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Abstract 
Climate change episodes are increasingly complicating resource use, access 
and management in the majority of the developing countries. Parasitic weeds 
and crop diseases are hurting annual cereal yields. Application of agrochemi-
cals to contain locusts, birds and insects that destroy produce have the pro-
pensity to kill pollinators such as bees. Essentially, pollinators play a critical 
role in ensuring ecological sustainability and food security. The study uses 
long-term historical data (1961 and 2017) to link climate change, pollinators 
and cereal yields in Kenya on a multivariate model. The findings revealed that 
a unit increase in the amount of rainfall will result in a proportionate increase 
in cereal yields but a unit increase in temperature will lead to varied increases 
in cereal yields. The findings also revealed that bees played a critical role in 
the pollination of maize, wheat and beans but not rice. It is recommended 
that future studies should consider monthly or quarterly climate data in de-
termining future impacts of climate change and pollinators on cereal yields. 
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1. Introduction 

Nearly three decades after the formation of the United Nations Framework 
Convention on Climate Change (UNFCCC) in 1992 with the central aim of ad-
dressing climate change, progress has been made in containing the global chal-
lenge. Despite the progress, the climate change phenomena continue to escalate 
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and are man’s major threat multiplier, mainly in developing countries (Watts et 
al., 2018) [1]. Climate change and variability have continued to complicate re-
source use, access and management (Ogada, Nyangena & Yesuf, 2010) [2]. In 
Kenya, scarcity of resources to meaningfully adapt and mitigate to the antici-
pated and unanticipated climate-related challenges has complicated cereal yields.  

The recent wave of invasive locusts in 2019/2020 destroyed rangelands, led to 
exacerbation of climate change related crop diseases, intensified human-animal 
conflicts, and spread of opportunistic weeds that hurt quality and quantity of 
livestock, fisheries and crop yields (Yanda & Mubaya, 2011) [3]. This compli-
cated the future of food security in the country. For instance, parasitic weed, 
Cuscuta japonica which is mainly dispersed by agricultural tools and machinery, 
wind, flooding, cattle and humans, relies on monocotyledonous and dicotyle-
donous plant families for survival. The weed is climate resilient and hurts crop 
yields (see Gaudet, 1977 [4]; Heide-Jørgensen, 2010 [5]; Jones, 2018 [6]; Kogan 
& Lanini, 2005 [7]; Nadler-Hassar & Rubin, 2003 [8]).  

Bees are the major pollinators and play a critical role in ensuring ecological 
sustainability and food security. Worryingly though, efforts to contain destruc-
tive swarms of locusts by aerial spraying are also killing important communities 
of pollinators. Reliable lines of evidence suggest that the mean annual rainfall 
and temperature will continue to escalate and that this will be characterized by 
catastrophic environmental, health and economic risks (Cuni-Sanchez et al., 
2018 [9]; Kabubo-Mariara & Kabara, 2018 [10]; Nyangena et al., 2019 [11]). Ac-
cording to the Food Security Information Network [NSIF] (2018) [12], cli-
mate-related risks are the main cause of food insecurity among 23 countries out 
of the 51 that were considered in a 2017 World Food Programme (WFP) survey.  

If farmers know in time that it will not rain during a given planting season, 
they can adjust their planting dates and avoid losses. However, unreliable weather 
information impels them to count loses (ACRE Africa, 2019 [13]; KNAP, 2016 
[14]; Slegers, 2008 [15]). Subsistence households, as Kabubo-Mariara and 
Kabara (2015) [16] have gleaned, lack proper planning mechanisms and inability 
to manage available natural resources, which are the main source of income, 
thereby, weakening households’ resilience to climate-induced risks.  

Certainly, the influence of climate change on maize production in Kenya has 
been explored (e.g. Hansen & Indeje, 2004 [17]; Mati, 2000 [18]; Bozzola, Smale 
& Di-Falco, 2018 [19]). However, explorations into how cereal crops like maize, 
beans, rice and wheat differ in their responses to the varying mean air tempera-
ture, rainfall and pollinators are erratic. An empirical understanding of this rela-
tionship, which the study sought to explore, is important in informing policy 
and enabling the country to feed her population, now and in the future. 

