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Abstract 
The majority of recently demonstrated Deep-Learning Side-Channel Attacks 
(DLSCAs) use neural networks trained on a segment of traces containing op-
erations only related to the target subkey. However, when the number of 
training traces is restricted such as in the ASCAD database, deep-learning 
models always suffer from overfitting since the insufficient training data. One 
data-level solution is called data augmentation, which is to use the additional 
synthetically modified traces to act as a regularizer to provide a better genera-
lization capacity for deep-learning models. In this paper, we propose a 
cross-subkey training approach which acts as a trace augmentation. We train 
deep-learning models not only on a segment of traces containing the SBox 
operation of the target subkey of AES-128, but also on segments for other 15 
subkeys. We show that training a network model by combining different 
subkeys outperforms a traditional network model trained with a single sub-
key, and prove the conclusion on two well-known datasets. 
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1. Introduction 

Side-Channel Attacks (SCAs) have become a realistic threat to implementations 
of cryptographic algorithms, such as Advanced Encryption Standard (AES) [1]. 
Even theoretically secure cryptography may be broken since the encryption has 
to run in hardware or software at some point to actually do things. There might 
be some unintentional physical leakage during the execution of a cryptographic 
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algorithm, such as the power consumed [2] [3] by the victim device. By utilizing 
the unintentional physical leakage, it is possible for SCAs to bypass the theoreti-
cal strength of cryptographic algorithms and to recover the key. This is particu-
larly threatening since once the secret key is leaked, the ciphertext can be de-
crypted and the signature can be forged. 

Recently, with advances in deep learning [4], SCAs are able to be more effec-
tive than the conventional cryptanalysis and are more practical to mount. Since 
well-trained deep-learning models are good at extracting features from the raw 
data, which helps the attacker to find the correlation between the physical mea-
surements and the internal state of the processing device. Many deep-learning 
based side-channel attacks against both software [5] [6] [7] and hardware im-
plementations [8] [9] [10] [11] of AES have been presented. [12] first investi-
gates hyper parameters of deep-learning models in SCAs and builds the ASCAD 
benchmark database. In [13], a multi-label approach is proposed and it surpasses 
the state-of-the-art result in ASCAD database. In [5], the effect caused by the 
board diversity has been demonstrated and it shows that it is easy to overesti-
mate the attack efficiency if deep-learning models are trained on traces captured 
from the victim device. Afterwards, several different aggregation methods are 
proposed to mitigate this accuracy gap caused by the board diversity. The da-
ta-level aggregation attack (also called cross-device attack) [7] [6] [14] trains 
deep-learning models on traces captured from multiple devices. The model-level 
aggregation [15] utilizes the newly introduced federated learning framework to 
build the global model by averaging multiple local models’ weights. 

Most of these existing deep-learning based attacks use a divide-and-conquer 
strategy to recover a 128-bit secret key of AES-128, in which the 128-bit key K is di-
vided into 8-bit parts { }0,1, , 255ik ∈ =  , called subkeys, for { }1,2, ,16i∈  . 
We use   to denote the set of all possible subkey candidates. Afterwards, each 
subkey ik  is recovered independently by using the deep-learning models 
trained on traces only related to a specific subkey ik . In our experiments, we 
focus on the 1st subkey, and others will be the same. 

However, when the number of training traces is not sufficient, deep-learning 
models always suffer from overfitting. A common solution for this is data 
augmentation, which is to use modified version of existing data to expand the 
training set. In SCAs, a trace segment leaked by an operation related to the ith 
subkey ik  could be used as an augmenting trace for another subkey jk , with 
the same operation and the same input. In some implementations of AES-128, 
instructions are computed sequentially and procedures are executed 
byte-by-byte. This means if two identical operations have the same input data, 
for example, two SBox substitutions in the first round of AES, the resulting 
power consumption or electromagnetic emission could be similar. Probably this 
was noticed before but the potential benefit of training models on traces for 
multiple subkeys has not been fully explored. 

In this paper, we propose a cross-subkey training approach, which utilizes 
multiple subkeys instead of one to build deep-learning models with a better ge-
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neralization capacity. By adding a certain amount of traces which are related to 
the non-targets subkeys, the profiling data set can be considered as a data aug-
mentation for the traces of the target subkey. We conducted experiments on two 
well-known publicly available datasets (AES_GPU and ASCAD) in order to ex-
plore the impact of the different occupancy profiles of non-target and target 
subkey traces in the training set on the classification accuracy of the network. 

