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Abstract 
The paper emphasizes the significance of density of an elementary massive 
quantum particle. In quantum field theory, a quantum function of an ele-
mentary particle takes the form of ( ), tψ r . This kind of function is used for 
putting the inner product of the corresponding Hilbert space in the form of 
an appropriate integral, and the inner product of a function with itself de-
pends on the particle’s density. Density also affects the multi-particle Fock 
space, because this space relies on single-particle Hilbert space. This work 
shows a new reason where a coherent theoretical expression for the density of 
an elementary particle is required: A theoretical description of experiments 
that measure the transition of unstable states and the decay of an elementary 
quantum particle. This new aspect of density strengthens its meaning in 
quantum theories. The usefulness of this outcome is shown in its application to 
the decay of the muon and the electroweak’s ,W Z±  particles. It turns out that 
the Dirac theory provides a consistent description of the muon decay. In con-
trast, the electroweak theory fails to explain the decay of the ,W Z±  particles. 
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1. Introduction 

This work analyzes the significance of the Fock space in Quantum Field Theories 
(QFT). An observation of contemporary textbooks indicates the timely need for 
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an examination of this issue. There are several QFT textbooks that discuss this 
concept as an element of the mathematical structure of the theory (see e.g. [1] 
[2] [3]). On the other hand, there are too many QFT textbooks that refrain from 
this discussion. This work shows the significance of the Fock space as an element 
of a coherent description of processes that belong to the QFT domain of validity. 

The significance of particle density is another issue that is analyzed in this 
work. It is already known that charge density is a fundamental element of Max-
wellian electrodynamics (see [4], p. 75). Evidently, a quantum expression for the 
charge density of an elementary particle is proportional to the particle’s density. 
Hence, particle density is an inherent element of QED. 

Measurements of the decay of some elementary massive particles are analyzed 
below. The quantum description of a decaying particle uses destruction and cre-
ation operators, and these operators change the occupation number of every re-
levant particle in the Fock space. It is explained below how density affects the 
Hilbert space that is an element of the Fock space. 

A new aspect of particle density is pointed out hereinafter, and it emphasizes 
the role of this issue in quantum theories. This work analyzes the need for par-
ticle density of a quantum description of the time-evolution of unstable states. 
This novel requirement is applied in an analysis of quantum transitions of states 
that pertain to the Dirac theory of an elementary spin-1/2 massive particle. The 
same procedure is applied to the electroweak theory of the ,W Z±  particles. 

The main objective of this work is to upgrade the meaning of density of an 
elementary quantum particle. At present some textbooks do not discuss this 
topic at all, whereas others do not emphasize its crucial role in the theory’s 
structure. It is proved below that a coherent expression for the density of an 
elementary quantum particle is a necessary condition for every QFT. 

Units where 1c= =  are used. Greek indices run from 0 to 3. Most formulas 
take the standard form, and relativistic covariant expressions are used. The me-
tric is diagonal and its entries are (1, −1, −1, −1). The second section presents 
some principles that are utilized in this work. The third and the fourth sections 
briefly describe the Hilbert and the Fock spaces, respectively. The fifth section 
analyzes quantum transitions of states of Dirac particles. The sixth section points 
out discrepancies in the electroweak description of the decay of the ,W Z±  par-
ticles. The last section summarizes this work. 

2. Principles Used in This Article 

Physics is a mature science whose theories are written in mathematical language. 
During the development of theoretical physics, quite a few general principles are 
now recognized as solid elements of any physical theory. Although it is a good 
idea to test and retest every principle of this kind, this work does not aim to do 
that. 

Below, some principles are briefly described, and the main objective of doing 
that is to help readers see the consistency of the analysis. Few theoretical ele-
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ments that are derived from these principles are also shown. 
PR.1 The Generalized Correspondence Principle (GCP). 
This work is not the right place for a comprehensive discussion of this impor-

tant topic (see pp. 1-6 of [5]). Hence, only topics that are required for a later 
discussion are pointed out here. 

(a) Textbooks on quantum mechanics (QM) explain the correspondence be-
tween QM and classical physics: “classical mechanics must therefore be a limit-
ing case of quantum mechanics” (see [6], p. 84). A further discussion can be 
found in [7], (see pp. 25-27, 137, 138) as well as in many other QM textbooks. 