Structure of the Paper 

The rest of the paper is organised as follows: Section two presents the literature 
review, Section three details the methodology—under which the empirical mod-
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el is specified. Section four provides data and variables used in the study while 
Section five presents the results and discussion. Section six details conclusions 
and recommendations. At the tail-end, authors' declaration of no conflict of in-
terest is provided.  

2. Literature Review 

Various lines of literature reveal that climate change and variability is a problem 
with direct and indirect ramifications on agriculture (e.g. Kabubo-Mariara & 
Kabara, 2018 [10]; Ogada et al., 2010 [2]; Yanda & Mubaya, 2011 [3]). However, 
due to differences in the physiology of monocots and dicots, it is probable that 
climate change affects different cereal crops differentially or as much as the ef-
fect is in the same direction, the magnitude is likely to be different. Varying 
mean air temperatures are likely to determine the presence or lack of patho-
genicity of microbes in the rhizosphere as well as the PH level of the soil (Singh 
et al., 2018 [20]).  

It is projected that continued manifestation of climate change will add nearly 
600 million people to the 815 million people that are chronically undernourished 
and worsen water accessibility for 1.8 billion people by 2080 (Kabubo-Mariara & 
Mulwa, 2019 [21]; World Health Organization [WHO], 2018 [22]). To overcome 
the challenge, Kabubo-Mariara and Mulwa (2019) [21] have observed that adop-
tion of improved cereal crop varieties, diversification of crops and livestock 
alongside the improvement of water-harvesting technologies are among the 
most needed strategies that are needed most. Although their findings revealed 
that the mean air temperature and rainfall influenced food production, they as-
sert that timing, soil and household characteristics are critical in determining the 
accretion or digression of yields. However, the duo did not hypothesize that the 
physiology of the cereal type can influence quantity of yields. Nonetheless, the 
study failed to account for the role of pollinators in crop production.  

Across the globe, Wuebbles, Chitkara and Matheny (2014) [23] have detailed 
that the economic value of crop pollination is at €153 billion, annually. However, 
the trio warns that climate change threatens the pollination services derived, es-
pecially if temperature in the tropics will continue to escalate. They reveal that 
apiculture leverages on 11 out of the possible 30,000 bee species. The presence of 
climate change and biotic stress (as well as agrochemical use), could impel farm-
ers to look for alternative pollinators.  

A micro-perspective on the viability of adaption to climate change as a driver 
for food security reveals that adaptation increases food security and that if 
households affected by the harsh effects of climate change would adapt, a lot 
would be gained and losses minimized. Interventions that can provide farmers 
with extension services and access to finance, will enable farmers to overcome 
constraining household characteristics and incentivize their uptake of the tested 
adaptation options (Di-Falco, Veronesi & Yesuf, 2011) [24]. Di-Falco et al., 
(2011) used a simultaneous equations model in their estimation but relied on 
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interpolation to create spatial datasets [24]. Although spatial data interpolation 
is a novel statistical innovation to manipulate rainfall and temperature data, they 
claim that deterministic interpolation is a widely used technique. They assert 
that deterministic interpolation is credible, a claim that Bloschl and Grayson 
(2001) [25] strongly refute.  

Bloschl and Grayson (2001) observe that interpolation as a technique involves 
data filtering and change of scale [25]. They have warned that, if due diligence is 
not observed, interpolation as a technique can be counter-productive. They fur-
ther warn that the deterministic interpolation that is considered robust, is not 
explicit enough to account for measurement and estimation error. Whereas this 
observation does not undermine the findings by Di-Falco et al. (2011) [24], it is a 
pointer that climate data is stochastic and indeterminate.  

Estimating stochastic data may not be feasible without worrying about mar-
gins of errors (Bloschl & Grayson, 2001) [25]. Most studies have amply used the 
Ricardian model (see De-Salvo, Raffaelli & Moser, 2013 [26]; Mendelsohn et al., 
2003 [27]), the computable general equilibrium models (e.g. Vargas et al., 2018 
[28]) or the semi-parametric smooth coefficient model (see Ogada et al., 2020 
[2]), among others. This study adopts the Alvi and Jamil (2018) [29] model, 
which is modified to encapsulate variates under consideration.  

