
Open Access Library Journal
2020, Volume 7, e6831
ISSN Online: 2333-9721

ISSN Print: 2333-9705

DOI: 10.4236/oalib.1106831 Nov. 16, 2020 1 Open Access Library Journal

The Intelligent Software Systems: The Practical
Implementation of Software Security
Vulnerabilities Detection Modeling

Musoni Wilson1, Umutesi Liliane2, Mbanzabugabo Jean Baptiste3

1Institute of Applied Mathematics and Computer Science, National Research Tomsk State University, Tomsk, Russia
2IT and Computer Architecture, University of Kigali, Kigali, Rwanda
3Software Engineering, University of Tourism Technology and Business Studies (UTB), Kigali, Rwanda

Abstract
System products are widely used in almost all applications. Most of the hu-
man capacity has been converted to software solutions. Measuring and eva-
luating the quality of software products has become a problem for many
companies that may be looking for software solutions. There are a number of
skills that are required and used to make good software. As time goes on, new
software is advancing and this has caused security problems to persist and
thus affect the software’s performance. New components have introduced a
new security system, which is called software security enhancement. In this
study, I found the latest methods and techniques used to detect a few software
errors and all other security threats. This method has the potential to identify
possible symptoms indicating these causes. The new method has the ability to
detect weaknesses before an attack. The VDC, which modifies the structure,
compares its resources, and then gives a public account of those attacks. This
method is used to remove the best security measures used to convince users
and developers of the same model that will be used to crack down on software
attacks. This paper presents a description of security objectives and best algo-
rithms to address vulnerability issues to provide better results from planned
attacks. The article deals with the implementation of the technical program.
Finally, an analysis of the results was conducted to demonstrate the perfor-
mance of this approach to the development of more secure systems.

Subject Areas
Computer and Network Security

Keywords
Intelligent Software Systems

How to cite this paper: Wilson, M.,
Liliane, U. and Baptiste, M.J. (2020) The
Intelligent Software Systems: The Practical
Implementation of Software Security
Vulnerabilities Detection Modeling. Open
Access Library Journal, 7: e6831.
https://doi.org/10.4236/oalib.1106831

Received: September 17, 2020
Accepted: November 13, 2020
Published: November 16, 2020

Copyright © 2020 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1106831
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1106831
http://creativecommons.org/licenses/by/4.0/

M. Wilson et al.

DOI: 10.4236/oalib.1106831 2 Open Access Library Journal

1. Introduction

Understanding the weaknesses of the system is a matter of concern to the in-
dustry of the system. Studies have shown that system designers and researchers
are working to use all possible methods to help reduce problems. Although
security measures have been put in place, the death toll from the attacks has
risen sharply. In this study, we present a model based on the ability to identify
anything that could interfere with safety-related programs, called testive test-
ing. An easy way to identify security bugs in software well. Implement a relia-
ble security system that assures developers and software users in a safe and se-
cure environment for collaboration. This approach is unique because develop-
ers can search for and change security-related programs. The technology is
now used to measure the quality of applications, including insecurity, with a
focus on specific security such as bookstores, cross-border error checking and
everything else. This has its limitations because users cannot identify a weak-
ness that a particular device can solve, and users do not expect their hardware
to be constantly updated since software weaknesses continue to change. Also,
modern security users face problems because they do not have the ability to
maintain equipment without consulting the dealer. Employers must keep in
touch with system owners at all times. The passport technique connects the
employer with the developer who needs to use a model to control for visible
weaknesses. Software developers have a vested interest in accessing the content
of the device, which they know and the tools are easy to develop and have been
quickly added to many devices in the past to make them more secure and
up-to-date.

The technique employed by this mechanism can detect all the vulnerabilities
in both the past and the present software industry. Software security vulnera-
bility through SGM exposes a software to these threats by tying this software to
security-related activities such as physical inspection, content analysis, and
process upgrading. All vulnerabilities that are known and reported frequently
are being detected and tested during software development. Finally, the study
introduces a TestInv-Code that uses the passive mechanism to test vulnerability
problems in software engineered in C language. The code detects vulnerabili-
ties using passive techniques to measure the standards and efficiency of the
method, detecting related susceptibilities in diverse programs. The introduc-
tion of a security-oriented model (SGM) has actively contributed to the effec-
tive implementation of security models that tests and identifies causes of vul-
nerability. This helps to avoid developers from learning new security mechan-
isms hence it is easier to implement this technique, especially with the new
developers in the software industry. This research paper was guided by several
contributions including: the complete definition of security model language
and all the available methods to create security-oriented models. Complete
approaches towards the development of a secure and full security model to
avoid software ambiguity.

https://doi.org/10.4236/oalib.1106831

M. Wilson et al.

DOI: 10.4236/oalib.1106831 3 Open Access Library Journal

2. Methodology

A security-oriented model copies a given goal to be attained. The model was es-
tablished to expressively replace the manual and physical way the vulnerabilities
are handled including. The SGM employs a mechanism that brings in the excel-
lent relationship in models that are being examined, a critical property that is
being used in passive testing. The security goal mechanism handles anything
that affects the security of software including software security vulnerabilities.
The different types of vulnerabilities being detected include security functionali-
ties; security-related programming activities and other different weaknesses. The
graph represents the total number of occurrences and the possible equilibrium
where all programs must meet to be accredited as secure. The security goal mod-
el intends to add the models and what they can express. The primary origin of
SGM was that it is designed to replace an assured attack and the remaining loo-
pholes as unplanned incidents. The ones that are represented with the angled
edges are modeled using SGM. All the sub-goals are achieved when either one or
all predecessors are completed. The broken edges are a representation of infor-
mation flow between sub goals. The primary influence is dependent on the pro-
grammer either from the admin side or in the programmer side and then identi-
fy developer settings depending on which sub-goals need to be achieved.

