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Abstract 

Liquid-assisted Wittig reaction is used to synthesis of Rosuvastatin interme-
diates (1,3-Dioxane-4-acetic acid, (4R,6S)-6-[(1E)-2-[4-(4-fluorophenyl)-6- 
(1-methylethyl)-2-[methyl(methylsulfonyl)amino]-5-pyrimidinyl]ethenyl]-2,
2-dimethyl-1,1-dimethylethyl ester). Evaluate the reaction using common 
green chemistry metrics: environmental factor (E-factor), and systematic in-
vestigation of the reaction has been made in order to study the various factors 
affecting the reaction. The E-factor of Liquid-assisted Wittig reaction is about 
a quarter of the traditional method. Under optimal conditions, the conver-
sion rate can reach 99.2 and the E:Z ratio can reach 76:24. 
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1. Introduction 

The Wittig reaction is one of the most useful reactions for the synthesis of ole-
fins [1]. In the last few decades, this reaction has been extensively studied and 
employed in synthesis even on an industrial scale [2]. Rosuvastatin calcium, 
chemically described as bis(3R,5S,E)-7-(4-(4-fluorophenyl)-6-isopropyl-2-(N- 
methylmethylsulfonamido)pyrimidin-5-yl)-3,5-dihydroxyhept-6-enoic acid cal-
cium salt, is a synthetic lipid-lowering agent that acts as an inhibitor of 
3-hydroxy-3-methylglutaryl-coenzyme (HMG-CoA reductase inhibitor). 
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HMG-CoA reductase inhibitors are commonly referred to as statins. Statins are the-
rapeutically effective drugs used for reducing low density lipoprotein (LDL) par-
ticle concentration in the blood stream of patients at risk for cardiovascular dis-
ease [3]. Therefore, rosuvastatin calcium is used in the treatment of hypercho-
lesterolemia and mixed dyslipidemia [4]. 1,3-Dioxane-4-acetic acid, (4R,6S)- 
6-[(1E)-2-[4-(4-fluorophenyl)-6-(1-methylethyl)-2-[methyl(methylsulfonyl)ami
no]-5-pyrimidinyl]ethenyl]-2,2-dimethyl-1,1-dimethylethyl ester (R1), is a possible 
key intermediate in the synthesis of rosuvastatin and its pharmaceutically accepta-
ble salts [5]. Rosuvastatin has evoked much interest of many research groups as 
a synthetic target. At present, there are two main synthetic processes in industry. 
One is the Wittig reaction (Figure 1). 

This reaction led to formation of the rosuvastatin precursor, which was sub-
sequently converted into rosuvastatin calcium followed by well-established syn-
thetic operations. [[4-(4-fluorophenyl)-6-(1-methylethyl)-2-[methyl (methyl-
sulfonyl)amino]-5 pyrimidinyl]methyl] triphenyl-bromide (Z9) was then 
coupled with Tert-butyl 2-[(4R,6S)-6-Formyl-2,2-dimethyl-1,3-dioxan-4-yl) 
acetate (D7) under Wittig olefination conditions (potassium carbonate as cata-
lyst in dimethyl sulfoxide (DMSO) solvent) [6] [7] [8] [9]. However, the biggest 
problem with this route is highly environmental pollution. Using DMSO as sol-
vent was very difficult to recycle, along with the low yield. We wondered wheth-
er it would be possible to develop an organic reaction in the ball mill to achieve a 
process comparable to conventional solution-phase reaction. 

2. General Methods 

2.1. Experimental Materials 

D7, Z9 were gifted from Lepu Pharmaceuticals and used without further purifi-
cation. All solvents and reagents were obtained from Energy Chemical and used 
without further purification. 

