

Homoclinic Bifurcation of a Quadratic Family of Real Functions with Two Parameters

Salma M. Farris, Karam N. Abdul-Kareem

Department of Mathematics, College of Computer and Mathematical Sciences, University of Mosul, Mosul, Iraq Email: Salmaalfaris925@gmail.com, Karamck13s4@gmail.com

How to cite this paper: Farris, S.M. and Abdul-Kareem, K.N. (2021) Homoclinic Bifurcation of a Quadratic Family of Real Functions with Two Parameters. *Open Access Library Journal*, **8**: e7300. https://doi.org/10.4236/oalib.1107300

Received: March 10, 2021 **Accepted:** May 28, 2021 **Published:** May 31, 2021

Copyright © 2021 by author(s) and Open Access Library Inc. This work is licensed under the Creative Commons Attribution International License (CC BY 4.0). http://creativecommons.org/licenses/by/4.0/

Abstract

In this work the homoclinic bifurcation of the family $H = \{h_{a,b}(x) = ax^2 + b : a \in \mathbb{R}/\{0\}, b \in \mathbb{R}\}$ is studied. We proved that this family has a homoclinic tangency associated to x = 0 of P_1 for $b = \frac{-2}{a}$. Also we proved that $W^u(P_1)$ does not intersect the backward orbit of P_1 for $b > \frac{-2}{a}$, but has intersection for $b < \frac{-2}{a}$ with a > 0. So H has this type of the bifurcation.

Subject Areas

Dynamical System

Keywords

Local Unstable Set, Unstable Set, Homoclinic Point, Homoclinic Orbit, Non-Degenerate, Homoclinic Tangency, Homoclinic Bifurcation

1. Introduction

There are various definitions for the homoclinic bifurcation. In the sense of Devaney, the homoclinic bifurcation is a global type of bifurcations, that is, this type of bifurcation is a collection of local and simple types of bifurcations [1] (like, period-doubling and saddle-node of bifurcation [2]).

According to [3] [4] [5] we have another definition of the homoclinic bifurcation via the notions of the unstable sets of a repelling periodic point (fixed point) and the intersection of this set with the backward orbits of this point.

The purpose of this work is to prove the family

$$H = \left\{ h_{a,b} \left(x \right) = ax^2 + b : a \in \mathbb{R} / \{0\}, b \in \mathbb{R} \right\} \text{ has homoclinic bifurcation at } b = \frac{-2}{a}$$

following the second definition.

2. Definitions and Basic Concepts

2.1. Definition 1: [6]

A fixed point *P* is said to be **expanding** for a map *f*, if there exists a neighborhood U(P) such that |f'(x)| > 1 for any $x \in U(P)$.

The neighborhood in the previous definition is exactly **the local unstable set**.

2.2. Definition 2: [7]

Let *P* be a repelling fixed point for a function $f: I \to I$ on a compact interval $I \subset R$, then there is an open interval about *P* on which *f* is one-to-one and satisfies the **expansion** property. $|f(x) - f(P)| > |x - P|, \forall x \in I$ where $x \neq P$.

The interval in the previous definition is exactly the unstable set of *P*.

2.3. Definition 3: [8]

Let *P* is fixed point and f'(P) > 1 for a map $f : \mathbb{R} \to \mathbb{R}$. A point *q* is called **homoclinic point to** *P* if $q \in w_{loc}^{u}(P)$ and there exists n > 0 such that $f^{n}(q) = P$.

2.4. Definition 4: [9]

The union of the forward orbit of q with a suitable sequence of preimage of q is called **the homoclinic orbit of** P. That is

$$\begin{split} O\left(q\right) &= \left\{P, \cdots, q_{-2}, q_{-1}, q, q_1, q_2, \cdots, q_m = P\right\} \quad \text{where} \quad q_{i+1} = f\left(q_i\right) \quad \text{for} \quad i \leq m-1 \text{ ,} \\ q_m &= P \quad \text{and} \quad \lim_{i \to \infty} q_i = P \text{ .} \end{split}$$

2.5. Definition 5: [10]

The critical x point is **non-degenerate** if $f''(x) \neq 0$. The critical point x is **de-generate** if f''(x) = 0.

2.6. Definition 6: [11]

Let *f* be a smooth map on $I \subset R$, and let *p* be a hyperbolic fixed point for the map *f*. If $W^u(p)$ intersects the backward orbit of *p* at a nondegenerate critical point x_{cr} of *f*, then x_{cr} is called a **point of homoclinic tangency associated to** *p*.

