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Abstract 
The size and shape of a single photon is a property of photon shown in the 
collision of the photon with charged particles. Applying scattering theory and 
classical electrodynamics is the most reliable way to solve this problem. The 
main intention of this paper is to reveal the electromagnetic structure of a 
single photon. It establishes the formulas for the Poynting vector (energy flow 
vector) and the energy density. Applying the new explanation of Compton 
wavelength creates the probability formula for the Compton effect when a 
photon collides with an electron. The research discovers that the electromag-
netic field of a single linearly polarized photon confines to a membrane-like 
cuboid, while the electromagnetic field of a single circularly polarized photon 
confines to a membrane-like shell of a hollow cylinder. 
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1. Introduction 

In electrodynamics, the Maxwell equations and their solutions characterize the 
electromagnetic field of light. In quantum mechanics, the Planck energy formula 
represents the energy of a single photon. So far, for a single photon, the known 
physical quantities include velocity c in the vacuum, the frequency ν  or angu-
lar frequency 2ω ν= π , the wavelength 2c cλ ν ω= = π , the energy  

hν ω= = � , the momentum p h c cν ω= = � , etc. The connection of the light 
wave in electrodynamics and photon in quantum mechanics is not well. There 
are many mysteries about this issue since Max Planck introduced the concept of 
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quantum, December 1900. For a single photon, it seems that there are still many 
physical quantities unknown. For example, does a single photon have size and 
shape? The textbooks are silent on this point. Most academic articles complicate 
this problem so much that it remains unsolved for 120 years. The photon models 
proposed by many scholars can’t stand up to theoretical scrutiny. Therefore, re-
vealing the size, shape, and internal electromagnetic structure of a single photon 
has become an indispensable part of photon research. Then, how to go deep into 
the interior of a single photon? 

2. Compton Scattering 

Applying the Thomson scattering and Compton scattering theory can reveal the 
cross-sectional area of the electron. One can’t help asking whether Compton 
scattering theory can derive the cross-sectional area of a single photon. 

Regarding the collision of the X-ray photon and the free electron as an elastic 
collision, both photon and electron are elastic particles (Figure 1). The particles 
obey the laws of conservation of momentum and kinetic energy. 

According to the laws of conservation of momentum and kinetic energy can 
obtain the following equations [1] 
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The relevant physical quantities above and below are: h—Planck constant, 
�—the reduced Planck constant, 2h= π� ; ω� —the incident photon energy; 
ω′� —the scattered photon energy； 0p —the incident photon momentum vector 

which magnitude is 0p cω= � ; ′p —the scattered photon momentum vector 
which magnitude is p cω′ ′= � ; m—the mass of the electron; V—the speed of 
recoil electron; p —the recoil electron momentum vector which magnitude is 
p mVβ=  where 2 21 1 V cβ = − ; θ—the scattering angle of the scattered 

photon; φ—the recoil angle of the scattering electron.  
 

 
Figure 1. This diagram shows the conservation of momentum 
when a photon scattering by an electron at rest. 
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The solutions to this system of equations are 
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where Cλ  is Compton wavelength, which is given by 

C
h

mc
λ =                              (3) 

and κ  is the ratio of photon energy to the mass-energy of electron at rest, which 
is given by 

2mc
ωκ =
�                              (4) 

In this set of solutions, Equation (2-1) represents the change in the wavelength 
of the photon before and after the collision; Equation (2-2) represents the rela-
tionship between the recoil angle of scattering electron and the scattering angle 
of the scattered photon; Equation (2-3) represents the recoil momentum of scat-
tering electron. 

The recoil momentum of the electron can decompose into two components: 
one in the x-axis perpendicular to the direction of the incident photon and 
another in the z-axis parallel to the direction of the incident photon 
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The energy gained by the recoil electron is equal to that lost by the photon. 
Applying Equation (2-1) can obtain the expression of the energy 

2

2 2
2 cosΔ

1 2 sin
κ ϕω
κ κ ϕ

=
+ +

�                      (6) 

The domains of the angles are 0 θ≤ ≤ π , 0 2ϕ≤ ≤ π .  