3. Methodology  

This study adopted the Alvi and Jamil (2018) [29] model, which is adjusted to 
account to the variates under estimation. In this model, cereal farmers are eco-
nomically (assumed to be) utility maximizing agents. Thus, the production func-
tion for a particular cereal crop is the form of the Cobb-Douglas. A utility max-
imizing Cobb-Douglas function equation is defined as:  

( )1e e tk ut j
t jkjY xβ γ

=
= ∏                         (1) 

where, tY  is the quantity of a given cereal yield in time t, jtx  a set of climate 
estimate of temperature and other sets of parameters under estimation, whereby 

jx  is a series of kx  elements such that ( )1 2 3, , , ,j kx x x x x=  . In addition, γ  
are parameters whose composition of jtX s′ . Theoretical literature strengthens 
the idea that climate change leads to risk exposure that consequentially affects ce-
real yields. It also reveals that pollinators play a critical role in food security but 
that they are also affected by climate change. Instrumentally, it is assumed that 
pollinators have a dual outcome on food security (depending on how climate 
change influences on bees). These two probable scenarios are captured as shown:  

( )1e e
HH Hjt itk uH

t jkjY X γβ
=

= ∏                       (2) 

( )1e e
NN Njt tk uN

t jkjY X γβ
=

= ∏                       (3) 

where, H
tY  and N

tY  are cereal yields per hectare over time t accounting for the 
valuable contribution of pollinators or lack of it, respectively. By taking logs on 
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Equations (2) and (3), we respectively have:  
H H H H
t t jt j ty X uβ γ′= + +                        (4) 

N N N N
t t jt j ty X uβ γ′= + +                        (5) 

where, H
ty  and N

ty  are the log(s) of given cereal yields per hectare over time t, 

jtX ′  is log of the inputs. The gains from pollinators on a given cereal yield per 
hectare are given as a difference of potential gains and losses on yields as:  

( )H N H N H N H N
t t t t t jt j j t tB y y X u uβ β γ γ′= − = − + − + −            (6) 

where, itB  is the cereal yields when pollinators aid increase yields; yields under 
the two scenarios can be compared by: 

1 H N
t t th y y= >; if                           (7) 

0 H N
t t th y y= >; if                           (8) 

Above Equations (7) and (8) provide a classical case when the influence of 
pollinators on yields is positive and negative, respectively. It is assumed that if 
pollinators are impaired due to climate change, 0th = , then s/he misses the 
comparative advantage that comes with pollinators i.e. 1th = . In order with 
Limieux (1998) [30] unobserved and uncorrelated “technological components” 
cum contribution of pollinators that affect the model can be instituted. These 
components are linear projections of the form H

tθ  and N
tθ  and this strength-

ens another assumption that pollinators have a positive influence on yields that 
when used as shown: 

( )H H N H
t H t t tbθ θ θ τ= − +                        (9) 

( )N H N N
t H t t tbθ θ θ τ= − +                       (10) 

where, Hb  and Nb  are projected yields coefficients with ( )H N
t tθ θ−  being the 

ideal comparative advantage of pollinators. By the same token, the pollinators’ 
comparative advantage, π , is given by: 

( )H N
t t tπ θ θ= −                           (11) 

It follows that by substituting Equation (11) into (10), we have an expression 
for the case of when it is assumed pollinators have a digressive role in yields is 
given as:  

N N
t H t tbθ π τ= +                           (12) 

Equally, yields projections case for when pollinators have an accretive role is 
given as:  

( )H H N H
t H t t tbθ θ θ τ= − +                       (13) 

But H N H
t t tθ θ τ− =  

∴  

H H
t H t tbθ π τ= +                          (14) 

