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Abstract 
In this research, we presented a study of the stability of flow systems and heat 
transfer in horizontal channels under the influence of the vertical magnetic 
field as well as thermal radiation where we built a mathematical model and 
put the partial differential equations that control the model and we analyze 
these equations after transformation into non-dimensional equations into 
two parts: the first unsteady state equations and second steady state equa-
tions, hence analyze the stability on the unsteady state equations. It’s noticed 
that the increase of Reynolds number Re causes the increase to unstable 
probability of the system. But the increase of Schmidt number has an effect 
on the system towards unstable, as well as the increase of grash of number 
makes the system stable. Finally, the increase of wave number k has a positive 
effect towards stable. 
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1. Introduction 

The stability became very important and a study axis for many researchers in 
past last years, because of the industrial and technological development, for ex-
ample, the existing solar system now depended on time condition which the 
planets move around the sun in a regular shape. 
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As known, if an additional small planet was entered into this system, the 
original state doesn’t shiver to an important degree, so, it can say, that the origi-
nal state is stabilized. In the following, reference review for some last works in 
this field. 

In 2000, Mahdi, F. analyzed the stability case for a sample of transfer the heat 
by convection and by connecting in porous area, and from the analysis, it turns 
out that the supposed hassle on the sample decays with passing the time, and the 
sample under the probability is always stable [1]. 

In 2004, Mahdi, F. and Muthana, A. studied the stability for a system as a fluid 
between two parallel infinite slabs which are heated from down, considering that 
the heat transfer by the connection, convection and radiation, so it’s clear that 
the stability of the system depends on the ratio of the heat between the two slabs, 
also at the thermal expansion factor [2]. 

In 2005, Hamsa, D. studied the stability of the Navier-stocks equation after 
disturbing this equation, and we find the regions where the flow is stable or un-
stable [3]. 

In 2010, Osama, T. and Ahmed, M. did a study the natural convection inside a 
glass cavity, they found that the suitable ankle to be higher portability to isolate 
the outer medium from the inner medium [4]. 

In 2012, Ala’a, A. and Ahmed, M. discussed the fluid flow matter in a hori-
zontal channel under the effect of a vertical magnetic field on the level of the 
channel, when the slop ankle of the channel is: 0, 30, 60, 90 degrees, so he noted 
that the increasing and decreasing in Brickman’s values Fs, the wave number k, a 
wave number w effect in the stability of the system [5]. 

In 2014, Ala’a, A. and Taghread, H. discussed the stability analysis in the glass 
cavity and this analysis was done by finding the self-values for the system which 
we are could find the growth of the disturbance or not, that after making the li-
near equations [6]. 

In 2016, Mahantesh, M. and Shilpa, J. reported the stagnation point flow of 
Non-Newtonian fluid and heat transfer over a stretching/shrinking sheet in a 
porous medium and we discussed the numerical values of skin friction coeffi-
cient and local Nusselt [7]. In this paper, the stability of unsteady state solution 
of horizontal channel with the presence of magnetic field and radiation have 
been investigated and analyzed, it’s found that the parameters Re, Sc, Gr as well 
as k have a significant effect on the stability of the system. 

2. Mathematical Formulation 

Consider a fully-developed, steady laminar flow of the fluid in the horizontal 
channel, the distance between the walls of the channel is h apart. Choosing the 
coordinate system such that the x-axis in the direction of the flow, y-axis is 
measured perpendicular to the plane of the channel, whilst the z-axis is in the 
direction mutually orthogonal to the other two axes. 

In the model under consideration, the magnetic field has a component xB  
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induced along the channel in the direction of the flow, zB  is zero and the 
component parallel to y-axis denoted by 0B , the velocity u and v are zero at the 
edge, and 0 0 1,, , ,h g B T T  are The distance between the two walls, gravitational 
acceleration, Boltzmann Number, Lower wall temperature, Upper wall temper-
ature respectively as shown in Figure 1. Under these assumptions, the geometry 
and governing equations of the problem are: 

  0u v
x y

∂ ∂
+ =

∂ ∂
                         (1) 

2 2

2 2

1u u u p u uu v u
t x y x Kx y

υυ
ρ

 ∂ ∂ ∂ − ∂ ∂ ∂
+ + = + + − ∂ ∂ ∂ ∂ ∂ ∂ 

           (2) 

( ) ( )
2 2

2 *
0 1 12 2

1

v v vu v
t x y

p v v B v g T T g C C
y x y

συ β β
ρ ρ

∂ ∂ ∂
+ +

∂ ∂ ∂

 − ∂ ∂ ∂
= + + + − − − − ∂ ∂ ∂ 

 

2* 2 2

2 2

1 r

p P p

qT T T k T T uu v
t x y C C y C yx y

µ
ρ ρ ρ

      ∂∂ ∂ ∂ ∂ ∂ ∂
+ + = + − +      ∂ ∂ ∂ ∂ ∂∂ ∂        

   (4) 

2 2

2 2

C C C C Cu v D
t x y x y

 ∂ ∂ ∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ ∂ 

                (5) 

where u, v are the velocity components t, t is the time and  
* *

0, , , , , , , , , , , , , ,p rT g k K C D B C qβ β µ ρ υ σ , are Temperature, gravitational acce-
leration, Thermal expansion Coefficient, Concentration Expansion, Absorption 
coefficient, Permeability of medium, Fluid Viscosity, Density, Specific heat, The 
mass diffusion coefficient, Boltzmann Number, Kinematic Fluid Viscosity, Con-
centration, Radiation flux, Electric Conductivity respectively. 