2. Background 

This section first reviews AES-128. Afterwards, we briefly introduce deep learn-
ing and how to apply deep learning to side-channel attacks. For a broader in-
troduction for deep learning, see [4]. 

2.1. AES-128 

AES [1] is one of the most widely used symmetric cryptographic algorithms 
standardized by NIST in FIPS 197 and included in ISO/IEC 18033-3. AES-128 is 
a subset of AES which takes a 128-bit key K to encrypt a 128-bit block of plain-
text P, and the output is a 128-bit block of ciphertext C. AES-128 contains 10 
encryption rounds in total and except the last round, each round repeats 4 steps 
sequentially: SubBytes, ShiftRows, MixColumns and AddRoundKey. The final 
round does not contain MixColumns. In our experiment, the mode of operation 
is set to Electronic Codebook (ECB) mode, which first divides the message into 
blocks and each block is encrypted separately. The SubBytes procedure is a 
non-linear substitution which maps an 8-bit input to an 8-bit output by using 
the Substitution Box (SBox). 

An attack point for side-channel attacks is a selected intermediate state which 
can be used to describe the power consumed by the victim device during the ex-
ecution of AES. The selection of attack point is affected by known input data 
(e.g. plaintext, ciphertext) and physical measurements (e.g. power consumption, 
EM emissions, timing). Two common attack points are SBox output in the first 
and the last round of AES. An appropriate attack point will lead to a more effi-
cient attack. 

2.2. Deep-Learning Side-Channel Attack 

Deep learning is a subset of machine learning [16] that uses deep neural net-
works to learn from experience and understand the input data in terms of a hie-
rarchy of concepts. Since deep-learning techniques are good at extracting fea-
tures in raw data [4] [17] [18], deep-learning based SCAs become several orders 
of magnitude more effective than the traditional cryptanalysis. A typical 
deep-learning side-channel attack can be divided into two stages: 

At the profiling stage, the attacker aims to use the deep-learning model to 
learn a leakage profile by using a large set of power traces { }1 2, , , mT T T=   
captured from the profiling device, where m is the number of traces in the 
training set. Each trace iT  is labeled by the data processed at the attack point 
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( )il T L∈ , where { }0,1, , 255L =  , which can be used to derive the subkey by 
using some known input (e.g. the plaintext, ciphertext). The process of building 
a neural network can be viewed as a mapping : Lm →    and the output is a 
score vector ( ) LS T= ∈  . The element js  with value j in S represents the 
probability that ( )l T j= . 

At the attack stage, the attacker uses the trained deep-learning model to clas-
sify traces captured from the victim device and obtain the score vector. The at-
tacker can find the ith subkey ik j=  which has the largest probability in S. We 
use *

ik  to denote the real subkey. Once *
i ik k= , the subkey is recovered suc-

cessfully. To quantify the classification error of the neural network, we use the 
cross-entropy [16] as the loss function and the optimizer is set to RMSprop 
(Root Mean Square prop). 

0 255
arg max .i j

j
k s

≤ ≤
= 

 

2.3. Composition of Power Traces 

Power based side-channel attacks utilize the fact that the power consumed dur-
ing the execution of the encryption process by the victim device might be dif-
ferent according to the different input data and different operations. Therefore, 
the most interesting parts of a power consumption trace can be defined as a da-
ta-dependent component data  and an operation-dependent component op . 
Besides, using the same device to repeat the same operation with the same input 
data will also consume different amount of power for every repetition because of 
the electronic noise component noise . Meanwhile, the switching activities of the 
transistors which are independent from the input data can generate a constant 
amount of power consumption, which is called the constant component const . 
Thus, each point of a power trace can be modeled as the sum of these compo-
nents [3]. 

total data op noise const= + + +      

3. Cross-Subkey Attack 

Figure 1 shows an overview of how a cross-subkey model is trained, in which 
different subkeys are used collaboratively to provide a better generalization ca-
pacity for the target subkey. 

