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Abstract 
The no-tillage system influences the structure of the soil, as the absence of 
plows combined with the intensive use of heavy machinery contributes to 
variations in soil density and soil compaction. On the other hand, a no-tillage 
system tends to increase soil organic matter, which probably increases soil 
elasticity acting on the soil structure and possibly helping to increase the soil’s 
mechanical resistance to compaction. In a 2012 study, to evaluate the fit of 
the resistance curve to soil penetration and study the compaction of a very 
clayey Oxisol (clay content ~ 665 g∙kg−1) under no-till, a model was proposed 
with very good results. Good for data collected in the field. However, only 
one type of texture was considered and, therefore, the objective of this work 
was to evaluate this model for Latosols under no-tillage conditions, but with 
varying clay contents. Here, 355 soil penetration resistance points were made 
with a dynamic impact penetrometer, and samples were collected to deter-
mine soil density, moisture, and organic matter in Oxisols with varying clay 
content. The results confirmed that the non-linear model which includes den-
sity, moisture, and soil organic matter content, proved to be efficient for the 
adjustment of the penetration resistance curve in the studied Latosols with sig-
nificant variation in clay content and under no-tillage. The inclusion of organic 
matter allowed, in relation to the control model, a more excellent approxima-
tion of the resistance values obtained in the field of the 1:1 line and improved 
the coefficient of determination by 27% and the correlation coefficient by 13% 
and the relative error absolute was reduced by 5.26 times compared to a model 
that used only soil density and moisture. 
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1. Introduction 

The State of Paraná-Brazil is responsible for approximately 20% of all cereal 
production in the country due to its excellent climatic conditions and the Oxi-
solsare distributed in 31% of the state territory [1] [2]. This high production 
with more than one crop per year in a no-tillage system tends to cause structural 
damage, as the absence of plows combined with the intensive use of heavy ma-
chinery in inadequate humidity conditions contributes to variations in soil den-
sity and soil compaction. On the other hand, a no-tillage system tends to in-
crease soil organic matter, which probably increases soil elasticity [3], more than 
mineral particles and promotes the formation and stabilization of soil aggregates 
acting on the soil structure and possibly helping to increase the soil’s mechanical 
resistance to compaction [4]. This process changes the soil’s mechanical strength, 
structure, water storage, nutrient availability, and mechanical strength [5]. 

Mechanical strength is an important property that can be evaluated using an 
impact penetrometer. The importance of its determination lies in the correlation 
with the effect of the passage of heavy machinery on the soil, affecting root growth 
and soil physical properties. It is a way to get results quickly [6] [7]. 

The penetrometer works according to the principle of soil resistance to pene-
tration of a cone of a specific size and to the vertical impact represented by a 
Force (F) on a rigid rod [8] [9]. The resistance to penetration is influenced by 
several soil physical characteristics and properties, such as density, moisture con-
tent, water potential, texture, aggregation, cementation, organic matter content, 
and mineralogy, leading some authors to propose empirical models to describe 
these properties [4]-[19]. 

Among these models, the most used is that of [10] developed in temperate 
soils. This model is composed of two main terms: the first is based on the degree 
of soil compaction and structuring (represented by the soil density), and the 
second is attributed to the water content in the soil, which allows the compari-
son of measurements made under different water conditions, mass-based grades 
for the study of the resistance to penetration curve and regression parameters, 
measure the influence of a variable (“a”, “b” and “c”) on a regression equation, 
obtained through non-linear fits that vary from one terrain to another. 

This model works for any type of soil. Still, when considering a set of soils, addi-
tional pedo transfer functions are often used, and the coefficients “a”, “b” and 
“c” are determined by experimentation and regression [15]. Thus, to validate the 
data obtained with a penetrometer, if it is used correctly, the soil must have been 
characterized, which is not always the case [6]. Furthermore, according to [5] 
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[7], few models to predict penetrometer resistance are applicable without de-
tailed knowledge of soil texture, organic matter content, soil water status, and soil 
density, and few models allow a simple prediction of the effects of management 
on resistance of the penetrometer. 

