
Open Access Library Journal 
2020, Volume 7, e6587 
ISSN Online: 2333-9721 

ISSN Print: 2333-9705 

 

DOI: 10.4236/oalib.1106587  Jul. 28, 2020 1 Open Access Library Journal 
 

 
 
 

Electric Field (EF) in the Core of the 
Electrochemical (EC) Disinfection 

Djamel Ghernaout1,2 

1Chemical Engineering Department, College of Engineering, University of Ha’il, Ha’il, KSA 
2Chemical Engineering Department, Faculty of Engineering, University of Blida, Blida, Algeria 

 
 
 

Abstract 
Killing pathogens by different electrochemical (EC) disinfection means has 
been largely reported in the literature, even if the influence of process va-
riables and reactor conception on kill performance has not been well com-
prehended. This review concentrates on EC microbial killing mechanisms 
especially the free radicals’ contribution and the effect of the electric field 
(EF), which are by their nature poisonous to microbes. Some mechanisms 
have been suggested to interpret the deadliness of EC application. Such 
pathways comprise: 1) oxidative stress and cell loss of life because of electro-
chemically produced oxidants, 2) irreversible permeabilization of cell mem-
branes by the placed EF, 3) electrooxidation of vital cellular constituents dur-
ing exposure to electric current or induced EFs, and 4) electrosorption of ne-
gatively charged E. coli cells to the anode surface followed by direct electron 
transfer reaction. Future investigations have to be more dedicated to the EF 
influence in the EC disinfection, as it is the main part of the involved me-
chanisms. Employing granular activated carbon post-treatment could greatly 
reduce the concentrations and poisonous effects of disinfection by-products. 
Moreover, secure multi-barrier techniques, like distillation, plasma discharge, 
nanotechnologies, and membrane processes remain to be suggested, tested, 
and industrially encouraged. Despite their limitations, both adsorptive tech-
niques and membrane processes persist to be an encouraging domain of re-
search thanks to their relatively low costs and ease of applications. 
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(●OH), Electrocoagulation (ECG), Electrooxidation (EO), Reactive Oxygen 
Species (ROSs) 

 

1. Introduction 

Electrochemical (EC) disinfection of water and wastewater has been widely 
mentioned [1]-[10]. Numerous pathways have been proposed to explain the EC 
action, including: 1) oxidative stress and cell loss of life due to electrochemically 
formed oxidants, 2) irreversible permeabilization of cell membranes by the ap-
plied electric field (EF), 3) and electrooxidation (EO) of vital cellular constitu-
ents during exposure to electric current or induced EFs [11]-[26]. 

While EF is applied on water carrying microorganisms with plunged elec-
trodes, chemical oxidants are generated [12] [27] [28] [29] [30] [31]. Electrolysis 
forms numerous oxidants in the occurrence of oxygen (O2), comprising hydro-
gen peroxide (H2O2) and ozone (O3), as well as free chlorine (Cl2) and chlorine 
dioxide (ClO2) when chloride ions (Cl−) are existing in water [6] [12] [27] [32]. 
Such oxidants are mostly accountable for the deadliness of the applied direct 
current (DC) [27]. Numerous scientists established the synergetic contribution 
of antimicrobial agents and EF in neutralizing pathogens [6] [33]-[38]. 

EFs are naturally fatal to cells. This is mainly attributed to the irreversible 
permeabilization of the cell membrane [39] [40] [41]. Through experiments rea-
lized on artificial bi-film lipid membranes it was proved that a membrane ex-
posed to an outer EF collects charge much like a capacitor, and a transmem-
brane potential is produced [6]. A short-lived steady-state current across the 
membrane is initiated when the membrane is completely loaded, showing an 
induced permeability of the membrane to hydrophilic molecules. Such a phe-
nomenon is largely explained by models involving the formation of transient 
pores in the membrane due to the application of the outer EF. The reversibility 
of such an electro-permeabilization is influenced by two key factors: The level of 
the formed transmembrane potential, and the period of application of the outer 
EF. For cells, transmembrane potentials over 1 V and longer pulse times lead to 
irreversible permeabilization and cell dying. The transmembrane potential pro-
duced by an outer EF is a function of the size of the cell membrane, with bigger 
cells experiencing a bigger transmembrane potential from an applied EF. As a 
result, the level of the field required to kill yeast cells is frequently smaller than 
that requested to neutralize microbes [13]. Death takes place due to either the 
apparition of constant pores and following destabilization of the cell membrane 
or mislaying of crucial cell constituents and demolition of chemical gradients via 
transport across transient pores [39]. If formed oxidants by EC techniques are 
existing, these pores could authorize the oxidants open entrance to the inside of 
the cell, contributing to the demobilization phenomena [42] [43] [44] [45]. 