3. The Structure of Linearly Polarized Photon 

For the sake of simplicity, it is necessary to assume: 
1) The photon energy is far less than the mass-energy of an electron at rest, 

i.e., 2mcω� � . 
2) The electron is a point-like particle of neither size nor shape. 
3) The motion of the electron is undamped. 
4) There is no effect of the photon magnetic field on the electron. 
5) The motion of the electron is low-speed without the relativistic effect. 
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3.1. Wave Function and Poynting Vector  

A plane electromagnetic wave propagating along the z-axis, which electric field 
strength vector E oscillating along the x-axis and the magnetic induction strength 
vector B oscillating along the y-axis, obeys Maxwell equations. Both strengths 
can be characterized by the function as follows 
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zE t
c

zB t
c

ω

ω
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E e

B e

(7 1)

(7 2)
 

where ,x ye e  are basis vectors. 
It is undoubtedly correct to characterize a single photon by the same harmon-

ic functions as light waves. However, the electromagnetic field strength of a sin-
gle photon is different from that of light waves in two aspects. First, the photon 
function of the electromagnetic field strength is constrained to the photon ener-
gy (frequency or angular frequency), but that of the light wave is not. Second, 
the phase ( )t z cω −  or wave-train length of a single photon (photon length) is 
constrained to the photon energy (frequency or angular frequency), but that of 
the light wave is not. 

The relationship between the electric field strength E and the vector potential 
A accords with the following formula 

t
∂

= −
∂
AE                            (8) 

By integrating E over time t can obtain the expression of the vector potential 
A 

0d cos x
E zt t

c
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ω
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 ∫A E e                   (9) 

The curl of A can express as the following  
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 

e                              (10-b) 

Employing the relationship between the amplitude of electric field strength and 
amplitude of magnetic induction strength, 0 0B E c= , then compares with Eq-
uation (7-2), can conclude that 

= ∇×B A                           (11) 

The spin angular momentum flow can express as 

0cε= ×s E A                                      (12-a) 

0
0 0 sin sin 0x x

Ez zc E t t
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e e       (12-b) 

where 0x x× =e e . 
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The result shows that the spin angular momentum flow is equal to zero. There-
fore, there is no spin phenomenon in linearly polarized photons. 

The energy flow vector of the electromagnetic field called “Poynting vector” 
[2] is given by 

20 0

0 0

sin x y
E B zt

c
ω

µ µ
××  = = − × 

 

E B e e                 (13-a) 
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e                          (13-b) 

The above function observed at 0z =  can be represented by 
2

0 sin ztω= e                          (14) 

where the amplitude value of the Poynting vector in the formula is given by 

0 0
0

0

E B
µ
×

=                          (15) 

The magnitude of amplitude of the Poynting vector can be represented by 

2 2 2 2
0 0 0 0 0 0 0

0 0

1 1 1
2

c E cB c E Bε ε
µ µ

 
= = = + 

 
               (16) 

This formula also indicates the quantitative relation between the electric field 
strength vector and the magnetic induction strength vector. 

3.2. Wave-Train Length of a Single Linearly Polarized Photon 

It is not difficult to imagine that the envelope of a single photon expressing in 
the plane wave functions (7-1) and (7-2) is a cuboid. So, the cross-section of the 
photon is even. That is to say, the cross-sectional area on the same photon is 
equal everywhere. 

The single-photon energy   can represent by integrating the Poynting vec-
tor 0 , the cross-sectional area Pσ , and the time taken for the wave-train passing 
through a position z = 0. 

0
dP t= ⋅∫


 σ                             (17-a) 
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0
1 sin 2
2 2p
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ω

 = − 
 


                    (17-e) 

where P P zσ= eσ  and Equation (14) are employed. 
Since a single photon is a complete quantum,   must be constrained to the 

quantization conditions. What conditions can meet the requirements of a single 
photon for  ? The following steps can take for derivation: 
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First, the photon energy does not depend on the sine function of the angular 
frequency. Thus, 2 Nω = π  can be derived, so can obtain 4NT= . 

Second, since a single photon is the minimum unit of light, N can only be 1, 2, 
3, 4.  

Third, because the duration of a photon passing through a position, for exam-
ple, z = 0, is an integer multiple of the period T instead of a half-integer multiple 
of period T. That is to say, the wave-train length of the photon must be an in-
teger multiple of wavelength instead of a half-integer multiple of the wavelength. 
So the only value of N is 4. Applying the Fourier series expansion of the wave 
function (7-1) can prove this point. 

It implies that the oscillating duration of a photon at a place equals the period 
of the photon  

T=                              (18) 

The wave-train length of a photon equals the wavelength of the photon 

cT λ= =                           (19) 

Substituting T=  into the Equation (17-e) can obtain the photon energy   
expressed in terms of the cross-sectional area Pσ , the magnitude of the Poynt-
ing vector amplitude 0 , and the period T. 

0
1
2 P Tσ ω= = �                         (20) 

The equation contains two unknowns: Pσ  and 0 . To finding the cross- 
sectional area Pσ , it is necessary to find the magnitude of the Poynting vector 
amplitude, 0 . 

