{X}), g/a_k\right] \subseteq b_{k-1} \right\}, \dots$$
(8)

3.2. Properties of the Complex Structure of Nilpotent Lie Group G_k

Property 5. g/a_k has a sequence $\{b_k, k \ge 0\}$ satisfying Equation (8), which implies that

(1) For any $k \ge 0$, $b_k \subseteq b_{k+1}$;

(2) If there exists $k \ge 0$ such that $b_k = b_{k+1}$, then for any $r \ge k$, $b_r = b_k$. Proof: We use induction to prove $b_k \subseteq b_{k+1}$.

When k = 0, according to Equation (8), we have $b_0 = \{0\}$ and $b_0 \subseteq b_1$.

Assume that when k = i, $b_i \subseteq b_{i+1}$ holds. When k = i+1, $b_{i+1} \subseteq b_{i+2}$ holds. According to Equation(8), we have

$$b_{i+2} = \left\{ \overline{X} \in g/a_k \mid \left[\overline{X}, g/a_k \right] \subseteq b_{i+1}, \left[J_k \left(\overline{X} \right), g/a_k \right] \subseteq b_{i+1} \right\}, \\ b_{i+1} = \left\{ \overline{X} \in g/a_k \mid \left[\overline{X}, g/a_k \right] \subseteq b_i, \left[J_k \left(\overline{X} \right), g/a_k \right] \subseteq b_i \right\},$$

and since $b_i \subseteq b_{i+1}$ holds, $b_{i+1} \subseteq b_{i+2}$ holds. Thus, $b_k \subseteq b_{k+1}$ $(k \ge 0)$.

Next, we prove property (2). According to Equation (8), we have

$$b_{i+2} = \left\{ \overline{X} \in g/a_k \mid \left[\overline{X}, g/a_k\right] \subseteq b_{i+1}, \left[J_k\left(\overline{X}\right), g/a_k\right] \subseteq b_{i+1} \right\}$$
$$= \left\{ \overline{X} \in g/a_k \mid \left[\overline{X}, g/a_k\right] \subseteq b_i, \left[J_k\left(\overline{X}\right), g/a_k\right] \subseteq b_i \right\}$$
$$= b_{k+1}$$

П

which means that for any $r \ge k$, $b_r = b_{k+1} = b_k$.

Definition 6. Let *G* be a connected simply connected nilpotent Lie group with a left-invariant integrable almost complex structure, g = LieG, J_k be the complex structure on g/a_k , and $\{b_k, k \ge 0\}$ be an ascending sequence on g/a_k . If there exists t > 0 such that $b_t = g/a_k$, then the left-invariant integrable almost complex structure of G_k is called nilpotent left-invariant complex structure.

Theorem 4. Suppose a connected simply connected s-step real nilpotent Lie group *G* has a left-invariant integrable almost complex structure *J*, and the sequence $\{a_k, k \ge 0\}$ is a ascending sequence of *g*. If the left-invariant integrable almost complex structure *J* is nilpotent, then $b_n = a_{n+k}/a_k$ and the left-invariant integrable almost complex structure of *G_k* is nilpotent.

Proof: To prove that the left-invariant integrable almost complex structure of G_k is nilpotent, we only need to prove that there exists *t* such that $b_t = g/a_k$. We will prove by induction that there exists *n* such that $b_n = g/a_k$.

 $b_0 = a_k / a_k = \{0\}$, Next, we prove $b_1 = a_{k+1} / a_k$.

For any $\overline{X} \in a_{k+1}/a_k$, we have $\overline{X} = X + a_k (X \in a_{k+1})$, then

 $\left[\overline{X},g/a_k\right] = \left[X,g\right] + a_k$ and $\left[J_k\left(\overline{X}\right),g/a_k\right] = \left[JX,g\right] + a_k$ According to Equation (7), we know that $\left[X,g\right] \subseteq a_k$ and $\left[J(X),g\right] \subseteq a_k$, so

$$\left[J_k(\overline{X}),g/a_k\right]=0$$
 and $\left[\overline{X},g/a_k\right]=0$.

Therefore $\overline{X} \in b_1$, implying $b_1 \supseteq a_{k+1}/a_k$.

For any $\overline{X} \in b_1$, we have $\overline{X} = X + a_k (X \in g)$, according to Equation (8),

$$b_{1} = \left\{ \overline{X} \in g/a_{k} \mid \left[\overline{X}, g/a_{k} \right] \subseteq b_{0} = \{0\}, \left[J_{k} \left(\overline{X} \right), g/a_{k} \right] \subseteq b_{0} = \{0\} \right\},\$$