(b) Another well-known textbook states the correspondence between QFT 
and QM: “First, some good news: quantum field theory is based on the same 
quantum mechanics that was invented by Schroedinger, Heisenberg, Pauli, Born, 
and others in 1925-1926, and has been used ever since in atomic, molecular, 
nuclear and condensed matter physics” (see [8], p. 49). 

These arguments mean that there is correspondence between the three physi-
cal theories: 

QFT QM Classical physics→ →                 (1) 

An important point of the correspondence relationships is that the appropri-
ate limit of the value of a variable of the higher rank theory should agree with the 
corresponding value found in circumstances where the lower rank theory is OK. 
It means that: 

 

 
 

PR.2 The Variational Principle (VP). 
VP is now regarded as the cornerstone of the QFT of every specific elementary 

particle. Consider the VP and a Lagrangian density of the form 

( ) ( )( ),, ,x x
µ

ψ ψ                        (2) 

where x denotes the four space-time coordinates, and ( ) ( ),x tψ ψ≡ r . There is 
now a general agreement that: “All field theories used in current theories of ele-
mentary particles have Lagrangians of this form’’ (see [8], p. 300). This principle 
is adopted in this work. 

Several consequences of the VP are used hereinafter. As stated above, an im-
portant element of this work is a discussion of the quantum expression for par-
ticle density. In a relativistic language, a particle’s density is the 0-component of 
its 4-current (see [4], p. 75). The Noether theorem depends on the VP. One of its 
results is a general expression for the particle’s conserved 4-current 

,

jµ
µ

ψ
ψ
∂

=
∂
                          (3) 

(see [9], p. 314). 

https://doi.org/10.4236/oalib.1107384


E. Comay 
 

 

DOI: 10.4236/oalib.1107384 4 Open Access Library Journal 
 

The 4-current of a Dirac particle is required for a later discussion. The QED 
Lagrangian density (see e.g. [10], p. 84, [11], p. 78) 

( ) 1 .
16QED i eA m F Fµ µν

µ µ µνψ γ ψ = ∂ − − − π             (4) 

is used for this end. The general expression of the Noether theorem for the 
4-current of a quantum particle (3) and the QED Lagrangian density (4) yield 
the Dirac particle’s 4-current 

jµ µψγ ψ=                           (5) 

(see, e.g. [12], pp. 23, 24). The 0-component of (5) is the density of a Dirac par-
ticle 

† .ρ ψ ψ=                            (6) 

This relation yields a coherent quantum expression for the position of a Dirac 
particle whose state is ( ),i tψ r  

( ) ( ) ( )† 3, , di it t t rψ ψ= ∫r r r r                   (7) 

(see e.g. [7], p. 24). These properties of the Dirac theory are used below. 

3. The Hilbert Space 

For the simplification of the notation and a later application, the single-particle 
quantum functions used herein take the form ( ), tψ r , briefly denoted ( )xψ , 
where x is the four space-time coordinates. This form is used by the VP of QFT 
(see item 2). Textbooks show how these functions can be used for a definition of 
a Hilbert space (see e.g. [8], pp. 49, 50; [13], pp. 164-166). The main points of a 
Hilbert space and its applicability to quantum theories are very briefly described 
herein. 

A set H of complex functions iψ  may compose a Hilbert space if the follow-
ing properties hold: 

P.1 The integrability requirement says that for every iψ  the integral 
† 3di iQ rψ ψ= ∫                          (8) 

converges, and Q is a real non-negative number. 
P.2 0Q =  if and only if 0iψ ≡ . 
P.3 The linearity requirement says that if ,i jψ ψ  belong to H and ,a b  are 

complex numbers then 

i ja bψ ψ ψ= +                          (9) 

belongs to H. 
P.4 A scalar product is defined for every pair of functions of H 

† 3dj i j i rψ ψ ψ ψ≡ ∫                      (10) 

Variables of classical physics take a mathematically real value. Moreover, ma-
thematically real eigenvalues are an important property of a Hermitian operator. 
Hence, in order to satisfy the classical limit, a quantum variable that corresponds 
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to a classical quantity is an eigenvalue of a Hermitian operator ˆ
kO  that oper-

ates on functions of H. If iψ  is an eigenfunction of ˆ
kO  then the correspond-

ing eigenvalue kq  of iψ  is 
† 3ˆ dk i k iq O rψ ψ= ∫                        (11) 