3.3. Analysis of Compton Scattering from the Viewpoint of  
Classical Mechanics 

When a free electron encounters an incident photon at z = 0, the electron is af-
fected by the photon’s electric field, and its motion state is changed (Figure 2). 

Suppose that the incident photon propagates along the z-axis, the electric field 
oscillates along the x-axis. After the photon interacts with the electron, its direc-
tion of propagation changes by an angle θ turns to direction ′p . The electric 
field strength vector of photon changes from E  to ′′E , also changes angle θ 
synchronously. 

Ignoring the numerical difference between ′′E  and E , the effect of the 
changing electric field strength vector acting on the electron is equivalent to that 
of the electric field strength vector ′E , whose direction is close to the angular 
bisector between E  and ′′E . 

The components of the equivalent electric field strength ′E  on the x-axis 
and the z-axis are respectively  
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Figure 2. The change of the electric field strength vector and 
the momentum vector of a photon. 

 
Assuming that the electron is initially at z = 0, applying the Equation (7-1) can 

obtain the following results 
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Let the charge of the electron be e− , then the components of the electric field 
force acting on the electron are respectively 
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Thus, the acceleration components of the electron motion are given by 

0

0

cos sin -
2

sin sin -
2

eEx t
m

eEz t
m

θ ω

θ ω

= −

=







��

��

(24 1)

(24 2)
 

Assuming that the initial velocity 0 0x =� , 0 0z =� ; the initial displacement  

0 0x = , 0 0z = ; the interaction time is t τ= . Integrating x��  and z��  about t from 
0 to τ , the velocity components of the electron along the x-axis and z-axis are 
respectively 
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The displacement components of the electron along the x-axis and z-axis are 
respectively 
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In the above formulas, the interaction time τ  between photon and electron 
does not exceed the photon period T. 

In the case that the electric field of a photon is wide enough, the electron can 
move in the electric field for a complete period, that is, Tτ = , so the velocity 
components of the electron along the x-axis and z-axis are given by the following 
formulas 

( )
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In other words, the velocity of the free electron is zero after the electric field 
force of the photon acts for a period T; that is to say, the electron velocity returns 
to that of the initial state. 

It can be seen from Equations (26-1) (26-2) that if Tτ = , the displacement 
components of electron along the x-axis and z-axis are 

0 0
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where the relationship 2T ω= π  is employed. 
The magnitude of electron displacement is given by 

2 2 0
2

2
T T T

eEs x z
mω
π

= + =                        (29) 

In the above formulas, the electric field strength vector E0 of the photon is in-
volved, which is an unknown quantity. 

In the case that the electric field of the photon is narrow enough that the elec-
tron ejects from the electric field within the time T; thus, the momentum com-
ponents of the electron along the x-axis and z-axis are respectively 
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The recoiling angle φ of the electron can express as the following formula 

tg ctg
2

x

z

p
p

θϕ = =                         (31) 

This relationship is consistent with the Compton scattering Equation (2-2) 
under the approximate condition 1κ � . The following angular relationship can 
derive from Equation (31) 
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( )1
2

ϕ θ= π−                           (32) 

It implies that the electron recoil direction is opposite to that of the electric 
field vector ′E  under the condition 1κ � . 

The kinetic energy of the recoil electron can be given by 

( )2 21Δ
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Under the condition 1κ � , Equation (6) becomes 
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                     (34-d) 

Comparing the Equation (30) with (5) can obtain the following equations un-
der the approximate condition 1κ �  
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In Equations (35-1) (35-2), there are two types of physical quantities: one is 
related to the photon itself and natural constants, such as e, E0, � , and ω ; the 
other is the variables related to the interaction process, such as τ, θ, and φ. By 
comparing the Equation (33) with (34), then applying the method of separating 
variables can obtain the solutions to the above equations 
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2
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2 2

eE
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Equation (36-1) represents the relationship between electric field strength and 
angular frequency of the photon; Equation (36-2) represents the correlation that 
the interaction time τ, the scattering angle θ of the photon, and the recoiling an-
gle φ of the electron. 

3.4. Formulas for the Size and Shape of a Single Photon 

Equation (36-1) can further transform into the following form  
2

0E
ce
ω

=
�                            (37) 

Substituting Equation (37) into Equation (16) can obtain the magnitude of am-
plitude of the Poynting vector 

4
2

0 0 0 24
cE

c
ωε
α

= =
π
�

                       (38) 
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where 
2

04
e

c
α

ε
=

π �
                         (39) 

is the fine structure constant. 
Equation (38) implies that the Poynting vector amplitude is directly propor-

tional to the fourth power of angular frequency. 
Employing 2T ω= π  and cTλ =  and substituting Equation (38) into (20) 

can obtain a formula 

2
2P
ασ λ=
π

                         (40) 

It is the formula for the cross-sectional area of a single linearly polarized pho-
ton. It is evident from this formula that the cross-sectional area of a single pho-
ton is directly proportional to the square of the photon wavelength, and the 
proportional coefficient is 2 47.394 10α −π = × . 