Thus, quantifying soil moisture content, density, and organic matter content 
is essential for penetrometer measurements and identifying soil class and clay 
content. [13] tried to estimate the resistance to penetration of a very clayey Eu-
troferric Red Latosol (Red Latosol) under different soil moisture conditions, in 
addition to considering density, clay content, and organic matter content. The re-
sults showed that, when the soil is drier, the influential properties for resistance to 
penetration estimates are density and organic matter content. The most influen-
tial properties in resistance to penetration estimates are density and moisture at 
higher soil moisture. 

To evaluate the fit of the soil penetration resistance curve and study the com-
paction of a very clayey Latosol (clay content ~ 665 g∙kg−1) under no-tillage, [6] 
proposed a model with good results for the data collected in the field. However, 
only one type of texture was considered and, therefore, the objective of this work 
was to evaluate this model for Latosols under no-tillage conditions, but with va-
rying clay contents. 

2. Study Location and Methodology 
2.1. Study Location 

Data were collected from 13 locations throughout the state of Paraná-Brazil 
containing Oxisols with varying clay content (from 147.7 to 855.3 g∙kg−1). These 
soils were cultivated with soybean, corn, wheat, and oats under a no-tillage system 
(Figure 1).  
 

 
Figure 1. Location of the 13 sampling areas containing Oxisols of varying clay content and cultivated under no-tillage conditions. 
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2.2. Methodology 

A total of 355 soil resistance points (N = 355) to penetration were created using 
a dynamic impact penetrometer, model IAA/Planalsucar [20] with a guide rod of 
70 cm in length, basal cone diameter of 1.28 cm, the cone angle of 30˚, and im-
pact the weight of 4 kg from a free fall height of 40 cm. The cone geometry com-
plied with the American Society of Agricultural and Biological Engineers [21] 
Standard. 

The impact of the cone on the soil and expressing the resistance against the 
penetration of the cone into the soil in pressure units can be described according 
to the formula: soil resistance penetration (PR) (kgfcm−2) = 5.6 + 6.89 N, where 
N is the number of sample points evaluated in the field (in the present study, N 
= 355). To convert PR from kgfcm−2 to MPa, the result was multiplied by a con-
stant (0.0981). Intact samples were collected with volumetric rings 6 cm in di-
ameter and 6 cm in height to determine soil density (ρs), while disturbed sam-
ples were collected with an auger to determine gravimetric moisture (θs), clay 
content (αs, determined after oxidation of organic matter [22], and soil organic 
matter content (Ωs), according to the methodology described by [23]. 

2.3. Data Analysis and Model Projections 

Regression analysis generates an equation to describe the statistical relationship 
between one or more predictor variables and a response variable. Thus, to study 
the PR curve, we used the nonlinear model proposed by [6] (PR = a*ρsb*θsc*Ωd). 
The results were compared with those obtained with the model proposed by [10] 
(PR = a*ρsb*θsc), where PR is the resistance to soil penetration (MPa), ρs is soil 
density (Mg∙m−3), θs is soil gravimetric density, moisture content (kg∙kg−1), and 
Ωs is soil organic matter content (g∙kg−1). The parameters “a”, “b”, “c” and “d” 
are the model fit coefficients.  

These models were linearized by applying the natural logarithmfunction lnPR 
= lna + blnρs + clnθs, and lnPR = lna + blnρs + clnθs + dlnΩs; the PR curves 
were adjusted from regression studies. After adjusting the obtained data, the es-
timated coefficients were used to transform the linearized models into nonlinear 
ones. To test the significance level of the regression and confirm the hypothesis 
that the means of the variables were statistically equal, we used a significance level 
(F) of 5%. Additionally, we verified the explanatory power of the models accord-
ing to the number of variables and the extent to which the model fits the popula-
tion data through adjustedR2 ( 2

ajR ). 
Regression analysis was performed with Excel (2019) software/Analysis Tools 

Package Regression Tools/Statistical functions. All sampled points (355) were 
used to analyze, build, and validate models. 