2.7. Definition 7: [3]

Let f_{φ} be a smooth map on $I \subset R$, and let p be a hyperbolic fixed point for a map f_{φ} . We say that f_{φ} has **homoclinic bifurcation associated to** p at $\varphi = \hat{\varphi}$ if:

1) For $\varphi < \hat{\varphi}$ ($\varphi > \hat{\varphi}$), $W^{u}(p)$ and the backward orbit of *p* has no intersect.

2) For $\varphi = \hat{\varphi}$, $f_{\hat{\varphi}}$ has a point of homoclinic tangency x_{cr} associated to p.

3) For $\varphi > \hat{\varphi}$ ($\varphi < \hat{\varphi}$), the intersection of $W^{u}(p)$ with the backward orbit of p is nonempty.

3. Homoclinic Bifurcation of the Family $H = \left\{ h_{a,b}(x) = ax^2 + b : a \in \mathbb{R} / \{0\}, b \in \mathbb{R} \right\}$

In this section, we show that the family *H* has a point of homoclinic tangency associated to P_1 at $b = \frac{-2}{a}$, and *H* has a homoclinic bifurcation.

We need the following results proved in [12].

At the first, the fixed points of $h_{a,b}(x)$ are

$$P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}, P_2 = \frac{1 - \sqrt{1 - 4ab}}{2a}$$

a) Proposition:

For $h_{a,b}(x) \in H$ with a > 0 the local unstable set of the fixed point P_1 is $w_{loc}^{u}(P_1) = \left(\frac{1}{2|a|}, \infty\right).$

b) Lemma:

For
$$h_{a,b}(x) \in H$$
, $h_{a,b}^{-1}(P_1) = \mp \sqrt{\frac{P_1 - b}{a}} = \mp P_1$ where $P_1 > b$ for $a > 0$.

c) Theorem:

For $h_{a,b}(x) \in H$ with a > 0, the unstable set of the fixed point P_1 is $w^{\mu}(P_1) = \left(\frac{1}{|a|} - P_1, \infty\right).$

d) Remark: [13]

The local unstable set of the fixed point P_2 is $w_{loc}^u(P_2) = \left(-\infty, \frac{-1}{2|a|}\right)$, and the

unstable set of the fixed point P_2 is $w''(P_2) = \left(-\infty, \frac{-1}{|a|} - P_2\right)$. In this work we will

omit the result about P_2 because $(h'_{a,b}(P_2) < -1$, when $b < \frac{-3}{4a}$ for a > 0

 $b > \frac{-3}{4a}$ for a < 0). Thus we will not care for the fixed point P_2 . (See definition (2.3)).

e) Remark:

For
$$h_{a,b}(x) \in H$$
, $h_{a,b}^{-2}(P_1) = \mp \sqrt{\frac{-P_1 - b}{a}}$.

f) Proposition:

For $h_{a,b} \in H$, if $b < \frac{-(5+2\sqrt{5})}{4a}$ with a > 0, then the second preimage of

the fixed point P_1 belongs to the local unstable set of P_1 .

g) Proposition:

For $h_{a,b} \in H$, if $\frac{-(5+2\sqrt{5})}{4a} \le b \le \frac{-2}{a}$ with a > 0, then the third preimage

of the fixed point P_1 belongs to the local unstable set of P_1 .

h) Theorem:

For the family $H = \{h_{a,b}(x) = ax^2 + b : a > 0\}$, there exist homoclinic points to the fixed point P_1 whenever $b \le \frac{-2}{a}$. Moreover $h_{a,b}^{-2}(P_1) = q_{1,1}, h_{a,b}^{-3}(P_1) = q_{2,1}$ are the first homoclinic points for $b < \frac{-(5+2\sqrt{5})}{4a}, \frac{-(5+2\sqrt{5})}{4a} \le b \le \frac{-2}{a}$ respictivelity.

i) Example:

For $h_{1,-6}(x) = x^2 - 6$, a homoclinic orbit of a homoclinic point $\sqrt{3}$ is: $O(\sqrt{3}) = \{3,-3,\sqrt{3},\cdots,3\}$.

The main result:

3.1. Lemma 1

For $h_{a,b}(x) = ax^2 + b$ with $a \in \mathbb{R}/\{0\}$, the critical point of $h_{a,b}(x)$ is 0, and it is a non-degenerate critical point.