So, what are the photon lengths in the direction of the electric field and mag-
netic field? 

The Equation (34-c) can transform into the following form 

( )2
2

2

2
Δ cos

mc
ω

ϕ=
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                       (41-a) 

( )
( )

2
2 2

2 2
coser λ

ϕ ω
α λ
⋅ π

= ⋅ ⋅
π

�                (41-b) 

where 
2

2
0

1
4e

er
mcε

=
π

                          (42) 

is the classical electron radius, 2 er  is the classical electron diameter, ( )2 2α λπ  
in the denominator is the cross-sectional area of the photon, the product  

( )2 2er λ π  in the numerator represents the maximum area swept by the elec-
tron in the electric field of the photon; thus, the factor 2λ π  represents the maxi- 
mum displacement of the electron in the direction of the electric field of the pho-
ton. Therefore, the factor 2λ π  is the length of the photon in the direction of 
the electric field 

2
E λ=

π
                            (43) 

Since this quantity is independent of the position on the y-axis, it is correct 
that the cross-section of the photon is a rectangle. The length of the photon in 
the magnetic field direction is 

2M
α λ=
π

                           (44) 

where the Equation (40) for the cross-sectional area is employed. The expression 
for photon’s volume is 
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3
2PV α λ=

π
                          (45) 

These formulas for the size and shape of a single photon only contain one phys-
ical quantity of photon—the wavelength λ , and one physical constant—the fine 
structure constant α . 

3.5. The Energy Density of a Single Photon 

After the volume formula (45) of the photon establishment, the average energy 
density of the photon is given by 

4

38P

u
V c
ω ω

α
= =

π
� �                       (46) 

This formula shows that a single photon’s energy density is directly propor-
tional to the fourth power of its angular frequency. 

3.6. The Structure Model of a Linearly Polarized Photon 

The envelope and the electromagnetic field strength of a single photon are two 
different concepts. According to wave functions (7-1) (7-2), the electromagnetic 
field strength changes with time and position, but the envelope of electromag-
netic wave propagation in the vacuum remains unchanged. 

The ratio of photon thickness to photon length is 32 1.16 10M α −= π = ×  , 
so the photon thickness is very thin. 

The structural model of linearly polarized photons is shown in Figure 3. 

4. Electromagnetic Mechanism of Compton Scattering 

4.1. Explanation of Compton Effect by Classical Electrodynamics 

Why must Compton scattering experiment employ X-ray and γ-ray rather than 
visible light? Explaining this issue needs the structure model of a single photon 
besides the theory of atomic structure. 

As shown in Figure 4 is a cross-section of a single photon that the origin of 
coordinates is at its center. 

How does the Compton effect generate? Discussion on this problem can be in 
two cases according to the interaction time τ. 

1) Tτ =  
It refers to the case, the electric field of photon always acts on the electron 

throughout the period T. The displacement of the electron reaches the maximum 
value after the time Tτ = . 

Substituting Equation (36-1) into Equation (29) can obtain the electron dis-
placement: 

0
2

2 2
T C

eE hs
mc mcm

λ
ω
π π

= = = =
�                    (47) 

This formula shows that the maximum displacement of the electron in the elec-
tric field is the Compton wavelength if the interaction time between photon and 
electron is period T; that is to say, max Cs λ= . 
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Figure 3. This diagram shows the electromagnetic field structure of a single 
linearly polarized photon, in which the blue arrows indicate the direction of 
the electric field strength, and the green arrows indicate the direction of the 
magnetic induction strength. 

 

 
Figure 4. This diagram shows the cross-sectional view of a single linearly po-
larized photon. The electron colliding with the shadow part of the photon 
ejects from the electromagnetic field resulting in the Compton effect. 

 
Therefore, it is necessary to add a new explanation to Compton scattering 

theory: 
Compton wavelength is the maximum displacement of the electron in enough 

wide electric field of a single photon. 
Substituting Tτ =  and Equation (36-1) into Equation (33-b), the formula of 

the kinetic energy of the electron becomes 

( )2
4

2

2
Δ sin 0

2T
T

mc
ω ω

= =
�

                    (48) 

This equation implies that a photon collides with an electron if the interaction 
time reaches the period T, the photon will bypass the electron without any ob-
struction. The electron returns to rest after displacement Cλ , and it does not get 
the kinetic energy from the photon. The propagation direction of the photon 
does not change. In this case, there is no Compton effect. 