Finally, the associated models and coefficients were used to calculate the ab-
solute PR (PRab) and estimated PR (PRest) values to evaluate the accuracy of the 
results, considering the correlation (r) between these results and the deviations 
between the estimates based on the models and the experimental data. For this 
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purpose, we used the Coefficient of Variation (CV) to compare the variability 
among the mean results when CV < 30% (homogeneous series with low disper-
sion) or CV ≥ 30% (heterogeneous series with strong dispersion).The mean ab-
solute relative error (ε) was determined as described by [24] using the equation  

1

Y Y0100
Y

n
in

ε
=

 − 
=  

 
∑ , where Y is the observed experimental value, Y0 is the  

value calculated using the models, and n is the number of experimental observa-
tions. The simulation was considered good (adjustments close to the experi-
mental data) when ε < 10 and bad (adjustments further from the experimental 
data) when ε ≥ 10 [25].  

3. Results  
3.1. Statistical Moments 

Table 1 shows a CV > 20% for PR, θs, and Ωs due to the large amplitude of the 
values of these properties, and a low CV ≤ 20% for ρs due to their lower ampli-
tude, indicating that the data collected in the field were accurate. The results are 
in line with [5] [6] [13] who also observed CV > 20% for PR, θs, and Ωs and low 
CV ≤ 20% for ρs when working on Oxisol under annual crops. 

3.2. Adjustments to the PR Data Models as a Function of θs, ρs, 
and Ωs (Table 2) 

Note that Model 1, with the PR data adjusted as a function of ρs and θs, explains 
71% ( 2

ajR  = 0.71) of the variability of PR, whereas Model 2, with PR adjusted as 
a function of ρs, θs, and Ωs, explains 90% ( 2

ajR  = 0.90) of the variability of PR, 
improving prediction by 27%. Therefore, Model 2 fits better to the PR curve 
than Model 1, based on the resulting 2

ajR , mainly because Ωs is normally a va-
riable soil property. 

The coefficients of the two models (Table 2) were signed by the t-test (p ≤ 
0.05), indicating the existence of differences between groups referring to each 
model, and the signs indicate that PR varied positively with ρs and negatively 
with θs, in line with [5] [6] [13]. For Ωs, the variation in PR was also negative,  

 
Table 1. Descriptive statistics for the variables analyzed at depths of 0 - 20 cm in Oxisols under no-tillage. 

Variables* N 

Estatística Descritiva 

Average 
Standard Devia-

tion 
Mode Minimum Maximum 

Variation Coef-
ficient (%) 

PR (MPa) 

355 

5.28 1.01 5.23 3.10 7.31 21.07 

θs (kg∙kg−1) 0.18 0.05 0.21 0.08 0.33 28.78 

ρs (Mg∙m−3) 1.46 0.14 1.54 1.12 1.73 09.57 

Ωs (g∙kg−1) 16.33 6.39 10.33 8.45 33.66 39.14 

*PR = soil penetration resistance; ρs = bulk density; θs = soil gravimetric moisture content; and Ωs = soil organic matter content. 
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in disagreement with [6]. The highest absolute values for coefficients “a”, “b” 
and “c” for Model 1 (Table 2) indicate that the PR estimates (Figure 2) adjusted 
in this model were higher than with the adjustments allowed in Model 2 (Table 
2), including the variable Ωs. 
 
Table 2. Linear regression coefficient estimated for soil penetration resistance curves 
(lnPR = lna + blnθs + clnρs; lnPR’ = lna + blnθs + clnρs + dlnΩs) for Oxisols under an-
nual no-till farming. 

Coefficient  Estimate Standard Error t P-value 

Model 1 (Without Organic Matter): PR = 1.97*θs−0.23*ρs1.51 ( 2
ajR  = 0.71; F > Fsig.) 

a 0.725270 0.03497654 20.7361 0.000000 

b −0.205029 0.02115799 −9.6904 0.000000 

c 1.488736 0.06225204 23.91465 0.000000 

Model 2 (With Organic Matter): PR’ = 1.56*θs−0.19*ρs1.11*Ωs0.14 ( 2
ajR  = 0.90; F > Fsig.) 

a 0.261447 0.046913864 05.5730 0.000000 

b −0.284545 0.018364237 −15.4945 0.000000 

c 1.254871 0.054029591 23.2256 0.000000 

d 0.149589 0.012028303 12.4364 0.000000 

PR: soil penetration resistance (MPa); ρs: bulk density (Mg∙m−3); θs: soil gravimetric 
moisture content (kg∙kg−1); Ωs: soil organic matter (g∙kg−1). 