Proof:

Clearly that the critical point of $h_{a,b}(x)$ is zero. Since $a \neq 0$, then

$$h_{a,b}''(x) = 2a \neq 0$$

So $h_{a,b}(x)$ has a non-degenerate critical point at x = 0.

1

3.2. Lemma 2

If b = 0 of $h_{a,b}(x) \in H$ with $a \in \mathbb{R}/\{0\}$, then the backward orbit of the repelling fixed point P_1 is undefined in \mathbb{R} .

Proof:

$$h_{a,0}(x) = ax^2$$
, clearly $P_1 = \frac{1}{a}$.
Now the first preimage of $h_{a,0}(x)$ is
 $h_{a,0}^{-1}(x) = \mp \sqrt{\frac{x}{a}}$, where $x > 0$ for $a > 0$.

By Lemma (3-b), we have

$$h_{a,0}^{-1}\left(\frac{1}{a}\right) = \mp \sqrt{\frac{1}{a^2}} = \mp \frac{1}{a} = \mp P_1.$$

But $+P_1$ is a fixed point, and $-P_1 = -\frac{1}{a} \notin w_{loc}^u(P_1) = \left(\frac{1}{2a}, \infty\right)$, see Proposition

(3-a).

By Remark (3-e) we have

$$h_{a,0}^{-2}\left(P_{1}\right) = \mp \sqrt{\frac{-P_{1}}{a}} = \mp \sqrt{\frac{-\frac{1}{a}}{a}} = \mp \sqrt{\frac{-1}{a^{2}}} \notin \mathbb{R},$$

since $\frac{1}{a^2} > 0$, $\forall a \in \mathbb{R}/\{0\}$.

Therefore $h_{a,0}^{-n}(P_1)$ are undefined in \mathbb{R} with $n \ge 2$.

Thus the backward orbit of the repelling fixed point P_1 is undefined in \mathbb{R}

3.3. Theorem 1

For the family $h_{a,b}(x) = ax^2 + b$, 0 belong to the backward orbit of P_1 whenever $b = \frac{-2}{a}$ with $a \in \mathbb{R}/\{0\}$, and the backward orbit of P_1 is:

$$h_{a,\frac{-2}{a}}^{-n}\left(P_1=\frac{2}{a}\right) = \left\{\frac{2}{a}, -\frac{2}{a}, 0, \frac{\sqrt{2}}{a}, \cdots\right\}.$$

Proof:

We test the values of *n* which makes $h_{a,b}^{-n}(P_1) = 0$. By Lemma (3-b), $h_{a,b}^{-1}(P_1) = \pm P_1$.

Now suppose that $h_{a,b}^{-2}(P_1) = 0$, by Remark (3-e) then $h_{a,b}^{-2}(P_1) = \mp \sqrt{\frac{-P_1 - b}{-P_1 - b}} - 0$ (1-

$$\frac{-P_1 - b}{a} = 0$$
, thus
$$\frac{-P_1 - b}{a} = 0$$
$$-P_1 - b = 0$$

$$-P_1 - b = 0$$
$$P_1 = b .$$

Since the fixed point $P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}$, therefore $\frac{1+\sqrt{1-4ab}}{2a} = -b,$

then

$$1 + \sqrt{1 - 4ab} = -2ab$$
$$\sqrt{1 - 4ab} = -2ab - 1$$
$$1 - 4ab = 4a^2b^2 + 4ab + 1$$

 $4a^2b^2 + 8ab = 0$, which implies

4ab(ab+2) = 0, then either

b = 0, but by the above Lemma (3.2) the backward orbit of P_1 is undefined, so we omit this case.

Or ab+2=0, thus

$$b = \frac{-2}{a}.$$

Now, $P_1 = \frac{2}{a}$ and to find the backward orbit of P_1 , we consider

$$h_{a,\frac{-2}{a}}^{-1}\left(x\right) = \pm \frac{\sqrt{ax+2}}{a}$$

By Lemma (3-b) $h_{a,b}^{-1}(P_1) = \pm P_1$, then $h_{a,\frac{-2}{a}}^{-1}\left(\frac{2}{a}\right) = \pm \frac{2}{a}$. But $\pm \frac{2}{a}$ is a fixed point, therefore $h_{a,\frac{-2}{a}}^{-1}\left(\frac{2}{a}\right) = -\frac{2}{a}$.