The case that the electron moved Cλ  in the negative direction of the x-axis 
in the electric field of the photon without being ejected must satisfy the follow-
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ing two conditions at the same time: 
a) The photon electric field is wide enough that its width satisfies 2 Cλ λπ ≥ ; 

that is, 2Cλ λ≥ π . 
b) In collision, the electron must fall within the interval ( )Cλ λ λ− π− → π

of the x-axis. 
2) Tτ <  
It refers to the case the electron is ejected from the field so that the electron 

displacement can not attain Cλ  when the interaction has not yet reached the 
period T.  

In this way, if Tτ < , the electron gains kinetic energy from the electric field 
of the photon, so Equation (33-b) becomes 

( )2
4

2

2
Δ sin 0

2mc
ω ωτ

= >
�

                      (49) 

The photon loses the corresponding energy and becomes longer in wavelength 
simultaneously, which is the Compton effect. 

For this phenomenon to occur, one of the following two conditions must be 
satisfied: 

a) The electric field of the photon is so narrow that its width satisfies  
2 Cλ λπ < , i.e., 2Cλ λ< π . 

b) The electron falls in the interval ( )Cλ λ λ− π→ − π−  of the x-axis, al-
though the photon electric field is wide enough to satisfy the condition  

2Cλ λ≥ π . 
In the cases 1) Tτ =  and 2) Tτ < , the electron displacement in the electric 

field can only be the smaller one of Cλ  and 2λ π  or expressed by the follow-
ing formula: 

{ }max min 2 , Cs λ λ= π                      (50) 

Compton scattering is due to the electron is ejected from the electric field 
when a photon collides with an electron and the interaction time does not reach 
period T. 

4.2. The Probability of Compton Effect When Photon Collides with 
Electron 

Under the condition 2Cλ λ≥ π , when a photon collides with an electron, there is 
a certain probability that the electron will fall into the region ( )Cλ λ λ− π→ − π−  
in the electric field, resulting in the Compton effect. There is a certain probability 
that the electron will fall into the region ( )Cλ λ λ− π− → + π  in the electric 
field without the Compton effect. The occurrence probability of the Compton 
effect is given by 

2 2
C Cp λ λ
λ λ

π
= =

π
                      (51-1) 

Under the condition 2Cλ λ< π , the occurrence probability of the Compton 
effect is given by 
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1P =                            (51-2) 
It means that the Compton effect will inevitably occur when the photon col-

lides with the electron if 2Cλ λ< π . 
Taken together, when a photon collides with an electron, the probability of the 

Compton effect can be expressed as 

if -
2 2

1 if -
2

C C

C

p

λ λλ
λ

λλ

π π ≥ 
 =

π < 





 







(52 1)

(52 2)
 

It is evidently from the above formula: 
1) When a photon satisfying the condition 2Cλ λ≥ π  collides with a free 

electron, there is always a certain probability of the Compton effect, which value 
is inversely proportional to the wavelength. Especially for a photon satisfying the 
condition 2Cλ λπ� , the Compton effect hardly appears. 

2) When a photon satisfying the condition 2Cλ λ< π  collides with an elec-
tron, the Compton effect always occurs. 

However, if the photon wavelength is close to or smaller than the Compton 
wavelength, the electron cannot be regarded as a point-like particle. This situa-
tion is beyond the scope of the present article. 

5. The Structure of a Single Circularly Polarized Photon 
5.1. The Spin of a Single Circularly Polarized Photon 

For a single circularly polarized photon, the following functions can express the 
electric field strength and magnetic induction strength: 

0

0

sin cos -

cos sin -

x y

x y

z zE t t
c c

z zB t t
c c

ω ω

ω ω

    = − −        
    = ± − + −       






 




E e e

B e e

∓ (53 1)

(53 2)
 

where the sign “ ∓ ” in Equation (53-1) corresponding to “ ± ” in Equation (53-2) 
represents the right-handed photon and the left-handed photon.  