2.2. Mechanochemical Procedure for the Synthesis of R1 

Mechanochemical Wittig reaction in a customized stainless steel vial (3.0 mL 
volume) was carried out by adding 1 mmol D7, 1mmol Z9 and 1.3 mmol base. 
The mixture was ball-milled for 16 hrs. For liquid-assisted grinding experiments, 
1 mL solvent was also added. The vial was shaked at 20 Hz in a Spex8000M Mix-
er/Mill. HPLC was performed to evaluate the composition of filtrate. Typically, 
 

 
Figure 1. Synthesis of Rosuvastatin intermediates by liquid-assisted Wittig reaction. 
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0.670 g D7, 0.258 g Z9 and 0.197 g 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU) 
were added at temperature around 25˚C, then ball-milled for 16 hrs. After the 
reaction was completed, 2 mL 95% ethanol was added to the solution in the ref-
lux state. Then the temperature was lowered to 0˚C - 5˚C in order to precipitate 
the off-white crystalline solid, which was dried in an oven at temperature 55˚C 
to obtain about 0.4 g product. 

2.3. General Procedure for the Synthesis of R1 

In a 250 mL 4-necked round bottom flask, DMSO (150 mL), potassium carbo-
nate (33.54 g), Z9 (50 g) and D7 (20.87 g) were added at temperature range of 
25˚C to 35˚C under stirring with speed 250 rpm/min [10]. The reaction mixture 
was heated to 70˚C - 75˚C for 5 to 7 hours. After completion of the reaction as 
determined by TLC, the reaction mixture was cooled to a temperature range of 
25˚C to 35˚C. Toluene (250 mL) was added for dilution of the reaction mixture 
and stirred for 30 minutes. The organic layer was added to water (100 mL) under 
stirring and maintained for 30 minutes. The organic layer was separated and 
washed with water (2 × 100 mL) in the same manner as described above. The 
organic layer was distilled in Rotavapor bath at temperature from 50˚C to 60˚C 
under vacuum. After distillation, isopropanol (100 mL) was added to the residue 
immediately, and the mixture was maintained for 30 minutes. Then the reaction 
mixture was brought to a temperature range of 25˚C to 30˚C by circulating 
room-temperature water slowly. In this period, the emerging precipitate was 
further cooled to 10˚C for 30 minutes, and then filtered by using filter paper. 
The filter cake was washed with prechilled (at temperature 10˚C) isopropanol 
(50 mL). The product was dried in an oven at 55˚C until the moisture content 
was no more than 1%. The dried product appeared as an off-white crystalline 
solid weighing about 45 g. 

3. Results and Discussion 

3.1. Solvent Effect on the Mechanochemical Witting Reaction 

To focus the study, Z9, D7 and potassium carbonate were ball-milled in a stain-
less-steel vial with solvents at opposite ends of the dielectric spectrum, as well as 
a control without any solvent (Table 1). 

In general, we noticed that more polar solvents (high dielectric constants) fa-
vor Z selectivity and a higher overall conversion, whereas the use of less polar 
solvents (lower dielectric constants) favors E selectivity and a lower overall con-
version. It was very exciting that in the absence of solvent, the conversion could 
reach 99.1%, and the E/Z ratio could achieve 70:30. The reason may be that D7 
gradually turned into liquid state during the grinding process. In addition, under 
the grinding conditions, the longer the potassium carbonate is ground, the finer 
the particles, new potassium carbonate would be exposed continuously to pro-
mote the reaction. Therefore, this reaction can be performed without solvents. 
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Table 1. LAG solvent effect on the mechanochemical witting reaction. 

LAG solvent Dielectric constant Conversion (%) E:Z ratio 

none 0 99.1% 70:30 

methanol 33.6 98.3% 58:42 

ethanol 24.3 98.2% 60:40 

n-hexane 1.58 97.5% 76:24 

toluene 2.37 96.8% 75:25 

Acetone 20.7 99.1% 62:38 

Tetrahydrofuran 7.58 99.3% 68:32 

3.2. Alkali Effect on the Mechanochemical Witting Reaction 

Witting reaction’s selectivity depends on a number of factors. In the presence of 
lithium and sodium salts, highly selective (E)-olefins were obtained [11]. The 
strength of bases is crucial to the reaction [12] [13]. To study the influence of 
bases in the ball mill, some commonly used bases were applied (Table 2). 