4. The Fock Space 

Many physical systems comprise more than one particle. The Fock space is con-
structed for a theoretical description of these systems. The Fock space is an ap-
propriate sum of Hilbert spaces, where each Hilbert space comprises sin-
gle-particle quantum functions. As such, it can be used for a description of 
many-particle states. If the quantum system comprises more than one particle of 
the same kind iP  then the Fock space is antisymmetric with respect to the 
functions of iP  if these particles are fermions and symmetric if they are bosons. 
In the examples that are discussed in this work there is no more than one par-
ticle of any specific type. Therefore, the antisymmetric/symmetric issue is not 
mentioned hereinafter. 

The Fock space is relevant to the decay processes that are discussed in this 
work. 

5. Transitions of Dirac Particles 

Let us examine two kinds of transitions of Dirac particles. 

5.1. Transition of Electronic States 

Consider the 0l =  hydrogen atom ground state, called 1s, and its excited 1l =  
state, called 2p. Let ,s pψ ψ  respectively denote these states. pψ  is unstable, 
and its transition is 

,p sψ ψ→ Φ                          (12) 

where Φ  denotes the function of the outgoing photon. This is an example of a 
transition from a quantum unstable state to a final stable state, and the process 
conserves the Dirac particle that belongs to the system. Here are the theoretical 
elements that explain the transition (12). 

Rad.1 The electron has a coherent expression for its 4-current (5), and density 
is the 0j  component of a 4-current. Therefore, the electron’s density is 

† .eρ ψ ψ=                          (13) 

This expression for the electron’s density holds for stable and unstable states 
of the hydrogen atom. It is used for a definition of the inner product of the elec-
tron’s Hilbert space that comprises the quantum functions of the hydrogen atom 
(see [13], pp. 164-166). 

Rad.2 The Hilbert space enables a coherent expression for operators that ap-
ply to the electron’s quantum functions (see [8], p. 50). The electron’s Hamilto-
nian is an operator of this kind. 
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Rad.3 The kmH  entry of the Hamiltonian’s matrix element is a crucial quan-
tity in a description of the time-dependent transition between the k.m states (see 
[7], pp. 195-199). This result explains the process (12). 

 

 

5.2. The Muon Decay 

Figure 1 illustrates the muon decay. This is a weak-interaction process where 
one Dirac particle is destroyed and three Dirac particles emerge. Let us examine 
elements of the experimental measurement of this process. 

In principle, each of the outgoing particles is recorded by a specific detector. 
This detector records the energy-momentum and the detector’s space-time point 
of the arriving particle. As usual, these data include an estimate of the measure-
ment error. This information is used by experimenters to find whether or not 
two requirements hold: The outgoing particles should emerge from a very small 
space-time region. Furthermore, experimenters calculate the total invariant 
energy of the outgoing particles and compare it with the muon’s mass. If the re-
sults of these tests are satisfactory then the event is recorded as a muon decay. 

A theoretical description of this effect must yield coherent expressions for the 
measured quantities—the energy-momentum and the space-time position of the 
decaying particle of Figure 1. The muon is a Dirac particle and the Dirac theory 
provides the required expressions for its density and its energy-momentum. As a 
quantum theory, it abides by the Heisenberg uncertainty principle. Thus, we 
have here a Dirac particle that moves in the vacuum. The four components of 
the spinor of a solution of a free spin-up Dirac particle are (see [12], p. 30) 

( ) ( )( )1,0, , exp ,zp Q p Q S i tψ ω+= ⋅ −k x             (14) 

where 

, , 2 ,x yp p ip Q E m S Q m+ = + = + =               (15) 

and ,m E  denote respectively the particle’s mass and energy. As stated above,  
 

 

Figure 1. The µ−  decay (see text). 
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the density of a quantum particle is the 0-component of its 4-current. The re-
quired expression for the Dirac particle’s 4-current is shown above (5). The ex-
plicit expression for the space-time position of a Dirac particle is (7). 

The foregoing points show how the quantum theory of a Dirac particle pro-
vides a coherent interpretation of the experiment. This issue is summarized as 
follows: 

1) The Dirac equation is derived from the QED Lagrangian density. 
2) The Dirac equation is solved for a free particle and the solution ψ  of (14) 

describes the particle’s properties. 
3) The Noether theorem is applied to the Dirac Lagrangian density and yields 

the density expression (5). 
4) Section 3 explains how density is used for the construction of a Hilbert 

space of every Dirac particle and the operators that operate on the quantum 
functions of this space. 