Similarly to the linearly polarized photon, the relationship between electric 
field strength E and vector potential A conforms to the following relationship 

t
∂

= −
∂
AE                             (54) 

By integrating E over t can obtain the expression of the vector potential 

0d cos sinx y
E z zt t t

c c
ω ω

ω
    = − = − ± −        

∫A E e e           (55) 

Comparing Equation (55) with (53-2) can obtain  

0

0

B
E

ω= ±B A                           (56) 

Employing the relationship between the amplitude of electric field strength 
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and amplitude of magnetic induction strength, 0 0B E c= , can obtain 

c
ω

= ±B A                             (57) 

It conforms to the relationship = ∇×B A . 
The Poynting vector of the photon is 

0

1
µ

= ×E B                             (58-a) 

0

1
c
ω

µ
 = × ± 
 

E A                       (58-b) 

0c
ω
µ

= ± ×E A                          (58-c) 

( )0cω ε= ± ×E A                        (58-d) 

ω= ±s                                (58-e) 

where 2
0 01c ε µ=  is employed. 

A spin angular momentum flow vector appears in the formula. 

0cε
ω

= × = ±s E A                         (59) 

This formula can also express as 

ω= ±s                            (60) 

Multiply the cross-sectional area P P zσ= eσ  of the photon on both sides of 
the equation, and then integrate the two sides over time t from 0 to T, and the 
result is equal to photon energy. 

The left side of the equation is given by 

( )
0

d
T

P z tσ ω= ⋅ =∫ e �                      (61) 

The right side of the equation is given by 

( ) ( )
0

d
T

P z tω σ ω= ± ⋅ = ±∫ s e                   (62) 

where Pσ  is the cross-sectional area of the photon entity part. Comparing the 
left and right sides of the equation can obtain that the spin angular momentum 
of the photon is as the following formula: 

= ±�                           (63) 

The Poynting vector is always along the photon propagation direction. The 
directions of spin angular momentum of the right-handed photon and the left- 
handed photon are opposite. 

Taken together, it can conclude that the spin angular momentum of a linearly 
polarized photon is 0, but the angular momentum of a circularly polarized pho-
ton is ±� . 

5.2. Electromagnetic Structure of Single Circularly Polarized 
Photon 

In this section, use the Equations (53-1) and (53-2) to replace the Equations 
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(7-1) and (7-2) to derive some corresponding formulas of the circularly pola-
rized photon following the derivation process of the linearly polarized photon. 

First of all, the photon length λ=  should be acceptable. 
Similarly to the derivation of the Equation (37), the magnitude of amplitude 

of the electric field strength vector is given by 
2

0E
ce
ω

=
�                            (64) 

Applying the wave functions (53-1) (53-2) can obtain that the Poynting vector 
is stable, its direction is always along the propagation direction of the photon, 
and its magnitude is given by 

2

24 c
ω
α

=
π
�

                           (65) 

Thereby obtain the cross-sectional area of the photon entity part 

2
22p

ω ασ λ= =
π

�


                       (66) 

Similar to the derivation of the Equations (41) and (43), the maximum dis-
placement of recoil electron in photon electric field is λ π , which can write as 
radius due to its rotational symmetry. 

2
R λ
=

π
                           (67) 

If regarding the photon as a rigid body with rotational symmetry, the moment 
of inertia is 

2
pI m Rη=                          (68) 

where η  is a presupposed coefficient, depending on the rigid body shape and 
how to rotate around the axis; mp is the photon mass whose value is 2cω� . 

Because the spin angular momentum of a photon is = � , it can express by 
the product of the moment of inertia and rotation angular speed 

22
2

2 2pI m R
c
ω λω η ω η  = = = = π 
�

�               (69) 

Thereby obtain that 
1η =                             (70) 

That is to say, the moment of inertia of a photon as a rigid body is given by 
2

pI m R=                           (71) 

What kind of rigid body has such an expression of the moment of inertia? If 
considering the symmetry and the length λ= , the rigid body can only be a 
hollow cylinder, which looks like a round pipe. 

The radius of the hollow cylinder is R λ= 2π , the cross-sectional area of the 
entity part is 2 22pσ αλ= π , and the difference between the inner radius and the 
outer radius of the cylinder is 

22
αδ λ=
π

                         (72) 
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It is the thickness of the shell of the circular cylinder containing the electro-
magnetic field. Compared with the cylinder radius, this thickness is insignificant. 
The ratio of the thickness to the radius is 32.32 10Rδ α −= π = × , so can ignore 
δ  when calculating the moment of inertia, but the photon energy concentrates 
in this shell. 

As shown in Figure 5 is a cross-section of a circularly polarized photon. As 
shown in Figure 6 is the electromagnetic field structure of the circularly pola-
rized photon. 

The linearly polarized photon is a cuboid entity; the circularly polarized pho-
ton is hollow, the energy concentrates in the entity part that is a membrane-like 
shell of a cylinder. This conclusion is a bit unexpected. 