3.1. Trace Augmentation 

Deep-learning techniques have performed remarkably well on many side-channel 
attack scenarios. However, deep-learning models always suffer from overfitting 
with insufficient training measurements. Overftting refers to the phenomenon 
when a network learns a function with very high variance such as to perfectly 
model the training data [19]. Unfortunately, many attackers may not have access 
to big profiling data, for instance, attackers may not have a full control to the 
profiling device and can only capture a limited amount of traces. One data-level  
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Figure 1. An overview of how the cross-subkey model is trained on the mixed profiling set. 
 

solution to the problem of limited training data is data augmentation, which 
aims to use the additional synthetically modified traces to act as a regularizer 
and helps reduce overfitting when training a model in side-channel attacks’ con-
text. 

In software implementations of AES, leakage is time-dependent since instruc-
tions are carried out one by one [9]. This leads to a generally accepted approach 
for the attack to against software implementation of AES, which is to build a 
leakage profile between traces and the target subkey. Typically for the 8-bit mi-
crocontrollers and microprocessors, the encryption is implemented byte by byte. 
If the same data is processed by two SBox substitutions, power traces of these 
two operations could be similar since the the data-dependent components and 
operation-dependent components in formula 2.3 are the same. Figure 2 shows 
power traces captured from an 8-bit microcontroller implementation of AES, 
which represent the first SBox and the second SBox operations in the first round. 
One can see that power traces look very similar if the same data is processed by 
two SBox substitutions. So we could use a small amount of traces related to the 
non-target subkeys as a regularizer for the training set which contains traces on-
ly for the target subkey. It is a data augmentation for a specific subkey to build 
the model with a better generalization capacity. 

3.2. Cross-Subkey Model Training 

As shown in Figure 1, a trace which contains 16 SBox computations of the first 
round is first divided into 16 sub-traces. The ith sub-trace is labeled by il  which 
represents the output of the ith SBox procedure, with ip  denotes the ith byte of 
the plaintext. 

( )SBoxi i il p k= ⊕  
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Figure 2. Power traces captured from an 8-bit microcontroller implementation of AES, which represent the first SBox and the 
second SBox operations in the first round. Traces look very similar if the same data is processed. (a) Different data is processed; 
(b) The same data is processed. 
 

At the profiling stage, traces are divided into 16 sub-traces by analyzing the 
Point of Interest (POI), and each sub-trace is labeled by the corresponding SBox 
output. Generally, to recover the ith subkey, attackers train dep-learning models 
on sub-traces which are labeled by the ith Sbox output. In the cross-subkey 
training, we go to one step further by adding a small amount sub-traces which 
represent the other 15 SBox operations into the training set. We define the pro-
portion of sub-traces of the target subkey to the total training set as [ ]0,1x∈ . 
Thus, the proportion of other subkeys in the training set is 1 x− . The other 15 
subkeys are equally distributed in the training set for average. Afterwards, the 
deep-learning model is trained on this mixed training set, as shown in Figure 1. 
The attack point is the input of the last round of SBox, some information in the 
label il  will be changed, where the plaintext ip  is changed to the ciphertext 

ic , the key is the last
ik  of the last round of AddRoundKey, and the SBox is 

changed to SBox−1. 

( )1SBox last
i i il c k−= ⊕

 
At the attack stage, the trained cross-subkey model is used to classify traces 

and extract the target subkey. 

4. Experimental Setup 

In this section, we first describe two well-known datasets for side-channel at-
tacks. Afterwards, we show how we train the deep-learning model and how we 
evaluate the attack efficiency. 

4.1. Data Sets 

Table 1 describes a summary of two databases used in our experiments. 
The first database is called AES_GPU [20], in which electromagnetic traces 
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are captured from an NVIDIA GeForce GT620 Graphics Processing Unit (GPU) 
implementation of an AES. In [20], up to 11,000 traces by a non-profiling attack 
to recover the key. Afterwards, Guang et al. [21] proposes a convolutional de-
noising autoencoder to further improve the attack efficiency and uses only 50 
traces to recover a subkey. In summary, AES_GPU database contains 39,511 
traces in total and each trace contains 15,001 samples. In our experiments, we 
use 35 K traces for training with with 3.5 K traces randomly set aside for valida-
tion. Also, 4511 traces are used for testing. 

The second database is called ASCAD, in which traces are captured from an 
8-bit AVR implementation of masked AES-128 by using an electromagnetic 
probe. This dataset is composed of 60 K traces with 100 K samples of each trace. 
The training set contains 50 K variable-key traces with 5 K traces randomly set 
aside for validation in our experiments, and 10 K fixed-key traces are used for 
testing, see [12] for further details. 