5) Section 4 explains how the Hilbert spaces of all particles of Figure 1 are uti-
lized for the construction of the Fock space of these particles. 

6) Weak interaction operators of the Fock space explain the muon decay 
process. 

7) Operators of density and those of the energy-momentum apply to the 
quantum function kψ  of the decaying particle. This is the theoretical explana-
tion of the elements of the muon decay experiment of Figure 1. 

8) In particular, experimenters record the space-time position of the point 
where an outgoing particle hits its measuring device and the energy-momentum 
of this particle. This information enables them to determine a quite small 
space-time region from which all the outgoing particles emerged. Hence, a 
theory of a decaying particle must provide expressions for its space-time posi-
tion and its energy-momentum. Relations (7) and (14) respectively satisfy these 
tasks. 

9) Density appears in two different places of the theoretical description of the 
decay process. It explains the position of the decaying process as well as the posi-
tion of the outgoing particles at the detectors. It is also used in the inner product 
of the particles’ Hilbert spaces. The Fock space uses these Hilbert spaces and the 
particle’s creation/destruction operators operate on entries of the Fock space. 

10) It is interesting to note that the aforementioned arguments are indepen-
dent of the specific QFT that describes the decaying process. 

 

 
 

The muon decay of Figure 1 shows an example of the merits of the GCP of 
(1). The incoming particle moves in the vacuum, and its motion is described by 
classical physics. In particular, a solution of the classical equations of motion 
determines the particle’s space-time position ( )tr  and its energy-momentum. 
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Conservation of energy-momentum is a well-known effect, and it is utilized in a 
measurement of the muon decay. The muon decay is explained by the destruc-
tion and creation operators of QFT. These operators operate on the Fock space, 
which is based on the particles’ Hilbert spaces of QM. The outgoing particles 
move in the vacuum and classical physics explains their motion. QFT mediate 
between the initial and the final states of the muon decay. In order to explain 
this decay, it must provide coherent expressions for the density of the particles 
of Figure 1 and their energy-momentum. This is what the GCP of (1) requires. 

 

 

6. Problems with the Electroweak W±, Z Particles 

The previous section explains why a coherent expression for density is a vital 
element of a theory of a decaying particle: Experimenters determine a quite 
small space-time region from which the outgoing particles emerge, and the 
theory must show that the decaying particle was inside that region. 

Let us examine the particles ,W Z−  which are crucial elements of the elec-
troweak theory [11] [15]. One decay channel of each of these particles is shown 
on Figure 2. These decays are analogous to the muon decay of Figure 1. Unfor-
tunately, unlike the Dirac theory of elementary spin-1/2 particles, like the muon, 
the electroweak theory, which is more than 50 years old, still has no coherent 
expression for the density of each of these particles. A review of the literature 
proves that indeed, unlike textbooks on the Dirac theory that show an expres-
sion for density (see e.g. [8] p. 10; [12] p. 9), electroweak textbooks do not show 
an analogous expression for the ,W Z±  particles. 

The following lines support this conclusion. The electron’s electromagnetic 
interaction term of the QED Lagrangian density (4) uses the Dirac coherent ex-
pression for the charged particle’s 4-current. In contrast to the electron, the lite-
rature does not show a coherent expression for the electromagnetic interaction 
of the W±. Here is evidence that substantiates this claim. About 20 years after the 
presentation of the electroweak theory, a group of researchers has published an 
effective Lagrangian for the electromagnetic interaction of the W± (see the be-
ginning of section 2 of [16]). Their effective Lagrangian is also presented in a 
second article [17]. As a matter of fact, this effective Lagrangian is still used by 
thousands of people who work in very large research centers like Fermilab and 
CERN [18] [19]. 

 

 
Figure 2. Decay channels of the W− and the Z [14]. 
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It is interesting to compare the theoretical status of a charged Dirac particle 
with that of the electroweak W±. The first article of the Dirac theory of the elec-
tron shows a theoretically coherent expression for its electromagnetic interaction 
[20]. In contrast, many decades after the publication of the electroweak theory, 
major research centers still use effective expressions for the electromagnetic in-
teraction of the W± particles. This unfortunate electroweak situation proves that 
this theory still lacks a theoretically vital expression for the W± electromagnetic 
interaction and its charge density. As stated in the introduction section, the 
charge density of an elementary particle is proportional to the particle’s density. 