By mathematically manipulating Equations (11) and (12), we have:  
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H H H
t H t t tbµ π τ ξ= + +                       (15) 
N N N
t H t t tbµ π τ ξ= + +                       (16) 

where, H
tµ  and H

tξ  are standard error correlations in the model associated 
with the accretive role of pollinators. It is important to note that the three ele-
ments of H

tξ , N
tξ  and jtX s′  that are explained under Equation (5) are un-

correlated unlike H
tθ  and N

tθ  that are explained under Equations (9) and 
(10). By accounting for the standard errors, the unobserved components that are 
aggressive when discounted with the digressive ones, we have Equations (17) 
and (18) below where H

tξ  and N
tξ  are the respective transitory errors as: 

H H H H H
t t jt j t t t ty X bβ γ π τ ξ′= + + + +                  (17) 

N N N N N
t t jt j t t t ty X bβ γ π τ ξ′= + + + +                  (18) 

By taking a generalized yield form, we have:  

( )1H N
t t t t ty h y y h= + −                       (19) 

By combining Equations (17) and (18) through substitution, we have:  

( ) ( )
( )

N H N N H N
t t t t t jt t j j t

N t H N t t t t

y h X X h

b b b h a

β β β γ γ γ

π π ε

′ ′= + − + + −

+ + − + +
           (20) 

t jt t jt t t ty X aγ π β ε×′= + + + +∫                     (21) 

where, jt×∫ , pollination, is determined exogenously. Also as expressed in Equa-
tion (21), quantity of yield is mainly determined by pollination and climate es-
timates.  

Empirical Model 

Specifically, the model will adopt an econometric model that takes into account 
the climatic and non-climatic parameters. For purposes of completeness, let t be 
a time parameter for a given cereal yield in a given year. Further, the units of 
yields are quantified as tonnes. The mean annual temperature will be used as a 
climatic estimate in consistent with Southworth et al. (2000) [31] who have ob-
served that mean annual temperatures are rising and affecting agricultural 
yields. Consequently, the total number of beehives produced in a year are used 
as a proxy variable for pollinators. The empirical model is thus specified as:  

0 1 2 3t t t t tY Tmp Ptn Pollinatorsβ β β β ε= + + + +            (22) 

where tY  is the quantity of yields of a particular cereal crop (maize, rice, wheat 
and beans) produced over time t; β0 is the intercept; β1, β2, β3, β4 are the coeffi-
cients; tTmp  is the mean annual temperature; tPtn  is the mean annual rain-
fall; tPollinators  are proxied by the number of beehives produced over time t; 
and, tε  is the error term.  

4. Data and Variables 

Long-term historical data was used in this study. The data on the quantity of 
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annual cereal crops (of maize and beans, rice and wheat) production was assem-
bled from the Food and Agricultural Organization database over the period 1961 
to 2017 while climatic data was assembled from the World Bank-Climate 
Change Knowledge Portal for the period 1961 to 2016. Using multivariate mod-
el, the data was analyzed to determine the influence of mean annual tempera-
ture, mean annual rainfall and pollinators on the aforementioned cereal yields. 
Table 1 details key summary statistics for the estimated variable. On annual ba-
sis, the summary statistics indicated that under the observed period, the country 
produced a mean of 14.61 metric tonnes of maize. Data also indicated that the 
country produced 10.63 metric tonnes of rice, 12.33 metric tonnes of wheat and 
12.39 metric tonnes of beans, in that order.  

5. Results and Discussion  

The study employed a multivariate approach. The approach is ideal when multi-
ple variables are established on the right side of the model equation, that way, 
linking with a number of variables (Hidalgo & Goodman, 2013) [32]. In this 
model, endogeneity is assumed. The results are as detailed in Table 2.  
 
Table 1. Summary statistics. 

Variable Unit Mean Std. Dev. Min Max 

InMaize Metric tonnes 14.61 0.34 13.75 15.16 

InRice Metric tonnes 10.63 0.56 9.47 11.84 

InWheat Metric tonnes 12.33 0.36 11.34 13.15 

InBeans Metric tonnes 12.39 0.80 10.92 13.65 

InPtn Milliliters 4.03 0.18 3.63 4.44 

InTmp Degrees Celsius 3.21 0.02 3.16 3.25 

InPollinators Number 14.15 0.61 13.12 15.30 

 
Table 2. Multivariate regression results. 