EFs possess as well the capability of demolishing cells in the absence of demo-
lishing their membranes. Matsunaga et al. [16] explained a technique in which 
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cells were eliminated in the absence of breaking, only a little with the EO of 
intracellular coenzyme A [46] [47]. Consequently, EFs can straight oxidize cel-
lular compounds, leading to cell dying [6] [48] [49] [50]. 

Several researches have been dedicated to the employ of EFs and currents to 
eliminate bacteria and yeast in industrial and medical applications, as indicated 
by the next cases. Potable water polluted with Escherichia coli (E. coli) K12 (100 
cells/cm3) was disinfected at a rate of 600 cells/cm3/h with the use of a 0.7 V 
electric potential using a carbon cloth electrode [16]. Potable water polluted with 
335 cells/mL total coliforms and 1035 cells/mL fecal streptococci was sterilized 
with a 2.5 mA/cm2 DC density (125 mA current) applied with 5 cm × 5 cm tita-
nium electrodes for 30 min [17]. DC (60 mA) was employed to impede the de-
velopment of E. coli, Bacillus subtilis, Pseudomonas aeruginosa (P. aeruginosa), 
and Staphylococcus aureus contaminants of a bioprocess reactor [18]. Grahl and 
Markl [14] focused on a non-thermal pasteurization technique that can avert to 
touch the vitamins, enzymes, texture, and taste of treated foods. They followed 
the impact of pulsed EFs on E. coli and Saccharomyces cerevisiae suspended in 
milk and fruit juice, respectively [14]. Bacteriophages stay alive short applica-
tions to different current magnitudes in an EC cell better than bacteria at both 
low (1 × 103 colony-forming units (CFUs)/mL) and high (1 × 106 CFUs/mL) 
population density [6]. Electrolyzed water had been found to possess an elevated 
lethal performance than Ca(OCl)2 of the alike measured active Cl2 dose [51]. 
During the treating time, fundamentally internal cell constituents of the micro-
organisms enter in chemical reactions with the disinfectants [52]-[57]. 

Regardless of the reality that the deactivation of bacteria by different EC dis-
infection means has been reported in the literature, the influence of process va-
riables and reactor conception on kill performance remain to be fully unders-
tood. Further, a small number of researches focused on the mechanisms of EC 
disinfection. This review concentrates on EC microbial killing mechanisms. Sev-
eral related and pertinent references are examined and key EC mechanisms are 
discussed. The effect of electrode material on the pathogens’ killing is discussed. 
The EC disinfection is compared with other methods in terms of performance in 
neutralizing microbes. Free radicals’ contribution to killing pathogenic micro-
organisms and the EF impact are reviewed. Finally, propositions for better EC 
disinfection especially in terms of DBPs control are presented. 

2. Influence of Electrode Material on the Microbial  
Demobilization 

The nature of electrodes has a key role in electrocoagulation (ECG) process. 
Ghernaout et al. [1] used ordinary steel, stainless steel (SS), and aluminum elec-
trodes. Ordinary steel (U = 12 V) and aluminum (U = 11.8 V) give to the solu-
tion Fe2+

(aq) and Fe3+
(aq) (neutral pH) and Al3+

(aq), respectively; however, SS (U = 
10.7 V) does not produce any metallic ions to the solution. Reduction of cellular 
concentration at 620 nm as a function of electrode nature is shown in Figure 1. 
For the first 10 min (Figure 1), SS (55.45%) is less efficient than ordinary steel  
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Figure 1. Reduction of cellular concentration of E. coli as a function of electrodes nature 
during electrocoagulation (ECG) (I = 1 A) [1]. 
 