 

 
Figure 2. Absolute (real) and estimated values for soil Penetration Resistance (PR) in Oxisol under annual no-till cropping. r: 
coefficient of correlation; ε: mean absolute relative error; CI: confidence interval. 
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4. Discussion 

Our results showed that there is a close relationship between PR, θs, ρs, and Ωs. 
The direct relationship between PR and soil density results from the compaction 
and degradation of its structure [8] [9] [10] [11] [26]. The soil water content and 
organic matter inversely influence the PR [6] [10] [12] [27] [28] [29]. Water has 
a lubricating effect on the surrounding soil particles, that is, with its decrease, 
there is an increase in PR. The impact of organic matter is, probably, because she 
collaborates with the formation and stabilization of aggregates, acting in the 
structuring of the soil and increasing its porous space [30]-[35]. Besides this, or-
ganic matter affects soil cohesion and elasticity more than coarse mineral par-
ticles [3] and influences the friction between the particles by absorbing more 
water (lubricating effect around the soil particles) [6]. Therefore, the influence of 
Ωs on PR is considerable: PR decreases when the effects of Ωs on soil structure 
predominate (density reduction with an increase in porosity) and increases, when 
the impact of organic matter predominates in increasing soil tension, capillary 
action, cohesion between soil particles, soil plasticity, and shear parameters with 
reduced effect of water in reducing friction between particles [36] [37]. There-
fore, it should not be disregarded in PR models. 

A study [38] on mechanisms that make soils (Acrysols) vulnerable to compac-
tion showed that the parameter “a” of an exponential model indicates the intrin-
sic resistance of dry soil, and the parameter “b” describes the influence of soil 
properties, such as mineralogical texture, organic matter, and density in soil re-
sistance. Since our study investigated a Latosolo (Oxisol) soil with textural varia-
tion, the values obtained for parameter “b” (in this study named b, c, and d), and 
consequently the estimated PR, are probably more influenced by soil moisture 
content, bulk density, and organic matter content, as shown in Model 2 and wi-
thas reported by [6] [13]. 

The correlation (r) between the absolute and estimated values of PR in Oxisol 
under annual no-till cropping (Figure 2) was 0.84 for Model 1 and 0.95 for Model 2 
(improving correlation by 13 %), revealing a high degree of positive correlation 
between the real and estimated values, as can be seen from the dispersion of points 
around the 1:1 straight line (Figure 2), indicating the ideal adjustment, i.e. the 
closer to the straight line, the greater the accuracy of the estimate [39]. In addi-
tion, the confidence interval (95 %) is not great, indicating the viability of the 
chosen model. 

About deviations of the model-based estimated data from the experimen-
tal data (Figure 2), the mean absolute relative errors (ε) of the two models stu-
died were adequate to describe PR, since ε < 10% (simulation – adjustments 
close to the experimental data) [25]. However, for Model 2, which includes Ωs in 
addition to θs and ρs, ε was 5.26 times smaller than the model. Thus, the pro-
posed model, including Ωs as well as θs and ρs, allowed satisfactory fitting, based 
on the values of R2, r, ε, and CI. Esses resultados estão em acordo com [6] [40].  
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5. Conclusion 

The State of Paraná-Brazil is responsible for approximately 20% of all cereal 
production in the country, with more than one crop per year in a no-tillage sys-
tem, which tends to cause soil compaction. Therefore, a 2012 study proposed a 
model with excellent results, good for data collected in the field, to evaluate the 
fit of the soil penetration resistance curve and study the compaction of a very clayey 
Latosol (clay content ~ 665 g∙kg−1) in no-till. As only one type of texture was con-
sidered, this work aimed to evaluate the referred model in Latosols with varying 
clay contents under no-tillage. The results confirmed that the non-linear mod-
el which includes density, moisture, and soil organic matter content, proved to 
be efficient for the adjustment of the penetration resistance curve in the studied 
Latosols with significant variation in clay content and under no-tillage. The in-
clusion of organic matter allowed, in relation to the control model, a more ex-
cellent approximation of the resistance values obtained in the field of the 1:1 line 
and improved the coefficient of determination by 27% and the correlation coef-
ficient by 13% and the relative error absolute was reduced by 5.26 times compared 
to a model that used only soil density and moisture. 
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