 

 

7. General Considerations 

QFT textbooks show how the energy-momentum of a quantum particle is 
derived from its energy-momentum tensor T µν . The entries 0T ν  represent 
energy-momentum density, and the spatial integral yields the energy-momentum 

3 0dP xTν ν= ∫                         (16) 

(see e.g. [8] p. 310; [11], pp. 19, 310). The present section shows how this work 
provides a self-evident extension to this attribute. 

Special relativity combines time and space into one 4-vector 

( ), .x tµ = r                          (17) 

The same is true for the energy-momentum 

( ), .p Eµ = p                         (18) 

Furthermore, coordinates and momenta have very close relationships. For 
example, the classical canonical equations 

;i i i iq H p p H q= ∂ ∂ = −∂ ∂                    (19) 

(see [21], p. 337) show symmetrical relationships between these variables. Clas-
sical physics terminology describes the close relationships between , xx p  by the 
term conjugate variables (see [21], p. 337). This terminology is also used in 
quantum mechanics (see [13], p. 32). 

The Heisenberg uncertainty relations, which are fundamental elements of 
quantum theories, relate these variables 

;xx p E t∆ ⋅∆ ≥ ∆ ⋅∆ ≥                      (20) 

(see [7], p. 7). These expressions indicate another aspect of the close relation-
ships between time-space and energy-momentum. 

The present work examines a fundamental QFT process: a decay of an unsta-
ble quantum particle, like the muon and the ,W Z±  particles. Let us point out 
the elements of a successful measurement of this process. 
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1) For every outgoing particle, a detector measures the space-time position 
where the particle hits the detector and its energy-momentum. 

2) The previous data enable a calculation that goes back in time and finds a 
common space-time region of the outgoing particles. A necessary condition for a 
positive detection is that the common space-time region is quite small. 

3) The same data enable a calculation of the sum of the energy-momentum of 
the outgoing particles at the region that is determined above. A necessary condi-
tion for a positive detection is that the difference between the mass of the decay-
ing particle and the invariant energy of the outgoing particles is quite small. 

This work proves that a theoretical interpretation of the decay of a quantum 
particle should provide adequate expressions for the particle’s energy-momentum 
and its space-time point ( )tr . Due to the uncertainty relations, density is used 
for the determination of the position of a quantum particle (7). The requirement 
for a coherent expression for density is a result of this work. It is analogous to 
the corresponding requirement of the energy-momentum tensor of (16). 

 

 

8. Summary 

This work explains the crucial role of a coherent expression for the density of an 
elementary massive quantum particle. Particle density is used for the construc-
tion of the Hilbert space of QM. A fundamental element of QM is the utilization 
of operators that apply to the quantum functions that compose this space. The 
Hilbert space is also used for the construction of the Fock space, where the crea-
tion and destruction operators of QFT are used. The present work points out a 
new relevant argument: The experimental analysis of a decaying particle, like the 
muon, defines a quite small space-time region from which the outgoing particles 
emerge. A coherent expression for density enables a theory to show that the de-
caying particle was inside a given space-time region. This requirement is ana-
logous to that where the invariant mass of the outgoing particles should be equal 
to the self-mass of the decaying particle. Therefore, a QFT of a decaying ele-
mentary quantum particle should provide a coherent expression for its density 
and its energy-momentum. This outcome makes sense because space-time and 
energy-momentum are conjugate variables. 

Density is the 0-component of the 4-current jµ . It is well-known that the 
Dirac theory of an elementary spin-1/2 massive particle provides a coherent ex-
pression for the 4-current (5). In contrast, the electroweak theory has no expres-
sion for the density of its ,W Z±  particles. This discrepancy casts serious doubts 

https://doi.org/10.4236/oalib.1107384


E. Comay 
 

 

DOI: 10.4236/oalib.1107384 11 Open Access Library Journal 
 

on the consistency of the electroweak theory. 
An examination of the literature indicates the lack of an adequate discussion 

of the significance of the quantum particle’s density. This work will hopefully 
make a contribution for closing this gap. The same words apply to the Fock 
space. 
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