The model identifies and highlights some ways in which the outbreak by re-
placing the software can be made. This is possible when the developer gets access
to the hosting server, after the successful software upload, the developer com-
pletely replaces the software with a modified one, which manipulates data the
same way as the original code. The renewed software does all the fore planned
activities by the owner of the software, but in the long run, relevant information
is tapped through a SQL injection attack (Alwan, & Younis, 2017) [1]. Access to
the main servers could be direct or by stealing the password from the adminis-
trator. Software vulnerability can be caused in different ways. The main ways
through which these attacks are achieved include the unsafe use of data that is
read by the system users and by copying data within a loop by controlling the
data read from the users’ side. The model indicates how vulnerabilities can be
caused through the controlled attack to the user data for programs that do not
use adaptive buffers and admits information read from users. This increases the
risks to attack hence rendering the software to other security attacks including
complete denial of service.

2.1. Passive Testing Mode of Detection

This technique detects faults in software or system by examining the subsections
of software independently. Passive testing does not use test input values to ex-
plore how secure a system is. Passive testing is mostly considered since it can
detect faults in the system that is being examined. The system under examina-
tion is observed through collecting traces produced, and the deviations in the
system outcomes are used to analyze the whole system functionality. The small

https://doi.org/10.4236/oalib.1106831

M. Wilson et al.

DOI: 10.4236/oalib.1106831 4 Open Access Library Journal

hints of deviation can bring a significant difference to the results of a system
(Miller & Arisha, 2015) [2]. The formal way of conducting passive testing is hig-
hlighted by giving standards through which a system can be pronounced secure
or insecure. Passive testing can be employed in different capacities. For example,
by using the finite state machine to detect the predictable characteristics of a
scheme and in network management to identify the configuration provisioning
and security subsystems, the passive testing can be used to analyze the security
strengths. The TestInv-Code tool is a reflexive testing mechanism that allows
recognized attack models. It assesses by detecting the vulnerability by checking
the hints of the software program code while it is implementing. Code testing is
done formally under the monitoring of the TestInv code tool. Passive testing
takes the following iterative steps:

2.2. Vulnerability Modeling

The security-oriented model whose main goal is to identify the potential vulne-
rabilities models the vulnerability that is being detected.

2.3. The Formal Definition of Causes

Here, security experts are entitled to identify a cause, and it's predicate. These
predicates are used to define precisely what the designing tools will look for in
the execution traces.

2.4. Vulnerability Checking

The TestInv-Code is used to check the existence of the vulnerability when a pro-
gram is executing. The tool can identify the weaknesses found and indicating
their correct location. The device analyzes the execution traces. The preceding
two steps are done once in a case where a problem occurs. Vulnerability check-
ing is automated to allow free and unconditional simulation of results. When the
automatic identification of results fails, user inputs are used so that the condi-
tion.

2.5. Vulnerability Detection Conditions

The security-oriented model provides the information about possible problems
in the codes. The information is useful since it can be used as a requirement to
test software security vulnerabilities. The information will be helpful in future
designs of new software that attack resistant. The main aim of vulnerability de-
tection is to detect the occurrence of an attack in software (Antunes & Vieira,
2015) [3]. The causes of security attacks are usually expressed in natural lan-
guage or coding language. These conditions are easily decoded by the target sys-
tem yet making them hard to be detected by the users of the arrangements. The
SGM detection tool can be used to identify the slight changes in the system be-
havior by closely monitoring the output. The usual algorithmic patterns are
looked into to determine the deviation from the usual pattern. More elaborate

https://doi.org/10.4236/oalib.1106831

M. Wilson et al.

DOI: 10.4236/oalib.1106831 5 Open Access Library Journal

security mode can be designed using different logical operators.

3. Results

The security-oriented mechanism needs to identify the probable cases that may
make the testing of scenarios hard to recognize the possible vulnerabilities. The
occurrences that may cause susceptibility in building the test cases identified
whether in the program that is being tested performs decisive actions under
SGM particular circumstances and then recovers it from the attack (Liu, Yang &
Zhang, 2015) [4].

For SGM to be implemented fully, it must fulfill the following requirements:
• The subsystems should be replaced by a suitable corresponding model.
• Do away with the qualitative sub-elements of the security mechanism and

maintain physical ones. The qualitative goals are done through human inter-
vention hence cannot be checked.