which means $[X,g] + a_k \subseteq \{0\}$ and $[JX,g] + a_k \subseteq \{0\}$, so $[X,g] \subseteq a_k$ and $[JX,g] \subseteq a_k$, hence $X \in a_{k+1}$, so $\overline{X} \in a_{k+1}/a_k$, which means $b_1 \subseteq a_{k+1}/a_k$. So $b_1 = a_{k+1}/a_k$. Assume that when n = i, $b_i = a_{k+i}/a_k$ holds. Next, we prove that when n = i+1, $b_{i+1} = a_{k+i+1}/a_k$ holds. For any $\overline{X} \in b_{i+1}$ we have $\overline{X} = X + a_k (X \in a_{k+i+1})$, then $\left[\overline{X}, g/a_k\right] = \left[X, g\right] + a_k$ and $\left[J_k(\overline{X}), g/a_k\right] = \left[JX, g\right] + a_k$. according to Equation (8), we know that $[X,g] \subseteq a_{k+i}$ and $[JX,g] \subseteq a_{k+i}$. thus $|J_k(\overline{X}), g/a_k| \subseteq a_{k+i}/a_k = b_i$ and $|\overline{X}, g/a_k| \subseteq a_{k+i}/a_k = b_i$. Therefore $\overline{X} \in b_{i+1}$, implying $b_{i+1} \supseteq a_{k+i+1}/a_k$. For any $\overline{X} \in b_{i+1}$, we have $\overline{X} = X + a_k (X \in g)$, according to Equation (8), $b_{i+1} = \left\{ \overline{X} \in g/a_k \mid \left[\overline{X}, g/a_k \right] \subseteq b_i = a_{k+i}/a_k, \left[J_k(\overline{X}), g/a_k \right] \subseteq b_i = a_{k+i}/a_k \right\}, \text{ which}$ means $[X,g] + a_k \subseteq a_{k+i}/a_k$ and $[JX,g] + a_k \subseteq a_{k+i}/a_k$, so $[X,g] \subseteq a_{k+i}$ and $[JX,g] \subseteq a_{k+i}$, hence $X \in a_{k+i+1}$, so $\overline{X} \in a_{k+i+1}/a_k$, which means $b_{i+1} \subseteq a_{k+i+1}/a_k$. So $b_{i+1} = a_{k+i+1}/a_k$.

Next, we prove that the complex structure J_k on g/a_k is nilpotent. Since the

complex structure *J* on the Lie group *G* is nilpotent, there exists t > 0 such that $a_t = g$, then $b_{t-k} = a_t/a_k = g/a_k$, thus J_k is nilpotent.

According to Theorem4, if a connected simply connected s-step real nilpotent Lie group *G* has a left-invariant integrable almost complex structure *J* that is nilpotent, then *J* can induce a nilpotent left-invariant integrable almost complex structure J_k on the Lie group G_k .

4. Summary

Let g be a Lie algebra. If g^* has a (1,0)-type left-invariant complex structure with complex basis $\{w_1, 1 \le i \le n\}$, satisfying the structural equation

$$dw_i = \sum_{j < k < i} A_{ijk} w_j \wedge w_k + \sum_{j,k < i} B_{ijk} w_j \wedge \overline{w}_k \quad (1 \le i \le n),$$

then we can define a connected simply connected nilpotent Lie group *G*. Its left-invariant integrable almost complex structure *J* on *G* is nilpotent, and *J* induces a left-invariant integrable almost complex structure J_k on the nilpotent Lie group G_k , and J_k is nilpotent.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Cordero, L.A., Fernandez, M., Gray, A. and Ygarte, L. (2000) Compact Nilmanifolds with Nilpotent Complex Structures: Dolbeaultcohomology. *Transactions of the American Mathematical Society*, **352**, 5405-5433. https://doi.org/10.1090/S0002-9947-00-02486-7
- Hasegawa, K. (1989) Minimal Models of Nilmanifolds. *Proceedings of the American Mathematical Society*, **106**, 65-71. https://doi.org/10.1090/S0002-9939-1989-0946638-X
- [3] Cordero, L.A., Fernández, M. and Gray, A. (1991) The Frölicher Spectral Sequence for Compact Nilmanifolds. *Illinois Journal of Math*, 35, 56-67. https://doi.org/10.1215/ijm/1255987978
- [4] Frölicher, A. (1955) Relations between the Cohomology Groups of Dolbeault and Topological Invariants. *Proceedings National Academy of Science United States of America*, 41, 641-644. <u>https://doi.org/10.1073/pnas.41.9.641</u>
- [5] Salamon, S.M. (2001) Complex Structures on Nilpotent Lie Algebras. *Journal of Pure and Applied Algebra*, 157, 311-333. https://doi.org/10.1016/S0022-4049(00)00033-5
- [6] Goze, M. and Khakimdjanov, Y. (1996) Nilpotent Lie Algebras. Kluwer Academic Publishers, London. <u>https://doi.org/10.1007/978-94-017-2432-6</u>
- [7] Kobayashi, S. and Nomizu, K. (1969) Foundations of Differential Geometry (Volume II). Interscience Publishers, New York.
- [8] Latorre, A.A., Ugarte, L. and Villacampa, R. (2019) The Ascending Central Series of Nilpotent Lie Algebras with Complex Structure. *Transactions of the American Mathematical Society*, **372**, 3867-3903. <u>https://doi.org/10.1090/tran/7512</u>

- [9] Millionschikov, D.V. (2014) Complex Structures on Nilpotent Lie Algebras and Descending Central Series. arXiv: Rings and Algebras.
- [10] Latorre, A., Ugarte, L. and Villacampa, R. (2023) Complex Structures on Nilpotent Lie Algebras with One-Dimensional Center. *Journal of Algebra*, 614, 271-306. <u>https://doi.org/10.1016/j.jalgebra.2022.09.021</u>
- [11] Gray, A., Cordero, L.A., Ugarte, L. and Ygarte, L. (2001) Nilpotent Complex Structures. *Geometry and Topology*, **95**, 45-55.
- [12] Raghunathan, M.S. (1972) Discrete Subgroups of Lie Groups. Springer-Verlag, Berlin. https://doi.org/10.1007/978-3-642-86426-1