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Abstract

In this paper, we establish the existence of multiple solutions for
p-Laplacian problems involving critical exponents and singular po-
tential, by using Ekeland’s variational principle and mountain pass
theorem without Palais-Smale conditions.
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1. Introduction

The aim of this paper is to establish the existence and multiplicity of
solutions to the following quasilinear elliptic problem

(Pa)d B el Jul ™ u = 2] a7 ut Ag (@) in RN, 2 #0
MO we DY (RY),

where Apu = div (|Vu|p72 Vu), 1 < p < N, N is a integer, x €
RY | —co < pu < fip == (N=p)/p)’, 0 < s <p,q:=p(s) =
p(N —s) /(N — p) is the critical Sobolev-Hardy exponent, A and y are
positive parameters which we will specify later, and ¢ is a continuous
function on RYV.

Let H, = DY (]RN ) be the space defined as the completion of
Ce (RY) with respect to the norm

v, = ([ 1vu az)
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When p < fi,, Hardy type inequality implies that the norm

1/p
_ _ p_ —p, P
ull =Vl = ([ (1907 = ol ) )

is will defined in H,, and ||. | is equivalent to [|V.[| ; since the following
inequalities hold:

(1 — (max (1, 0) /i) " [V,
< Jlull < (1 — (min (,0) /7,)) """ [Vl
for all u € Hu~

We define the weighted Sobolev space D := H,, N LP (RN, |z| % dx

which is a Banach space with respect to the norm defined by N (u) :=
el + o 2~ ] ).

Several existence results are available in the case p = 2, we quote for
example [1,2], and the references therein. For more details, when h =
1, p =0 and g = 2*, the regular problem (P ) has been considered,
on the bounded domain 2, by Tarantello [3]. She proved that for g €

(H{} (€2)) not identically zero and satisfying a suitable condition, the
problem considered admits two solutions. Also, they are two nontrivial
nonnegative solutions when g is nonnegative.

Since our approach is variational, we define the functional I, on
D by

Iy (u) = (1/p) fJull” - (1/Q)/ |2~ [ul® da — A/ g (z) udz.
RN RN
Throughout this work, we consider the following assumption

(@) g € H, (dual of H,,),

In our work, we prove the existence of at least two distinct critical
points of I ,, one by the Ekeland variational principle in [4] with
negative energy, and the other by mountain pass theorem in [5] without
Palais-Smale conditions with positive energy.

Our main result is given as follows

Theorem 1. Suppose that 0 < s < 2, p < [ip, hypothesis (G) holds,
g € ’H;L N (RN) and g # 0. Then there exists A, > 0 such that the
problem (Px ) has at least two solutions for any A € (0,Ay).

This paper is organized as follows. In Section 2, we give some pre-
liminaries. Section 3 is devoted to the proof of Theorem 1.

2. Preliminaries

The first inequality that we need is the Hardy inequality
/ |Vul? dz > /lp/ 2|77 |u|f dz, for all u € DY (RY), (2.1)
RN RN

the constant fi, := ((N — p) /p)? is sharp but not achieved [2].

Definition 1. An entire solution v to (P ) is a ground state solution
if it achieves the best constant

(fRN (|v“|p —plz|? |U|p) d:C) dx
Sr = Sup (N) 1= Mg N p/e
“ (e 1~ o )

)

(2.2)
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Lemma 1. [6] Assume that0 < s < 2 and p < fi,. Then the infimum
Su,p 1s achieved on H,,.

Lemma 2. Let (u,) C D be a Palais-Smale sequence [(PS)c in short]
of Inu, t.€.,

Dy (u) = c+ 0, (1) and I, (un) = 0, (1), (2.3)

where o, (1) tends to 0 as n goes at infinity, for c € R. Then, u, — u
inD and I , (u) = 0.