(97.18%), which is less than aluminum (98.16%). These results may be explained 
by the fact that all bacteria are not eliminated or demobilized; a portion of the 
bacteria may be absorbed on flocs generated during ECG using Al or Fe elec-
trodes [30] [58]. 

Jeong et al. [28] studied the action of electrode material on the formation of 
oxidants, and illustrated the various reaction mechanisms for forming individual 
oxidants by using boron-doped diamond (BDD), Ti/RuO2, Ti/IrO2, Ti/Pt–IrO2, 
and Pt as anode materials. The performance of hydroxyl radical (●OH) genera-
tion was in the arrangement of BDD >> Ti/RuO2 ≈ Pt. No crucial formation of 
●OH was detected at Ti/IrO2 and Ti/Pt–IrO2. The ●OH was proved to have a 
fundamental contribution in O3 formation at BDD, but not at the other elec-
trodes. The generation of active Cl2 was in the arrangement of Ti/IrO2 > 
Ti/RuO2 > Ti/Pt–IrO2 > BDD > Pt. The great gap in this arrangement, from that 
of reactive oxygen species (ROSs), was assigned to the divergence in the electro-
catalytic activity of each electrode material with regard to the formation of active 
Cl2. 

Similar results were achieved by López-Gálvez et al. [8]. Table 1 presents the 
important mechanisms proposed explaining the deadliness of EC technique and 
their respective cited references.  

3. Electrochemical (EC) Control of Bacterial Persister Cells 

The appearance of antibiotic-resistant bacteria has given an augmenting defiance 
to infection monitoring [9]. Classical techniques of antibacterial remediation in-
cluding elevated dose of antibiotics or surgical intervention have been shown 
inadequate for eliminating constant infections, such as those linked with medical 
implants. It is well established that bacterial populations frequently hold a low 
percentage of phenotypic variants, called persister cells, which are metabolically 
idle and very resistant to antibiotics. When the antibiotic remediation is ceased, 
remaining alive persister cells may revive the bacterial population with a com-
parable percentage of persister cells. Therefore, pertinacity gives a hard defiance 
to curing chronic infections. Niepa [9] presented a new technique for monitor-
ing bacterial pertinacity founded upon a process which was called EC control of  
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Table 1. Main mechanisms suggested interpreting the deadliness of EC treatment and 
their cited references. 

Oxidants Electric field (EF) 

Oxidative stress and 
cell loss of life [6] [20] 

[36] [43] [46] [53]. 

Irreversible 
permeabilization 

of cell membranes 
[1] [5] [9] [30]. 

EO of vital cellular 
constituents 

[1] [5] [47] [51]. 

Electrosorption of negatively 
charged E. coli cells to the 

anode surface + direct electron 
transfer reaction 
[5] [29] [45] [54]. 

 
persister cells. This researcher [9] proved that bacterial persister cells could be 
efficaciously removed by low-level DC; as an example, remediation with 70 
μA/cm2 DC for 1 h utilizing SS 304 decreased the number of viable planktonic 
persister cells of P. aeruginosa PAO1 by 98% in comparison with the untreated 
control [9]. DC applications have an effect on surface charge and membrane in-
tegrity of P. aeruginosa, conducting to augment intracellular concentration of 
metal cations [9]. In addition, EC treatments interposed via carbon electrodes 
induced the permeabilization of the cells to extracellular materials, and elevated 
their sensibility to antibiotics, which conducted to total elimination of the per-
sisters [59].  