So

$$h_{a,\frac{-2}{a}}^{-2}\left(\frac{2}{a}\right) = \frac{\sqrt{a\left(\frac{-2}{a}\right) + 2}}{a} = 0.$$

$$h_{a,\frac{-2}{a}}^{-3}\left(\frac{2}{a}\right) = \frac{\sqrt{a(0) + 2}}{a} = \frac{\sqrt{2}}{a}, \text{ and so on.}$$

Therefore the backward orbit of $P_1 = \frac{2}{a}$ is:

$$h_{a,\frac{-2}{a}}^{-n}\left(P_1=\frac{2}{a}\right) = \left\{\frac{2}{a}, -\frac{2}{a}, 0, \frac{\sqrt{2}}{a}, \cdots\right\}. \blacksquare$$

3.4. Example

For $h_{1,-2}(x) = x^2 - 2$, 0 belongs to the backward orbit of $P_1 = 2$ (**Figure 1**), and the backward orbit of P_1 is $h_{1,-2}^{-n}(2) = \{2,-2,0,\sqrt{2},\cdots,2\}$.

Figure 1. For $h_{1,-2}(x) = x^2 - 2$, the backward orbit of $P_1 = 2$.

3.5. Theorem 2

If $b > \frac{-2}{a}$ for $h_{a,b}(x) \in H$ with a > 0, then there is no intersection of the backward orbit with the unstable set of P_1 .

Proof:

The backward orbit of P_1

By Lemma (3-b) $h_{a,b}^{-1}(P_1) = \pm P_1$, since $+P_1$ is a fixed point, then we consider

$$h_{a,b}^{-1}(P_1) = -P_1.$$

By Remark (3-e), $h_{a,b}^{-2}(P_1) = \mp \sqrt{\frac{-P_1 - b}{a}}.$
If $-P_1 > b$, then by Theorem (3-h),
 $b \le \frac{-2}{a}$ which is a contradiction with $b > \frac{-2}{a}$. Therefore $-P_1 < b$, which implies
 $h_{a,b}^{-2}(P_1) \notin \mathbb{R}.$

So $h_{a,b}^{-n}(P_1)$ are undefined in \mathbb{R} with $n \ge 2$.

Thus the backward orbit of P_1 is undefined.

So the intersection of $W^{u}(P_{1})$ with the backward orbit of P_{1} is also undefined.

3.6. Theorem 3

If $b = \frac{-2}{a}$ for $h_{a,b}(x) \in H$ with a > 0, then $h_{a,\frac{-2}{a}}$ has a point of homoclinic

tangency at 0 associated to P_1 .

Proof:

By Theorem (3.3),
$$h_{a,\frac{-2}{a}}^{-n} \left(P_1 = \frac{2}{a} \right) = \left\{ \frac{2}{a}, -\frac{2}{a}, 0, \frac{\sqrt{2}}{a}, \cdots \right\}$$

By Theorem (3-c), $W^u \left(P_1 \right) = \left(\frac{1}{a} - P_1, \infty \right)$, then
 $W^u \left(P_1 = \frac{2}{a} \right) = \left(\frac{1}{a} - \frac{2}{a}, \infty \right)$, *i.e.*
 $W^u \left(P_1 = \frac{2}{a} \right) = \left(-\frac{1}{a}, \infty \right)$. Now
 $h_{a,\frac{-2}{a}}^{-n} \left(\frac{2}{a} \right)$ intersects $W^u \left(P_1 = \frac{2}{a} \right)$ at 0.

By Lemma (3.1) 0 is a non-degenerate critical point. So $h_{a,\frac{-2}{a}}$ has a point of homoclinic tangency at 0 associated to P_{1} .

3.7. Theorem 4

If $b < \frac{-2}{a}$ for $h_{a,b}(x) \in H$ with a > 0, then the backward orbit of P_1 crosses the unstable set $W^u(P_1)$.

Proof:

First consider the backward orbit of P_1 .

By Lemma (3-b) $h_{a,b}^{-1}(P_1) = \pm P_1$. But + P_1 is a fixed point, therefore we consider

$$h_{a,b}^{-1}(P_{1}) = -P_{1}.$$

By Remark (3-e), $h_{a,b}^{-2}(P_{1}) = \mp \sqrt{\frac{-P_{1} - b}{a}}.$
Since $b < \frac{-2}{a}$, then by Theorem (3-h)
 $h_{a,b}^{-2}(P_{1}) \in \mathbb{R}.$
Let $h_{a,b}^{-2}(P_{1}) = q_{1,1}, h_{a,b}^{-3}(P_{1}) = q_{2,1}.$
By Proposition (3-f), if $b < \frac{-(5 + 2\sqrt{5})}{4a}$, then $q_{1,1} \in W_{loc}^{u}(P_{1}).$
 $-(5 + 2\sqrt{5}) = -2$

By Proposition (3-g), if $\frac{-(5+2\sqrt{5})}{4a} \le b < \frac{-2}{a}$, then $q_{2,1} \in W_{loc}^u(P_1)$.