Figure 7 shows cross-sectional views of right-handed photon and left-handed 
photon, and the phase difference between two adjacent cross-sectional views is π/2. 

The formulas for photon volume, energy density, and Compton effect proba-
bility obtain easily, omit here. 

6. Discussion and Summary 
6.1. Several Photon Models Worthy of Discussion 

Scholars have published theories of various photon models since Planck pro-
posed the concept of quantum in 1900. All these models agree that photons are 
circularly polarized. Here are five examples published in recent years. The wave 
functions of the electric field strength and magnetic field induction strength of 
circularly polarized photon [3] are exact (53-1) (53-2), but the values about the 
wave-train length and cross-sectional area of the photon proposed by scholars 
are different. 
 

 
Figure 5. This diagram shows a cross-section of a circularly polarized photon, 
where the entity part (shaded part) is so exaggerated as to seeing the electro-
magnetic field structure. 
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Figure 6. This diagram shows the electromagnetic field structure of the circu-
larly polarized photon，where the entity part is so exaggerated as to seeing the 
electromagnetic field structure. The blue arrows indicate the direction of elec-
tric field strength, and the green arrows indicate the direction of magnetic in-
duction strength. 

 

 
Figure 7. This set of diagrams show the electromagnetic field structure of the 
circularly polarized photon. The blue arrows indicate the direction of electric 
field strength, and the green arrows indicate the direction of magnetic induction 
strength. The left one represents the right-handed photon, and the right one 
represents the left-handed photon. 

 
Example 1: Circular ellipsoid model [4] 
Geoffrey Hunter, Marian Kowalski, and Camil Alexandrescu imitated Bohr’s 

hydrogen atom model and put forward a circular ellipsoid model of the circular 
polarization states. According to this model, the photon length in the propaga-
tion direction is equal to the wavelength λ , and the radius of the cross-section 
at the strongest electromagnetic field is R λ= 2π . The electric field strength 
increases in proportional to the radius r within the radius R and decreases grad-
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ually outside the radius R in inverse proportion to the radius r. Therefore, the 
electromagnetic field is an evanescent wave.  

Example 2: Spherical spiral wave packet model [5] 
Dong-Lin Zu proposed a spherical model theory of photon, whose main 

view is to treat a photon as a sphere, which rotates around the z-axis of the 
propagation direction, and the angular momentum is the reduced Planck con-
stant � . Thus, a single photon radius is 5 2pr λ= . So, the oscillation dura-
tion is 2 5 2T= . 

Example 3: Multi-wavelength cylindrical spiral wave packet model [6] 
Herbert Weidner proposed a cylindrical model based on the hypothesis that a 

single photon is a circularly polarized electromagnetic wave packet with a spin 
angular momentum �  and energy ω� . The author deduced that the radius of 
a single photon is approximately ( )3 2 4 0.338pr λ λ= π ≈ . Using Heisenberg’s 
uncertainty principle, the author estimated that the photon length is at least about 
100,000λ. 

Example 4: Circular coin model [7] 
Sen Nian Chen proposed a wave packet model based on the Maxwell theory 

and the principle of electric charges quantization. The author proved that the 
photon is circularly polarized and the shape like a circular coin, whose length of 
propagation direction (coin thickness) is 2αλ= π , the maximum value of 
circle radius (coin radius) is max 3R λ= 2π . The author also proved that the 
circularly polarized electromagnetic field is wrapped by a cylindrical lateral mem-
brane with charge ±e. 

Example 5: Half-wavelength cylindrical model [8] 
Shan-Liang Liu proposed a new cylindrical model. The author deduced ma-

thematically that the longitudinal interval of a single photon is equal to half a 
wavelength in space and half a cycle in time; that is to say, the wave-train length 
is 2λ= , the duration at a point is 2T= .  

According to the principle of atomic ionization by photon electromagnetic 
field, the author deduced the vector potential of photon electromagnetic field 
and obtained that the radius of photon cylinder is ( )2 2 2 1p er r λ= − π .  

The theoretical analysis of the above models shows that these models have the 
following troubles: 

Trouble 1—What is the spin angular momentum of a single linearly polarized 
photon propagating in the vacuum? What is the size and shape of a linearly po-
larized photon? The familiar photons are mainly linearly polarized ones, but 
these scholars have not mentioned their size, shape, and structure. 

Trouble 2—According to the formula v rω= , in all examples, the linear ve-
locity on the rotational photon will exceed the light speed where the radius r ex-
ceeds R λ= 2π . 