4. Technology Efficiency: Electrochemical (EC) Disinfection  
vs. Other Methods 

The EC technique was greatly efficient for wastewater remediation [21]. An E. 
coli eliminating performance of 100% may be obtained for the model water with 
a residence time of only 0.5 min and a current density (CD) of 25 mA/cm2 
(Table 2). While the CD was decreased to 16 mA/cm2, a residence time of 2 min 
was required to give a disinfection performance of 99.98%. EC disinfection was 
much more performant than classical chlorination. A residence time of at least 
30 min was needed for chlorination to reach a bactericidal performance of 
99.94% or greater. EC disinfection seemed to possess a germicidal performance 
even bigger than ozonation in terms of residence period. The Fenton reaction 
was not illustrated as the most efficient disinfection techniques for the model 
water; however, this was probably formed by the low dosage of Fenton’s reagent 
used in the experimental tests in comparison with the most Fenton reaction 
conditions.  

Diao et al. [21] concluded that all of the disinfection techniques studied in 
their research (i.e., EC disinfection, chlorination, ozonation and the Fenton 
reaction), were powerful in eliminating E. coli with an initial density of 108/mL 
in the examined wastewater. With an eliminating performance of 99.4% or 
greater, almost all of the cells in the disinfected samples lost their viability from 
the viewpoint of being biologically available to incubation (Figure 2). 

5. Electrochemical (EC) Disinfection Mechanisms 

In a general manner, the deactivation of bacteria during disinfection operation  
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Figure 2. Scanning electron microscopy (SEM) photographs of E. coli cells in (a) fresh 
culture and after (b) chlorination at 5 mg/L for 30 min; (c) ozonation at 10 mg/L for 5 
min; (d) the Fenton reaction with 8.5 mg/L H2O2 and 0.85 mg/L Fe2+ at pH 4 for 10 min; 
(e) EC disinfection at 16 mA/cm2 for 2 min and (f) EC disinfection at 25 mA/cm2 for 2 
min [21]. 
 
Table 2. Experimental conditions and bactericidal performances of various disinfection 
techniques [21]. 

Disinfection method Testing conditions Killing efficiency (%) 

EC disinfection 16 mA/cm2, 2 min 99.98 

 25 mA/cm2, 0.5 min 100 

Chlorination 5 mg/L, 30 min 99.94 

 5 mg/L, 60 min 99.98 

Ozonation 10 mg/L, 2.5 min 99.9 

 10 mg/L, 5 min 100 

Fenton reaction   

pH 4, 10 min 8.5 mg/L H2O2, 0.85 mg/L Fe2+ 99.4 

pH 4, 30 min 8.5 mg/L H2O2, 0.85 mg/L Fe2+ 99.8 
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may be usually interpreted by two kinds of destruction to bacterial cells [31]. 
Primarily, disinfectants may enter in reaction with cell area constituents induc-
ing cell membrane permeability variations or the malfunction of enzymatic dif-
fusion procedures. Secondly, damages to the intracellular constituents, particu-
larly the loss of DNA integrity, may be generated with or without evident cell 
area destructions [60]. Some disinfectants produce more important deteriora-
tions to either the cell surface area or interior constituents; however, these two 
kinds of deteriorations are not limited, depending on the Ct value (disinfectant 
dose × residence time) and kind of bacterial cells. While EC disinfection, the 
behavior of E. coli and Enterococcus is very various, particularly at the start of 
the process if the concentration of oxidants was less than 2 mg/L (0 - 5 min, 4 V) 
[31]. Comparable findings were observed in the survey on classical chlorination 
disinfection treatment [61]. The various deactivation kinetics enter the two in-
dicator bacteria are probably linked to their cell surface structure variations 
(Gram-negative vs. Gram-positive bacteria), because at low Cl2 concentration 
(<0.5 mg/L, as Cl2), deteriorations of Cl2 were detected importantly to the cell 
areas [62]. When the Cl2 dose overpass the minimum (1.5 ≤ Cl2 ≤ 3 mg/L), hard 
deteriorations to bacterial genomes may appear [62] [63]. 

Lacasa et al. [64] concluded that the main inactivation mechanisms involve 1) 
mechanical stress (only for Artemia salina), 2) direct oxidation on the surface of 
conductive diamond anode, and 3) chemical reactions with chlorine species 
and/or ROSs (●OH, O3 or H2O2). 