 Model One Model Two Model Three Model Four 

 Maize Rice Wheat Beans 

InPtn 0.366*** (0.0279) 0.137* (0.0590) 0.292*** (0.0378) 0.377*** (0.0589) 

InTmp 9.776*** (0.277) 19.00*** (0.586) 5.064*** (0.376) 19.52*** (0.585) 

InPollinators 0.0407*** (0.0101) −0.162*** (0.0213) 0.248*** (0.0137) 0.209*** (0.0213) 

Constant −18.75*** (0.857) −48.48*** (1.811) −8.547*** (1.162) −54.58*** (1.809) 

Observations 1596 1596 1596 1596 

R2 0.5197 0.4077 0.3525 0.5300 

F-Stat 574.2126 365.2018 288.8521 598.3496 

P-value 0.0000 0.0000 0.0000 0.0000 

Standard errors in parentheses *p < 0.05, **p < 0.01, ***p < 0.001. 
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The results revealed that increasing amount of annual rainfall increases the 
yields of maize, rice, wheat and beans. It is further revealed that a unit increase 
in the amount of rainfall will result in a proportionate increase in cereal yields 
while a unit increase in temperature will result in varied increases in cereal 
yields. It is also revealed that a unit increase in the number of beehives (or in-
crease in the number of bees—given that they are the world’s major pollinators) 
increases maize, beans and wheat yields production to a tune of about 25 percent 
but has resultant reducing effects for rice. All coefficients were statistically sig-
nificant across the three levels of significance (1%, 5% and 10%). As indicated by 
the coefficients of R2, over 50% of the data fit the regression models one and four 
while 40% and 35% of the data under model two and model three fit the regres-
sion model, respectively.  

6. Conclusions and Recommendations 
6.1. Conclusions  

This study may not be the first but there are few studies that have linked climate 
change, pollinators and cereal yields in Kenya. An empirical understanding of 
this linkage at the time when the world has continued to experience temperature 
escalations is important in informing policy and enabling food security in the 
country, now and in the future. 

In this study, data interpolation would not have provided intended estimates 
(Bloschl & Grayson, 2001) [25]. For that, the number of observations for the 
long-term historical data used was not interpolated despite differences in length. 
As suggested in literature (see Singh et al., 2018 [20]) due to differences in the 
physiology of monocots and dicots, climate change has different effects on po-
tential yields. In this study, it was established that although the direction of effect 
was incremental, the magnitude differed from one crop to another. This makes it 
worthwhile to deliberate efforts to boost agriculture to ensure food security.  

6.2. Recommendations 

The findings revealed that a unit increase in the amount of rainfall resulted in a 
proportionate increase in cereal yields but a unit increase in temperature led to 
varied increases in cereal yields. This implies extensive use of extension services 
as observed by Di-Falco et al. (2011) [24] and Kabubo-Mariara and Mulwa 
(2019) [21] to inform farmers when and type of crops to grow to achieve maxi-
mum productivity and food security. Since agriculture in the country is heavily 
rain-fed, investments and explorations into avenues of broadening and 
strengthening resilience and coping mechanisms among farmers, especially 
small-scale farmers are critical. Such efforts will attenuate climate-related risks 
and minimize on-farm and post-harvest losses. Equally critical is the need to in-
vest in agricultural research to continuously come up with climate-resilient seed 
varieties of maize, wheat, beans and rice. 

Consistent with arguments posited by Wuebbles et al. (2014) [23], the find-
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ings revealed that bees played a critical role in the pollination of maize, wheat 
and beans but not rice. This necessitates continued research into ways of con-
taining invasive insects and pests without killing bees, which play a critical in 
enabling food security. Long-term monitoring of agroecosystems and routine 
assessments on the impact of climate change on pollinators is critical. Beyond 
training, the National Beekeeping Institute should work on mechanisms that can 
enable data collection of pollinators and understanding of the environmental 
cues in controlling the phenology and distribution of bee species as they play a 
key role in ensuring food security. Future studies should investigate the viability 
of self-pollination for rice and employ cross-section data on monthly or quar-
terly basis. Importantly so, future studies should consider monthly or quarterly 
climate data including soil-surface temperature and humidity in determining the 
overall impact of climate change on cereal yields in the country. 
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