• The SGM must replace the counteracting sub goals with similar contributing
subgoals. By making sure, the testing process is successful, SGM checks for
the worst situations to control whether the susceptibility is available or not.

3.1. Extract the Testing Information Using Templates

This is done to pedal the extraction of the affected part of the code. The process
is made possible by creating two models, one to represent master action and
another one behind which every sub-master is processed. The subgroups are
treated logically to produce vulnerability detection control. Every case should
contain an independent master plan that is the Act_master, which produce re-
lated vulnerability. SGM does not proceed if there is a missing master action. (K.
M. Khan and J. Han. 2013) [5] formulates the algorithm for the axes of these
paths as conditions {X1, ∙∙∙, ∙∙∙, Yn}. A specific situation may occur, called missing
condition Ck that need to satisfy the following Acting Master. Let {Y1, ∙∙∙, YK, ∙∙∙,
Yn} be the predicate condition {Z, ∙∙∙, C, ∙∙∙, Cn}. The formal VDC expressing this
risky scenario information is represented by: Action Master/(Y1^…^Yk−1
^YK+1…^Yn); YK. When the analysis of master actions is complete, the similar
sub goal is extended to give more information about the pre-existing conditions.
Information edges must be taken into account since the subgroups of the sub
goals provide sensitive information about the roots of the attacks. The design helps
in the production of more secure software. The main template is designed to
record the relevant parameter that is related to the main SGM and the expected
possible feeds and the normal parameters. The table below explains briefly.

3.2. Produce the Templates Automatically to Obtain
Vulnerability Detection Control

The collected information from both the master action whose conditional tem-
plates are automatically executed to produce the expressions of vulnerabilities
detection is used to predict the future of the rest of the systems. Outcomes must

https://doi.org/10.4236/oalib.1106831

M. Wilson et al.

DOI: 10.4236/oalib.1106831 6 Open Access Library Journal

Figure 1. Flowchart of accessing the software system.

be corresponding to the responsible testing scenario. This means all the tests in
the survey systems are done to detect the considered vulnerability.

In Figure 1, the code finds the evidence of vulnerabilities during the decoding
of a software system. The VDCs analyses the execution traces of attacks from
malware by identifying the weaknesses that are evident in the program. The Tes-
tInv-code tool can detect calls by malicious software to a software system and
interpret its intended attack target to the system. It does this by individually
scanning through variable bounds and in cases where there will be variables; the
program will check numerical values. SGMe other conditions may not be easily
detected since SQL injection makes it simple for trespassers to get access to
SGMe specific services using the customer page.

4. Conclusion

Application control is an important part of all application development activi-
ties. Continuous growth in the use of automated tools has contributed to the de-
velopment of reliable and reliable software. The scientific guidelines provided
require the use of intelligent equipment. Complete equipment is only being re-
novated so that newcomers can learn the techniques used to prevent weakness.
In the future, I look forward to using the method of demonstrating how to make
more or less secure software for all vulnerabilities in the application industry,
and also to continue to look at the impact of computer attacks.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/oalib.1106831

M. Wilson et al.

DOI: 10.4236/oalib.1106831 7 Open Access Library Journal

References
[1] Alwan, Z.S. and Younis, M.F. (2017) Detection and Prevention of SQL Injection

Attack: A Survey. International Journal of Computer Science and Mobile Compu-
ting, 6, 5-17.

[2] Miller, R.E. and Arisha, K.A. (2015) Fault Identification in Networks by Passive
Testing. 34th Annual Simulation Symposium, Seattle, 26-26 April 2001, 277-284.

[3] Antunes, N. and Vieira, M. (2015) Assessing and Comparing Vulnerability Detec-
tion Tools for Web Services. IEEE Transactions on Services Computing, 8, 269-283.
https://doi.org/10.1109/TSC.2014.2310221

[4] Liu, W., Yang, L. and Zhang, W. (2015) Modelling Binary Oriented Software Buf-
fer-Overflow Vulnerability in Process Algebra. 2015 Seventh International Sympo-
sium on Parallel Architectures, Algorithms and Programming (PAAP), Nanjing,
12-14 December 2015, 20-25. https://doi.org/10.1109/PAAP.2015.15

[5] Khan, K.M. and Han, J. (2013) A Security Characterisation Framework for Trust-
worthy Component Based Software Systems. 27th Annual International Computer
Software and Applications Conference (COMPAC 2003), Dallas, TX, 3-6 November
2003, 164-169.

https://doi.org/10.4236/oalib.1106831
https://doi.org/10.1109/TSC.2014.2310221
https://doi.org/10.1109/PAAP.2015.15

	The Intelligent Software Systems: The Practical Implementation of Software Security Vulnerabilities Detection Modeling
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Methodology
	2.1. Passive Testing Mode of Detection
	2.2. Vulnerability Modeling
	2.3. The Formal Definition of Causes
	2.4. Vulnerability Checking
	2.5. Vulnerability Detection Conditions

	3. Results
	3.1. Extract the Testing Information Using Templates
	3.2. Produce the Templates Automatically to Obtain Vulnerability Detection Control

	4. Conclusion
	Conflicts of Interest
	References