Trouble 3—What is the wave-train length of a photon? In example 2, 4, 5, the 
unreasonable conclusion is that the photon length is not equal to integral mul-
tiples of photon wavelength, or duration is not an integral multiple of the period 
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T. It is inconsistent with the view that a photon is a complete quantum. In the 
theory of example 3, the author cannot determine the exact length of a photon 
by applying Heisenberg’s uncertainty principle, so the photon length estimated 
from this is not the length of a single photon. Only in example 1, the photon 
length is equal to the wavelength, but, in reality, the radius of this photon model 
is infinite. After all, a single photon structure is unlikely to be the same as a hy-
drogen atom structure. 

Moreover, only columnar (cube or cylinder) photons can link to form a con-
tinuous light-wave, but the spherical or circular ellipsoidal photons cannot.  

The photon emitted by a single atom is always a linearly polarized one, name-
ly, a single particle, while a circularly polarized photon can only exist in the light 
beam. The circularly polarized photon is a unit in the light beam but not a single 
particle. The circularly polarized light beam can only be composed of two beams 
of linearly polarized light with the same amplitude of electric field strength (as 
well as the same amplitude of magnetic field strength), perpendicular polariza-
tion planes, and phase difference of odd multiple of π/2. 

The wave function of electric field strength can understand by Fourier analysis 
why the wave-train length of a single photon must be equal to the wavelength. If 
the photon duration is not equal to an integer multiple of the period T, the 
Fourier expansion about ( )t z cω −  of the wave function (53-1) becomes an 
infinite series. It means that a single photon has an infinite number of frequen-
cies. In other words, a single photon is a kind of polychromatic light but not a 
kind of monochromatic light. The wrong views come from pure hypothesis and 
imagination, while not based on theories and experiments such as Compton 
scattering. 

Therefore, all the models of the photon above are not self-consistent.  
It is well known that a single photon is the basic unit of light. Compton 

scattering theory is the basis for solving these problems. Finding the wave- 
train length and the amplitude E0 of the electric field strength vector are keys 
to find the size and shape of a single photon. Merely employing the energy 
formula and the spin concept is impossible to understand the electromagnetic 
structure. 

6.2. What Are the Methods to Determine the Size and Shape of a 
Single Photon? 

To solve the structural problem of a single photon can work out a scheme. Firstly, 
regarding the photon as a beam light and establish the wave functions such as 
Equations (7-1) (7-2) and (53-1) (53-2), then treat them according to quantiza-
tion constraints. The size and shape of a photon are determined based on the ex-
isting knowledge of classical electrodynamics. 

The first step is to assign ω�  to the energy of a photon and cω�  to its 
momentum. 

The second step is to determine the wave-train length of the photon (photon 
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length). Since a photon has only one frequency, the range of the photon phase 
can only be ( )t z cω − = 2π , that is to say, the wave-train length can only be 

λ= . 
The third step is to determine the amplitude E0 of electric field strength (as 

well as the magnetic induction strength B0) using the Compton scattering for-
mula. 

The fourth step is to determine the Poynting vector using the expression of 
electric field strength. 

The fifth step is to determine the photon’s cross-sectional area using the 
energy formula (17-a).  

The sixth step is to determine the maximum displacement of the electron in 
the electric field using the Compton scattering formula. 

The seventh step is to determine the shape and rotation mode of the photon as 
a rigid body. Taking the photon as a rigid body and assigning its spin angular 
momentum � , comparing the envelope with the entity part can deduce the ro-
tational inertia formula. 

Finally, synthesis of all the above parameters can construct the photon struc-
ture model. 

7. Conclusion 

A single-photon has size and shape and has an internal structure. The electro-
magnetic field exists only in the entity part, but not outside. A photon propa-
gating in the vacuum has a wave-train length equal to its wavelength, namely, 

λ= . The shape of a linearly polarized photon is a membrane-like cuboid. 
The photon length in the electric field direction is 2E λ= π , and the photon 
length in the magnetic field direction is M αλ= 2π . Its cross-sectional area 
is 2 2

Pσ αλ= π , its volume is 3 2
PV αλ= π . The magnitude of amplitude of 

the Poynting vector (energy flow) of the photon is 2 4 2
0 0 0 4cE cε ω α= = π� . 

The average energy density of the photon is 4 38w cω α= π� . The Compton ef-
fect probability depends on the ratio of Compton-wavelength Cλ  to the pho-
ton wavelength λ  when a photon with a wavelength of λ  collides with a sta-
tionary electron. The circularly polarized photon is a hollow cylinder which 
radius is R λ= 2π . Its electromagnetic field is confined to a membrane-like 
shell, while the central part is empty. The cross-sectional area of the entity part 
is 2 22pσ αλ= π , the thickness of the membrane is 22δ αλ= π . 
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