Proof. From (2.3), we have

(/) = (1/q) [ Jal ™ el de = [ (@) unda = e+ 0, (1)
RN RN
and
funll” = [ Jal ™ unl"do =% [ (@) ade = 0, (1), for n laree,
RN RN
where o, (1) denotes o, (1) — 0 as n — oo. Then,

ct00(1) = Luu(un) = (1/a) (L, (un) )
> ((a=p)/pa) [ual” = A((a = 1) /@) llglls, llunll,

V

(un,) is bounded in D. Up to a subsequence if necessary, we obtain
that

U, — wu in D
U, — w in Ly (RN; |x|_s)
u, —> u aeinRY.

Consequently, we get

O

Lemma 3. Let (u,) C D be a Palais-Smale sequence of I ,, i.e., for
c € R. Then, u, — u in D, and either

p —u or Iy, (u) + (g — p) /pa) (Sp.g) 7P
for all p € (2,2*].

Proof. We know that (u,) is bounded in D. Up to a subsequence if
necessary, we have that

U, — u in D

Up — U a.e in RY.

Denote v, = uy, — u, then v, — 0. As in Brézis and Lieb [2], we
have
[only = lunlg = lulg

and

i — ") dr = /RN |~ Jul? da

tim [l ] 2
n—-oQo RN
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On the other hand, we obtain

fim [ (e joa|? de = lim/ 2] on|? da
n—oo JpN n—oo JpN

Then, we get

g () = T () + (R ol = 1/0) [ ol ™ foul” + 0 1)
RN
and

(Do) ) = loall = [ o™ ol +0, (1.

Then we can assume that

lim [jv,||” = lim / |z| "% v, |* =1 > 0.
n—»o00 n—oo JpN

Assume [ > 0, we have by definition of S, 4
1254 (l)p/qa

and so that
1> (Su,q)q/(q_p) .

Thus we get

Cc

(AVAR|
=5
= =
—~
SRS
~— —
+ +
—_~ o~
— o~
KR

| |
S
= =
~
=T~
R
— —
—~
}:O)
_
~—

Q

~

)

|
=

3. Proof of Theorem 1

The proof of Theorem 1 is given in two parts.

3.1. Existence of a Local Minimizer

We prove that there exists A, > 0 such that for any A € (0,\,), Ix
can achieve a local minimizer.
First, we establish the following result.

Proposition 1. Suppose that 0 < s < 2, u < fi,, hypothesis (G)
holds, g € ’H;L N (RN) and g # 0. Then there exist positive constants
A, 0 and & such for all X € (0, \y) we have

I (u) =26 >0 for [lul|, = o

Proof. By the Holder inequality and the definition of S,, 4, we get for
all w € D\ {0} and € > 0

D) = /) l? = (1) [ el e = [ g (@) uds
> (1p) [l = (1) Sua lul” = Algle, el
> (=) lull” = (1/p) Spg Il = C- gl -

Taking € < 1/p and o = ||u|,, then there exist ¢ > 0 small enough
and a positive constant A, such that

Iy (u) 26> 0for [uf,=0and A€ (0,\). (3.1)
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Since g is a continuous function on RY, not identically zero, we can
choose ¢ € C5° (RV\ {0}) such that [;x g () ¢dz > 0. It follows that
for t > 0 small,

I (#9) = (/) |0 ~(/a) [ a1 o=t [ g (@) oda <0,

RN
(3.2)
We also assume that ¢ is so small enough such that [[t¢]|, < o
Thus, we have

¢1 =inf{I , (u) : u € By} <0, where B, = {u € D, N(u) < p}.
(3.3)
Using the Ekeland’s variational principle, for the complete metric
space EQ with respect to the norm of D, we can prove that there exists
a (PC’)Cl sequence (u,) C EQ such that u, — wu; for some u; with
N(u1) < o.

Now, we claim that u,, — wu1. If not, by Lemma ??, we have

I, (1) + ((¢ — p) /pq) (Slhq)q/(q—p)

1+ (g —p) /pg) (Sp) P
C1,

C1

VoIV

which is a contradiction.
Then we obtain a critical point u; of Iy, for all A € (0, \,) satisfying

c1 = IA,/L (Ul) < 0.