4.2. Model Structure 

Table 2 shows the structure of two deep-learning models used in our experi-
ments, for AES_GPU and ASCAD databases respectively. Existing works use 
different types of deep neural networks for different attack scenarios. Multiple 
Layer Perceptrons (MLPs) seem to be a suitable architecture when traces are less 
noisy and well synchronized [6] [5] [15]. Thus, we use MLPs for the AES_GPU 
database as shown in Table 1, in which four dense layers are fully connected. 
For both cases, we use the Rectifed Linear Unit (ReLU) as the activation function 
and the optimizer is set to RMSprop. 

The excellent feature extraction capabilities of Convolutional Neural Net-
works (CNNs) have been applied to DLSCAs. For example, in side-channel at-
tacks’ context, CNNs have been successfully applied to bypass the trace misa-
lignment and to overcome jitter-based countermeasures [22]. CNNs were also  

 
Table 1. A summary of two databases used in our experiments. 

Database AES_GPU ASCAD 

#Training traces 31,500 45,000 

#Validation traces 3500 5000 

#Testing traces 4511 10,000 

 
Table 2. The MLP and CNN network structure used in the paper. 

Target Input layer Convolutional layer Dense layer Output layer 

AES_GPU 100 - 64|128|128|256 256 

  Size × filter = 11 × 64   

ASCAD 300 Size × filter = 11 × 128 512 256 

  Size × filter = 11 × 256   
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used to break protected AES [23] [24] [25] [26]. For this reason, we use CNNs to 
classify traces of ASCAD database since the implementation is a masked AES. 
We experimentally find the optimal CNN model for ASCAD database, which 
contains three convolutional layers and one dense layer. 

In our experiments, we use the identity power model, which assumes that the 
power consumption is proportional to the data processed at the attack point. 
Power model defines the size of a neural network’s output. If the data processed 
at the attack point is a byte, the output size of the model is set to 256. 

4.3. Training Setup 

We know that data augmentation increases the amount of training data by add-
ing minor alterations to the existing training traces. However, too many altera-
tions in the training set may confuse the neural network. So to find the optimal 
amount of augmenting traces in the training set becomes a realistic problem. 
Thus, for each database, we build 16 different training sets, which contains dif-
ferent amount of augmenting traces to train 16 deep-learning models. Figure 1 
shows an example of how these training sets are built. We call these training sets 
from 1set  to 16set . Suppose the database contains x traces for training and we 
divide each trace to 16 segments as shown in Figure 1, which are related to 16 
subkeys separately. So the total number of trace segments should be 16x. To 
train the model for the 1s -subkey, the training set is composed of x 1st-subkey 
segments and y other-subkey segments. Segments of 15 non-target subkeys are 
equally distributed in all training sets. From 1set  to 16set , the ratio of the target-  

subkey segments to all segments is defined by 1 2 16, , ,
16 16 16

x
x y

 ∈ 
+  

 , in  

which 16set  denotes the set without trace augmentation. The corresponding 
trained models are denoted by 1 2 16, , ,M M M . 

4.4. Estimation Metric 

In SCAs, the common metrics to assess the performance of models are the Par-
tial Guessing Entropy (PGE) and the Success Rate (SR). 

The rank of the a subkey k, ( )Rank k  is the number of subkey values with a 
higher probability than the one of k where k’ denotes the a subkey candidate and 
p represents the corresponding sub-plaintext. 

( ) [ ] [ ]Rank : Pr | , Pr ,k k k T p k T p′ ′ = ∈ <  
 

The PGE is the expected rank among all possible subkeys, which estimates the 
number of subkey candidates required to be evaluated for a successful attack. 

( ) ( )( )PGE Rank
k

k k
∈

= 
  

However, in some cases, the attacker has a very limited access to the victim 
device, for example, the attacker can capture only one trace during the attack 
stage. In this scenario, success rate becomes a more suitable estimation metric. It 
evaluates the average probability that ( )PGE 0k =  of using the deep-learning 
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model to classify a single trace, which represents the expected probability of a 
successful attack with a single try [12]. 

5. Experimental Results 

In this section, we first present the experimental results of our cross-subkey 
model tested on AES_GPU database. Afterwards, we show the results in ASCAD 
database. We use the ρ-test as the leakage detection method [27] to find the 
point of interest (POI) of each subkey. 