It was surprising that the common inorganic bases, potassium hydroxide and 
sodium hydroxide, played a good role in the solvent-free process with high yield 
(entries 1 - 2). From the perspective of conversion, potassium carbonate was 
much better than sodium carbonate. The main reason is that the alkalinity of 
potassium carbonate is stronger than that of sodium carbonate (entries 3 - 4). 
However, the reaction exhibited worse performance when the stronger bases 
such as CH3CH2OK or CH3CH2ONa were used (entries 5 - 6). Furthermore, the 
organic base DBU initiated the reaction well under the conditions (entries 7, pKa 
for DBU = 24.13) [14]. Wittig reaction by using DBU as the base is a good 
choice, so DBU was chosen for the following optimization. The acquired data 
confirmed the solid-state character of the events leading to the mechanochemi-
cal generation of phosphorus ylides [15] [16] [17], which include: (i) breaking 
the crystal lattice of a phosphonium compound and the formation of an 
amorphous phase; (ii) deprotonation of an amorphous phosphonium salt by 
DBU in a homogeneous solid-state reaction. 

3.3. Evaluate the Reaction Using E-Factor 

E-factor is an important index to evaluate the environmental impact of a reac-
tion [18]. It enables us to estimate the amount of waste that could be generated 
per kilogram of product produced. The higher the E-factor value, the more waste 
will be generated. 

( )
( )

mass waste
E-factor

mass product
=                      (1) 

where mass (waste) and mass (product) represent the amounts of waste and 
product generated in the same weight unit. Unlike the atom economy, the waste 
accounts for all nonrecyclable postreaction components including unreacted 
starting materials, byproducts and solvents. For example, the oil industrial 
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processes have a lower E-factor because they are highly optimized for their tasks, 
and various products generated from the refinery are utilized very efficiently, 
which minimizes deposals. Higher value products such as pharmaceuticals al-
ways have a higher E-factor due to the multistep synthesis procedures. The es-
sence of green chemistry is to reduce the use and generation of hazardous sub-
stances through careful design; E-factor serves as a parameter for the chemists to 
achieve waste reduction that is based on the outcome of reaction. 

The E-factors for both procedures were calculated using Equation (1) and 
shown in Table 3. Although solvents could be reduced to improve the E-factor 
value for the general procedure, however, the solvent cannot be recycled in 
many cases. On the contrary, the mechanochemical route achieved the lower 
E-factor because of the higher production volume of the product at the rarely 
using a highly toxic solvent or reagent. It is important to realize that the E-factor 
is often strongly dictated by the amount of solvent used relative to the produc-
tion. This is consistent with the practice that solvents account for the highest 
amount of waste produced in the chemical industry. 

4. Conclusion 

In summary, a novel and convenient method for the synthesis of Rosuvastatin 
 
Table 2. Screening of bases for the formation of R1. 

Entry Base Conversion (%) E:Z ratio 

1 KOH 98.6 67:33 

2 NaOH 98.7 68:32 

3 K2CO3 99.1 70:30 

4 Na2CO3 75.6 75:25 

5 CH3CH2OK 87.6 63:27 

6 CH3CH2ONa 86.7 65:35 

7 DBU 99.2 76:24 

 
Table 3. Comparison of E-factor for mechanochemical and general procedure. 

 Mechanochemical General procedure 

Solvent none 
DMSO (150 mL), Toluene (250 mL), 

isopropanol (150 mL), water (300 mL) 

Starting materials Z9 (0.258 g) and D7 (0.67 g) Z9 (50 g) and D7 (20.87 g) 

Nonrecycled solvent waste 0.2 mL Ethanol 55 mL organic solvent 

Cat. or reagent DBU (0.197 g) Potassium carbonate (33.54 g) 

Waste Ethanol, DBU, PPh3O water, KBr, PPh3O 

R1 0.4 g 45.0 g 

E-factor (dimensionless) ~2.3 ~9.2 

Solvent recovery is calculated as 90% 
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intermediates R1 in a ball mill had been developed. A series of bases were applied 
to afford the product with good yield. Simplicity of the reaction, such as sol-
vent-free condition, fast reaction time and its potential application, promoted us 
to conclude that the ball mill procedure is a significantly improved version of the 
described reaction. 
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