6. Electrochemical (EC) Disinfection’s Free Radicals: Key  
Contribution in the Killing Actions 

As mentioned previously, the elevated performance of EC disinfection may be 
given by short-lived and energy rich intermediate products with a more efficient 
killing capacity [21]. These chemical products obviously comprise free radicals 
(e.g., ●OH− and O2

●−) [17] [65] [66] [67] [68]. By their SEM examination (Figure 
2), Diao et al. [21] presented more proof of the hypothesis concerning the im-
portant contribution of ●OH− in EC disinfection. Cell samples disinfected by 
●OH− of the Fenton reaction had a rather comparable look as those after EC re-
mediation. There was crucial degeneration and decomposition of the cells fol-
lowing from both the Fenton reaction and EC disinfection. Liberated cellular 
materials were collected on the filters, which was remarkable to a lesser ampli-
tude for the samples of ozonation and narrowly remarkable for the samples of 
chlorination. Consequently, in addition to electro-chlorination, E. coli cells dur-
ing EC remediation were probably deactivated by the intermediate products with 
an oxidizing strength comparable to that of free radicals and much powerful 
than that of Cl2 [21].  

Bio-electro-Fenton devices have been adopted as a cost-efficient and highly 
efficacious water treatment technique [69]. Zhou et al. [69] studied the demobi-
lization of E. coli in a microbial electrolysis cell-based bio-electro-Fenton system 
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(microbial electrolytic-Fenton cell). They proved that a 4-log reduction of E. coli 
(107 to hundreds CFUs/mL) was attained with an externally applied voltage of 
0.2 V, 0.3 mM Fe2+, and cathodic pH of 3.0. Nonetheless, insignificant demobili-
zation was noted in the control tests without external voltage or Fe2+ dose. The 
killing impact was improved when the cathode airflow rate augmented from 7 to 
41 mL/min and was also in proportion to the elevation of Fe2+ level from 0.15 to 
0.45 mmol/mL. Fatal cell membrane destruction by ●OH was considered as one 
possible pathway for neutralizing pathogens. 

7. Suggestions for Better Electrochemical (EC) Disinfection 

The real possibilities of the performant disinfection given with the elec-
tro-chlorination technique, as an example of EC disinfection, are various. Be-
cause disinfection practically may perform with a single pass, the application of 
the process is very simple in comparison with chemical oxygen demand 
(COD) elimination, in which recirculation or some type of cascade procedure 
with several cells has to be utilized. Experience has practically been reached 
utilizing in-line electro-chlorination for remediation and disinfection of salt 
water swimming pools, in which the ameliorated disinfection performance 
from the passing of the cells lets it easy to function at much lower residual Cl2 
concentrations (<0.2 mg/L) that again reduces the concentrations of disinfection 
by-products (DBPs) [42] [68]. 

Tanaka et al. [48] suggested an EC disinfection system employing a honey-
combed platinum-coated titanium electrode for the disinfection of seawater. Cell 
suspensions of the fish pathogens, Vibrio alginolyticus, Edwardsiella tarda, Lac-
tococcus garvieae and Vibrio anguillarum were circulated in a reactor provided 
with 10 sets of these electrodes at a flow rate of 200 mL/min with an applied po-
tential of 1.0 V vs. Ag/AgCl reference electrode. The circulated cells were totally 
killed after 3 h of treatment, whereas free residual Cl2 generated due to seawater 
electrolysis was below 0.1 mg/L. Moreover, a diphenyl-1-pyrenylphosphine flu-
orescent assay showed that lipid peroxidation in the cell membranes of disin-
fected bacteria was induced probably by ROSs produced in the course of EC ap-
plication. 

Hashim et al. [70] suggested a novel combined ultrasonic-electrocoagulation 
device (U-ECG setup) to kill E. coli in water. The U-ECG reactor is composed of 
an ultrasonic bath fitted with four perforated Al electrodes, which are designed 
to serve as baffle-plates to improve the water-mixing phenomenon. The novel 
U-ECG device neutralized 100% of the E. coli during 11 min of application in-
stead of 23 min for ECG. 