On the other hand we have

o = (=)l = (a=1/0) | de@uds
> —(1/pg) (a— 1P (q—p)~ " M lgll3; - (3.4)

Thus u; is a nontrivial solution of our problem with negative energy.
O

3.2. Existence of Mountain Pass Type Solution

We use the mountain pass theorem without Palais-Smale conditions
to prove the existence of a nontrivial solution with positive energy.
For this, we need the following Lemma.

Lemma 4. Let A\* > 0 such that
m}, > 0 forall A € (0,\").
Then, there exist A € (0,\*) and . (z) € D for e > 0 such

sup Iy . (tpe) < mj ,, for all X € (0,A).

>0
Proof. Let
we () if g (x) >0 for all z € RY
0 (1) = we(x—x0) ifg(zo)>0forazgeRY | (3.5)
—we () if g (x) <0 for all z € RY

where w, verifies (2.2).
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Then, we claim that there is an €y such that
/ g (x) e (x) >0, for any € € (0,0) . (3.6)
RN

In fact, g(x) > 0 or g(z) < 0 for all z € RY, and (3.6) holds
obviously. If there exists an xp € R such that g (zo) > 0, by the
continuity of g (x) there is an 1 > 0 such that g (z) > 0 for all z €
B, (zo). Then, by the definition of w. (x — xy), it is easy to see that
there exists an £¢ small enough such that

/ g () we (x — ) > 0, for any € € (0,¢0) . (3.7)
RN
Now, we consider the following functions

f (t) = IA,;A (tcpe)

and
F(#&) = (/p) llpe @)|" — (¢*/q) /RN |27 e ()] da.
Then, we get for all A € (0, \*)
0=f(0) <mj,.

By the continuity of f (t), there exists ¢; a sufficiently small positive
quantity such that

f) <my
for all t € (0,¢1). On the other hand, we have

max f (t) = (g — p) /pa) (Sug)” 77,

t>0

then, we obtain

sup In . (to2) < (g — ) /pg) (Sg)” 77 — Aty /RN 2| % g (x) pedu.

t>0

Taking A > 0 such that
At do > (1 1) (g—p) "N ||g||"
1) 9@ pede>(1/pg) (a=1) (a =) gl -

By (3.6), we get
O<A<W.

where

Wi ala =" (@ =00 ([ oo lal,g

Set
A =min {\*",W}.

We deduce that

sup I, (tw-) < m3 ,, forall X € (0,A).
>0

Since . lim I, (ty.) = —oo, we can choose T' > 0 large enough such
— 00

that Iy . (Ty:) < 0. From Proposition 1, we have I 498, > 6 > 0
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for all A € (0,\.). By mountain pass theorem without the Palais-
Smale condition, there exists a (PC),, sequence (u,) in D which is
characterized by

co = ;relfF ax, Do (v (1))

with
I'={yeC([0,1],D),7(0) =0,7(1) =Tp:}.

Then, (u,) has a subsequence, still denoted by (u,,) such that u, —
ug in D. By Lemma 3, if u,, doesn’t converge to ug, we get

es > Iy (u2) + (g = p) /pa) (Spg)” 7 > mj

what contradicts the fact that, by Lemma 4, we have

sup Iy . (tpe) < mj ,,
t>0

for all A € (0,A). Then
Uy — Uy In D.
Thus, we obtain a critical point ug of Iy, for all A € (0, A.) with
A, :=min {\, A}

satisfying
I)\»H (’U,g) > 0.

4. Conclusion

In this work, we have searched the critical points as the minimizers
of the energy functional associated to the problem. Under some suf-
ficient conditions on coefficients of equation of (1.1) we have proved
the existence of at least two distinct critical points of I ,, one by the
Ekeland variational principle with negative energy, and the other by
mountain pass theorem without Palais-Smale conditions with positive
energy.
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