Now since the local unstable set of the repelling fixed point contained in the unstable set of the repelling fixed point. Therefore

$$h_{a,b}^{-n}(P_1) \cap W^u(P_1) \neq \emptyset$$
.

Following examples explain the cases for $b > \frac{-2}{a}$, $b = \frac{-2}{a}$ and $b < \frac{-2}{a}$ (with a > 0) respectively.

3.8. Example 1

For $h_{1,-1}(x) = x^2 - 1$, we have no intersection of the backward orbit of P_1 with the unstable set of P_1 .

Solution:

Consider the fixed point of $h_{1,-1}(x)$ is $P_1 = \frac{1+\sqrt{5}}{2}$, and $h_{1,-1}^{-1}(x) = \pm \sqrt{x+1}$.

The backward orbit of $P_1 = \frac{1+\sqrt{5}}{2}$ $h_{1,-1}^{-1}\left(\frac{1+\sqrt{5}}{2}\right) = \pm \frac{1+\sqrt{5}}{2}$, where $\pm \frac{1+\sqrt{5}}{2}$ is a fixed point, therefore we consider $h_{1,-1}^{-1}\left(\frac{1+\sqrt{5}}{2}\right) = -\frac{1+\sqrt{5}}{2}$. Now $h_{1,-1}^{-2}\left(\frac{1+\sqrt{5}}{2}\right) = \pm \sqrt{-\frac{1+\sqrt{5}}{2}} \pm 1 \notin \mathbb{R}$. So $h_{1,-1}^{-n}\left(\frac{1+\sqrt{5}}{2}\right)$ are undefined in \mathbb{R} with $n \ge 2$. Thus the backward orbit of P_1 is undefined.

So the intersection of $W^{u}\left(\frac{1+\sqrt{5}}{2}\right)$ with the backward orbit of P_{1} is also

undefined.

3.9. Example 2

For $h_{1,-2}(x) = x^2 - 2$, then $h_{1,-2}$ has a point of tangency at 0 associated to P_1 . Solution:

Consider the fixed point of $h_{1,-2}(x)$ is $P_1 = 2$.

By Example (3.4), The backward orbit of $P_1 = 2$ is

$$h_{1,-2}^{-n}(2) = \{2,-2,0,\sqrt{2},\cdots,2\}.$$

On the other hand, the unstable set of $P_1 = 2$ is

 $W^{u}(2) = (-1, \infty)$, (see Theorem (3-c)). Now

 $h_{1,-2}^{-n}(2)$ intersects $W^{u}(2)$ at 0.

By Lemma (3.1), 0 is a non-degenerate critical point. So $h_{1,-2}$ has a point of tangency at 0 associated to $P_1 = 2$.

3.10. Example 3

For $h_{1,-6}(x) = x^2 - 6$, the backward orbit of P_1 crosses the unstable set $W^u(P_1)$. Solution:

First consider the fixed point $P_1 = 3$.

The backward orbit of 3 is:

 $h_{1,-6}^{-n}(3) = \{3, -3, \sqrt{3}, \dots, 3\}$ (see Example (3-i)), with $h_{1,-6}^{-1}(3) = h_{1,-2}^{2}(\sqrt{3})$, and $h_{1,-6}^{-2}(3) = \sqrt{3}$.

Since $\sqrt{3}$ is a homoclinic point of $P_1 = 3$, then

$$\sqrt{3} \in W_{loc}^u(3)$$
.

Now since the local unstable set of the repelling fixed point $P_1 = 3$ contained in the unstable set of the repelling fixed point $P_1 = 3$. Therefore

$$h_{1,-6}^{-n}(3) \cap W^u(3) \neq \emptyset$$
.

Note, the main theorem in the work:

3.11. Theorem 5

 $h_{a,b}(x) = ax^2 + b, a > 0$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{a,b}$, $P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}$, at $b = \frac{-2}{a}$.

Proof:

1) For $b > \frac{-2}{a}$, by Theorem (3.5) the intersection of the backward orbit of P_1

and the unstable set of P_1 is undefined.