Cotillas et al. [71] worked on merging iron ECG (Fe-ECG) and UV irradiation 
(photo-ECG) for eliminating turbidity and E. coli from real treated municipal 
wastewaters. Sole Fe-ECG was found very performant even at low CDs. E. coli is 
retained not only via the enmeshment of mechanism into flocs [72] [73], but al-
so via the attack of electrochemically formed chlorine disinfectant species. Inte-
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grating UV irradiation with Fe-ECG ameliorates the technology effectiveness in 
dealing with E. coli and turbidity. There is a synergistic interaction of both me-
thods at low CD (1.44 A/m2) but an antagonistic impact at higher levels of CD 
(7.20 A/m2). Such an antagonistic impact is provoked by the less efficacious 
transmission of UV irradiation to the bulk solution due to the elevation in the 
level of colloids. 

Rodríguez-Chueca et al. [74] implemented the Fenton-like techniques in-
duced via radiofrequency for neutralizing fecal bacteria (E. coli and Enterococ-
cus sp.) existing in treated domestic wastewater effluents. Fenton techniques 
were performed at pH 5 with various iron sources, like iron salts (ferric chloride, 
5, 50 and 100 mg/L Fe3+), magnetite (1 g/L) and clay (80 g/L), H2O2 (25 mg/L) 
and in absence and presence of radiofrequency. Two distinct electromagnetic 
field intensities (1.57 and 3.68 kA/m) were employed in the Fenton techniques 
induced by radiofrequency. Ferromagnetic material/H2O2/radiofrequency tech-
niques attained interesting findings in killing bacterial cells. For example, 
Fe3+/H2O2/radiofrequency attained a maximum degree of E. coli demobilization 
of 3.55 log following 10 min of application. Such performances are bigger than 
those recorded in the absence of radiofrequency are. Activating thermally iron 
atoms lets the Fenton reaction to intensifying, improving the final efficiency of 
the technique. In addition, distinct behavior was noted in killing E. coli and En-
terococcus sp. due to the structural differences between Gram-negative and 
Gram-positive bacteria [74] [75]. 

Heffron et al. [76] suggested the removal of viruses by utilizing ECG as a pre-
treatment prior to EO treatment using BDD electrodes. They employed 
bench-scale and batch setups to assess the alleviation of viruses via EO and a se-
quential ECG-EO treatment train. They found that EO of two bacteriophages 
(MS2 and FX174) was restrained by NOM and turbidity, showing the possible 
demand for pretreatment. Nonetheless, the ECG-EO treatment train was useful 
only in the model surface waters tested. In model groundwater, ECG single was 
as performant as the merged ECG-EO treatment train. Neutralizing human 
echovirus was considerably smaller than one or both bacteriophages in all model 
waters; nevertheless, bacteriophage FX174 was a more representative surrogate 
than MS2 in the occurrence of NOM and turbidity. Juxtaposed to traditional 
treatment by ferric salt coagulant and free chlorine disinfection, the ECG-EO 
reactor was less efficient in model surface waters but more performant in model 
groundwater. Successive ECG-EO was helpful for many implementations, even 
if engineering factors could presently outbalance the merits. 

Bruguera-Casamada et al. [77] worked on the disinfection of raw dairy 
wastewater by using a successive treatment involving an ECG stage with a Fe-Fe 
reactor pursued by electro-Fenton or ultraviolet (UV) A (315 nm - 400 nm) [78] 
[79] (UVA)-assisted photo-electro-Fenton. The two latter techniques were per-
formed with an air-diffusion cathode for H2O2 formation and either a BDD or a 
RuO2-based anode. They examined the demobilization of heterotrophic and lac-
tic acid bacteria, E. coli and enterococci. A modest reduction of the organic load 
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was observed in all circumstances, while the microbes were deficiently retained 
by the flocs produced in ECG but considerably demobilized in electro-Fenton 
and photo-electro-Fenton. Compared to ECG, electro-Fenton was of value as it 
avoided the generation of toxic sludge carrying active bacteria. In the consecu-
tive ECG/electro-Fenton method implying a BDD anode in the latter stage, the 
killing yield for the lactic acid bacteria was more important at neutral pH, thanks 
to the large capacity of formed Cl2 to oxidize the molecules of the cell walls. 
Moreover, employing a RuO2-based anode conducted to a rapid neutralization at 
pH 3.0. A better achievement was recorded if photo-electro-Fenton substituted 
electro-Fenton, regardless of the anode, thanks to the improved bacterial demo-
bilization by UVA radiation. 