5.1. Results on AES_GPU 

Since traces in AES_GPU are synchronized for the last round of AES, so the at-
tack point for AES_GPU is set to the SBox input of the last round. Figure 3(a) 
shows the leakage detection results by using the mentioned attack point and we 
locate segments for each subkey. In our experiments, each trace segment con-
tains 100 samples. Specifically, the trace interval for the first SBox operation is 
[ ]13081:13181 . Figure 3(b) shows how we synchronize segments for different 
subkeys. In this experiment, we generate 16 training sets called 1 2 16, , ,set set set  
according to the training method in 2. Each training set contains 31.5 K traces in 
total with 3.5 K first-subkey traces selected for validation. The testing set con-
tains 4511 traces for the first subkey. Afterwards, models 1 2 16, , ,M M M  are 
trained on the corresponding training set separately. The training batch is set to 
256, and the maximum epoch number is 500. Table 3 shows the single-trace  

 

 
Figure 3. (a) POI of all subkeys in the last round of AES for AES_GPU (by ρ-test); (b) POI alignment. 
 

Table 3. The accuracy of the 16 models on the test set (AES_GPU). 

M1 M2 M3 M4 M5 M6 M7 M8 

1.0% 0.8% 1.2% 1.7% 1.7% 1.8% 1.9% 2.0% 

M9 M10 M11 M12 M13 M14 M15 M16 

2.1% 2.0% 2.0% 2.0% 2.0% 2.0% 2.3% 2.0% 
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attack accuracy of these 16 models. We find that model M15 achieves the highest 
single-trace attack accuracy to recover the first subkey. 

Figure 4 shows the PGE results of using model M15 to recover the first subkey 
of AES_GPU. We can see that the model requires only 17 traces to recover the 
subkey. Table 4 compares our results to other existing works, in which the 
cross-subkey model achieves a 66% improvement. 

We also investigate if the addition of noise to training traces can have the 
same impact as the synthetically modified traces. We build a training set which 
contains x traces which are related to the first subkey. Afterwards, we add y white 
Gaussian noise traces with mean 0µ =  and standard deviation 0.01σ = , with  

random labels range from 0 to 255. We construct a new dataset 15
16

x
x y

=
+

  

using noisy traces instead of other byte traces, and the trained model has an ac-
curacy of only 0.6% on the test set, demonstrating the effectiveness of the 
cross-subkey model. 

5.2. Results on ASCAD 

Traces in ASCAD are captured from an 8-bit AVR implementation of masked 
AES-128. The attack point used to break ASCAD is the SBox output in the fisrt 
round of AES. Figure 5(a) shows the leakage detection of all subkeys by using 
ρ-test. In this experiment, the target subkey is the 3rd-subkey by considering the 
impact caused by the mask and the corresponding trace segment interval is 
[ ]71820 : 72120 , which is selected according to the leakage detection. Trace  

 

 
Figure 4. PGE result of using model M15 to recover the first subkey (AES_GPU). 

 
Table 4. Existing results’ summary (AES_GPU). 

Previous attacks #Traces for a successful attack 

[20] 650 

[21] 50 

This work 17 
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segment of different subkeys contain the same number of sampling points and 
are synchronized based on the leakage peak. 

This experiment is divided into two parts. We first assume that the mask is a 
known variable. Afterwards, we assume that the attacker has no access to the mask. 

5.2.1. Test with a Known Mask 
First we assume that the mask is known. Figure 5(b) shows how we synchronize 
segments for different subkeys. In this experiment, we generate 16 training sets 
called 1 2 16, , ,set set set  according to the training method in 2. Each training 
set contains 45 K traces in total with 5 K 3rd-subkey traces selected for validation. 
The testing set contains 10 k traces for the 3rd-subkey. Afterwards, models 

1 2 16, , ,M M M  are trained on the corresponding training set separately. The 
training batch is set to 256, and the maximum epoch number is 200. Table 5 
shows the single-trace attack accuracy of these 16 models. We find that model 
M13 achieves the highest single-trace attack accuracy to recover the 3rd-subkey. 
Figure 6 shows that M13 recovery target subkey requires 2 traces. We also used 
the method in 2 to add noise to the training set. A new dataset was constructed 
for M13. The model trained using this dataset had an accuracy of 57.2% on the 
test set, which was lower than the accuracy of M13 on the test set. The effective-
ness of cross-subkey training was also demonstrated. Next, the mask is treated as 
an unknown condition in the attack phase. 