2) For $b = \frac{-2}{a}$, by Theorem (3.6) $h_{a,\frac{-2}{a}}$ has a point of homoclinic tangency

associated to P_1 at x = 0.

3) For $b < \frac{-2}{a}$, by Theorem (3.7) the backward orbit of P_1 crosses the unstable set of P_1 , $W^u(P_1)$.

Therefore $h_{a,b}$ has a homoclinic bifurcation associated to P_1 at $b = \frac{-2}{a}$.

3.12. Example

 $h_{1,-2}(x) = x^2 - 2$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{1,-2}$, $P_1 = 2$, at b = -2.

 $h_{1,-2}(x)$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{1,-2}$, $P_1 = 2$, at b = -2. See examples (3.8), (3.9), (3.10).

3.13. Remark

For a < 0, we have same results which proved above for a > 0. In fact, we can prove in similar ways, that: $h_{a,b}(x) = ax^2 + b, a < 0$ has a homoclinic bifurcation associated to the repelling fixed point of $h_{a,b}$, $P_1 = \frac{1 + \sqrt{1 - 4ab}}{2a}$, at $b = \frac{-2}{a}$.

4. Conclusion

We conclude that the family $H = \{h_{a,b}(x) = ax^2 + b : a \in \mathbb{R}/\{0\}, b \in \mathbb{R}\}$ has homoclinic tangency associated to P_1 at the critical point x = 0. Also for $b > \frac{-2}{a}$ we have no intersection between the backward orbit of P_1 and the unstable set of P_1 , and the backward orbit of P_1 crosses the unstable set of P_1 for $b < \frac{-2}{a}$. So we have homoclinic bifurcation at $b = \frac{-2}{a}$.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this paper.

References

- Zhusubaliyev, Z.T. and Mosekilde, E. (2003) Bifurcations and Chaos in Piecewise-Smooth Dynamical Systems. World Scientific, Singapore. <u>https://doi.org/10.1142/5313</u>
- [2] Ghrist, R.W., Holmes, P.J. and Sullivan, M.C. (2006) Knots and Links in Three-Dimensional Flows. Springer, Berlin Heidelberg.
- [3] Onozaki, T. (2018) Nonlinearity, Bounded Rationality, and Heterogeneity. Springer, Berlin Heidelberg. <u>https://doi.org/10.1007/978-4-431-54971-0</u>
- Guo, S. and Wu, J. (2013) Bifurcation Theory of Functional Differential Equations, Vol. 10. Springer, New York. <u>https://doi.org/10.1007/978-1-4614-6992-6</u>
- [5] Puu, T. and Sushko, I. (2006) Business Cycle Dynamics. Springer, New York. <u>https://doi.org/10.1007/3-540-32168-3</u>

- [6] Block, L.S. and Coppel, W.A. (2006) Dynamics in One Dimension. Springer, New York.
- [7] Devaney, R. (2018) An Introduction to Chaotic Dynamical Systems. CRC Press, Boca Raton, FL. <u>https://doi.org/10.4324/9780429502309</u>
- [8] Gulick, D. (2012) Encounters with Chaos and Fractals. CRC Press, Boca Raton, FL. https://doi.org/10.1201/b11855
- [9] Laura, G., Viktor, A., Iryna, S. and Fabio, T. (2019) Continuous and Discontinuous Piecewise-Smooth One-Dimensional Maps: Invariant Sets and Bifurcation Structures, Vol. 95. World Scientific, Singapore.
- [10] Perko, L. (2013) Differential Equations and Dynamical Systems, Vol. 7. Springer Science & Business Media, Berlin Heidelberg.
- [11] Bonatti, C., Díaz, L.J. and Viana, M. (2006) Dynamics beyond Uniform Hyperbolicity: A Global Geometric and Probabilistic Perspective, Vol. 102. Springer Science & Business Media, Berlin Heidelberg.
- [12] Abdul-Kareem, K.N. and Farris, S.M. (2020) Homoclinic Points and Homoclinic Orbits for the Quadratic Family of Real Functions with Two Parameters. *Open Access Library Journal*, 7, 1-18. <u>https://doi.org/10.4236/oalib.1106170</u>
- [13] Abdul-Kareem, K.N. and Farris, S.M. (2020) Homoclinic Points and Bifurcation for a Quadratic Family with Two Parameters. MSc Thesis, Department of Mathematics, College of Computer and Mathematical Sciences, University of Mosul, Mosul, Iraq, 1-98.