Anodic ECG techniques could eliminate large sets of contaminants in indus-
trial wastewater even if some stubborn pollutants can stay in effluents following 
the treatment and provoke environmental problems. To elevate the performance 
of eliminating contaminants, Fan et al. [80] combined electrocatalysis with ECG 
and implemented an atomic layer deposition (ALD) that enabled TiO2 ultrathin 
overcoating at a nanometer scale on a stainless steel cathode. The electrocatalytic 
overcoating augmented the reduction performance of organic compounds and 
microbes, mainly thanks to the electro-formation of appropriate ROSs. By em-
ploying the new ECG-electrocatalysis reactor to deal with synthetic wastewater, 
interesting reductions of 99.92% of E. coli, 92.1% of suspended solids, 98.3% of 
heavy metal ions, and 88.8% of methylene blue were noted. Such an integrated 
EC technology could lead to treating wastewater at an industrial scale. 

8. Disinfection By-Products (DBPs) Formation: An  
Electrochemical (EC) Disinfection Undesirable Side Effect 

As mentioned in the previous Section, chemical water treatment issues such as 
DBPs formation have incited on the search of better water treatment means such 
as EC water processes that have been tested with large success in various wa-
ter/wastewater pollutant treatments [81]. However, their large use is blocked by 
many technical issues such as DBPs especially chlorine by-products (CBPs) 
produced species [7] [82]. In fact, in the course of EC treatment, these carcino-
genic products may be generated following the electrode material and applied 
voltage. In our previous review paper [3], we have discussed the dependence of 
CBPs produced species generation of the electrode material and applied charge 
in the course of EC treatment. It was deduced that the usage of electrodes gene-
rating highly reactive species has to be more cautiously monitored in hygienical-
ly and environmentally oriented using. Following this orientation, Pt and BDD 
anodes are proved more appropriate than other electrodes. In fact, the good ca-
pacity of a BDD anode to generate ROSs and other oxidizing species during the 
electrolysis allows establishing a chlorine-free disinfection process [83]. 

ECG could be incorporated ahead of microfiltration (MF) to efficiently re-
move turbidity, microbes, and DBPs and together keep an elevated MF specific 
flux [84]. Indeed, ECG efficaciously eliminates hydrophobic natural organic 
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matter (NOM) and pathogens. As seen above, ECG effectively removes viruses 
via physically encapsulating them in flocs, neutralizing their surface charge and 
decreasing electrostatic repulsion, and enhancing hydrophobic interactions be-
tween any sorbed NOM and free viruses [85]. Chellam and Sari [84] concluded 
that ECG attains DBP control via reducing NOM, decreasing chlorine-reactivity 
of the residual NOM. 

Bergmann and Koparal [7] concluded that practical setups must be conceived 
and monitored in a sophisticated manner. The actual state of non-monitored use 
of disinfection devices is not favorable in terms of hygienic and health risks con-
siderations. Great works remain to be performed.  

Employing mixed metal oxide anodes has been proved for disinfecting water 
with reduced formation of CBPs. However, more attention is required to im-
prove the technology [86]. Table 3 lists the dares encountered in the water 
treatment industry related to EC disinfection [82]. 

Xu et al. [92] studied the ECG of landfill leachate during which the formation 
of chlorine species could lead to the production of toxic DBPs. They investigated 
such a generation via observing five categories of DBPs (haloacetic acids-HAAs, 
THMs, haloacetonitriles-HANs, haloketones-HKs, and halonitromethanes-HNMs) 
in two leachate samples treated by ECG. It was illustrated that the applied cur-
rent has induced the production of DBPs that were prevailed by unregulated 
DBPs. With a CD of 100 mA/cm2, the unregulated HKs prevailed the weight-based 
DBP level (96% in Leachate A and 44.3% in Leachate B), while the unregulated 
HANs took part in >80% of the DBPs additive toxicity in both leachates. The in  
 
Table 3. Dares in the water treatment industry related to EC disinfection [82]. 