5.2.2. Test with an Unknown Mask 
According to the specific encryption algorithm of the ASCAD data set given by  

 

 
Figure 5. (a) POI of all subkeys of AES (ASCAD); (b) POI alignment. 
 

Table 5. The accuracy of the 16 models on the test set (ASCAD). 

M1 M2 M3 M4 M5 M6 M7 M8 

45.6% 52.3% 56.0% 57.8% 59.8% 61.8% 63.1% 63.4% 

M9 M10 M11 M12 M13 M14 M15 M16 

63.6% 62.7% 63.6% 65.6% 67.4% 65.6% 65.3% 64.5% 
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Figure 6. PGE result of using model M13 to recover the 3rd-subkey (ASCAD). 

 
[12], there is an obvious mask power leak in Last AddRoundKey. Use ρ-test to 
find the POI of all byte masks. According to the POI of the mask, we can build a 
neural network model to recover the mask information used in the attack stage. 
Finally, the average correct rate of each trace recovery mask on the test set is 
55.7%. Therefore, the average accuracy of each trace to recover the 3rd-subkey is 
67.4% 55.7% 37.5%× = . 

6. Discussion 

In fact, our work is just the beginning of cross-subkey training. It was demon-
strated experimentally that when training the target subkey, adding data from 
other subkeys to the training set can enhance the generalisation of the network 
model. Note that the power traces are given in a combined form, where each 
part can be exploited by an attacker. One reason why neural networks are so 
successful in image classification is that the multi-dimensional features of an 
image create a multiplicity of image enhancements, and the ordered feature 
transformation of an image enhances the generalisation ability of the network. 
This is what we do: we use data from other subkeys as sub-samples of the target 
subkey, because when the other subkeys are labelled the same as the target sub-
key, their features have a high similarity, and by adjusting the proportion of 
other subkey in the training set, an optimal target subkey model can be obtained. 
This has been demonstrated in our experiments. 

We do not need to restrict the fact that other subkeys have an impact on the 
target subkey to the deep learning part. As Cagli et al. results show that using intel-
ligent preprocessing (e.g. data augmentation) can lead to more significant perfor-
mance increases than by changing the network architecture [28]. Various data 
augmentation techniques have been widely used in the field of machine learning 
for many years, and there is no reason why these more general approaches should 
not be used in SCAs. Furthermore, we must mention that data augmentation is 
not limited to deep learning and what would happen if SCAs-specific data aug-
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mentation would be used with other, simpler machine learning techniques. 
Finally, the thesis gives its own solution to the question of whether or not 

ASCAD knows the mask during the attack phase. Of course some papers argue 
that the mask should not be known during the analysis phase either, in fact, 
during the analysis phase we have full access to the device and this thesis argues 
that during the analysis phase, it is possible to have the mask information. Nev-
ertheless, all our work effectively demonstrates that other subkeys have a positive 
effect on the key subkey in the near-field dataset AES_GPU and in the near-field 
ASCAD with the mask (again, we have done experiments on the dataset of elec-
trical signals, which will not be repeated as they are similar to those in the paper). 

When discussing the results at a more general level, we can observe a number 
of trends. 
• Capturing the case where the amount of data does not increase, and increas-

ing the size of the entire dataset by adding other subkeys to the dataset is a 
common method of data augmentation. 

• A network model is trained using data from all subkeys, and this network 
model can recover all subkeys, recovering all subkeys much more efficiently 
than traditional DLSCAs (models trained for a single subkey). Models 
trained for specific subkeys cannot be used on other subkeys, which raise 
concerns about the computational cost and potential performance gains. 

7. Conclusion 

In the paper, we propose a cross-subkey deep-learning side-channel attack, 
which utilizes the additional synthetically modified power traces as a data aug-
mentation to build models with a better generalization capacity. We show that 
the accuracy of the network model on the test set can be enhanced by adding 
other subkeys of data to the training set of target subkey. This paper uses two 
well-known datasets to demonstrate the effectiveness of cross-subkey training, 
but there are still many interesting open problems with the study of the connec-
tions between different subkeys. As mentioned in the previous sections, there are 
many possible directions of research to follow regarding the connection between 
different subkeys, which will ultimately bring more cohesion to the field and 
more confidence in the results obtained. 
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