Challenge Description 

Challenge #1 

The first dare is how to avert the generation of poisonous by-products like 
chlorates or trihalomethanes (THMs). Chlorates are produced via oxidation 
of hypochlorite or via its disproportionation that is a natural phenomenon 
that also happens during the aging of the disinfected water. Chlorates provoke 
grave health issues because as they touch the nervous system. The second kind 
of poisonous species is even more polemic. Indeed, chlorinated chemicals 
are produced from the integration of organic matter with active species of 
chlorine, and such products are linked to cancer and many so grave diseases. 
Such compounds are not limited to the EC technology since they are 
were related to classical chlorination implementation. 

Challenge #2 

The second dare is to utilize substitutes for mixed metal oxide anodes, 
like diamond-like coatings, having the ability of not only oxidizing chloride 
ions but also forming more efficacious agents, comprising ●OH. If employing 
such electrodes, issues related to the generation of toxic species could worsen, 
due to the well-established formation of perchlorates through chlorates 
oxidation. Such novel electrode materials could improve the work of 
additional oxidizing reagents (like ozone and peroxosalts [78] [87] [88]) 
to aid in dealing with resistant pathogens [89] [90]. Issues could be resolved 
via following some procedures such as more optimized residence period 
among water and the anodes in the electrolyzer, and a sufficiently big specific 
current and the cathodic generation of H2O2 to avoid more oxidation 
of chlorine to chlorates and perchlorates [91]. 
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situ formations of active chlorine has conducted to the DBP production, as illu-
strated in the scavenging test. Using granular activated carbon as a post-treatment 
stage can successfully decrease the total DBP level from 295.33 to 82.04 μg/L in 
Leachate A, conducting to a global DBP reduction of 72.2% and a toxicity de-
crease of 50%. Considering the controlling level and shortage of toxicity data, the 
unregulated DBPs have to retain more interest [93] [94] [95]. 

9. Conclusions 

The main important points drawn from this review may be drawn as: 
1) Some mechanisms have been suggested to interpret the deadliness of EC 

application [96]. Such pathways comprise 1) oxidative stress and cell loss of life 
because of electrochemically produced oxidants, 2) irreversible permeabilization 
of cell membranes by the placed EF, 3) EO of vital cellular constituents during 
exposure to electric current or induced EFs, and 4) electrosorption of negatively 
charged E. coli cells to the anode surface followed by direct electron transfer 
reaction [97] [98] [99]. Physical elimination via enmeshment in ECG flocs is the 
main mechanism of bacteria reduction in the occurrence of HCO− 

3 , which greatly 
reduces demobilization, probably due to a decrease in the lifetime of reactive 
oxidants [100]. Adhesion of ECG flocs to cell walls, which conducts to microbes’ 
encapsulation in flocs, is mainly directed by interactions among ECG flocs and 
phosphate functional groups on bacteria surfaces. ECG flocs’ fixation is a func-
tion of the cell wall composition, consistent with comparable densities of phos-
phate functional groups on Gram-positive and Gram-negative cells [101] [102] 
[103]. 

2) EFs are by their nature poisonous to microbial cells. Future investigations 
have to be more dedicated to the EF influence in the EC disinfection, as it is the 
main part of the involved mechanisms. 

3) Employing granular activated carbon post-treatment could greatly reduce 
the concentrations and poisonous effects of DBPs. Moreover, secure mul-
ti-barrier techniques, like distillation (solar disinfection) [104] [105], plasma 
discharge [106], nanotechnologies [107], and membrane processes [108] [109] 
remain to be suggested, tested, and industrially encouraged. Despite their limita-
tions, both adsorptive techniques and membrane processes persist to be an en-
couraging domain of research thanks to their relatively low costs and ease of ap-
plications [110] [111] [112]. 
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