With boundary conditions: 

0 0

1 1

0, , 0, , at 0

0, , 0, , at

T Cu v T T C C y
y y
T Cu v T T C C y h
y y

∂ ∂ = = = = = = ∂ ∂ 
∂ ∂ = = = = = =
∂ ∂ 

            (6) 

 

 
Figure 1. Mathematical model. 
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By using the Roseland approximations consider the radiative heat flux for 
optically thick fluid is given by [8]. 

* 4

1

4
3r

Tq
k y
σ − ∂

=   ∂ 
                        (7) 

where *σ  is the Stefan-Boltzmann constant and 1k  is the mean absorption 
coefficient. Assume that the difference in temperature within the flow is suffi-
ciently small such as that 4T  can be expressed as a linear function of the tem-
perature, we expand 4T  in a Taylor’s series about 1T  and neglected higher 
order terms, thus [9]. 

4 3 4
1 14 3T T T T≅ −                           (8) 

Hence the equation of energy Equation (4) becomes: 
2* 3* 2 * 2

1
2 2

1

16
3p P p p

TT T T k T k T uu v
t x y C k C C C yx y

σ µ
ρ ρ ρ ρ

    ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + +      ∂ ∂ ∂ ∂∂ ∂      

    (9) 

Let us introduce the following similarity transformation [10] 

1 1

1 0 1 0

2
2

, , , ,

, , ,

T T C Cuh vhU V
T T C CGr Gr

t Gr x yp P u X Y
h hh

θ φ
υ υ

υρ τ

− −
= = = =

− −

= = = =

           (10) 

And non-dimensional parameters: 

( ) ( )

1
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* 1 1
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3 * 3
1 0 1 0*

2 2

3 16, , ,
3

, , , , ,

, ,
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p

k k TkM B h R
C C k

K huDa Re Pr Sc N
Dh h T

g h T T g h C C
Gr Gr

C

ρ

σσ α
µ ρ µ

υ υ υ
υ α

β β υε
υ υ

+ 
= = = 
 



= = = = =
∆

− −











= = =

         (11) 

where M is Hartmann number, α  is Thermal diffusivity, *R  is Radiation 
coefficient, N is new physical quantity, Sc is Schmidt number, Da is Darcy num-
ber, Re is Reynolds number and Pr is Prandtle number, Gr is Gratshof number 
for heat transfer, *Gr  is Gratshof number for mass transfer, ε  is dispersion 
parameter. 

The above Equations (10), (11) reduce the Equations (1), (2), (3), (5), (9) into 
the following system of non-dimensional equations:  

0U V
X Y
∂ ∂

+ =
∂ ∂

                         (12) 

( )2 2 2

2 2

1 1  
 

ReU U U P U UU V U
X Y Gr X X YGr Da Grτ

−  ∂ ∂ ∂ ∂ ∂ ∂
+ + = + + − ∂ ∂ ∂ ∂ ∂ ∂ 

   (13) 

( )2 2 2 2 *

2 2

1
 

V V VU V
X Y

Re P V V M GrV
Gr Y GrX YGr Gr

τ

θ φ

∂ ∂ ∂
+ +

∂ ∂ ∂

−      ∂ ∂ ∂
= + + + − −    ∂ ∂ ∂     

     (14) 
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22 * 2

2 2

1   R UU V N Gr
X Y YX YPr Gr Gr

θ θ θ θ θ ε
τ

  ∂ ∂ ∂ ∂ ∂ ∂   + + = + +      ∂ ∂ ∂ ∂∂ ∂        
  (15) 

2 2

2 2

1   U V
X Y X YSc Gr

φ φ φ φ φ
τ

 ∂ ∂ ∂ ∂ ∂
+ + = + ∂ ∂ ∂ ∂ ∂ 

            (16) 

3. Fourier Mode Stability Analysis 

Assume that the solution of Equations (12), (13), (14), (15) and (16) can be 
written in the form [11]. 

( ) ( )
( ) ( )
( ) ( )
( ) ( )
( ) ( )

1 2

1 2

1 2

1 2

1 2

, , ,

, , ,

, , ,

, , ,

, , ,

U U x y U x y t

V V x y V x y t

x y x y t

x y x y t

P P x y P x y t

θ θ θ

φ φ φ

= + 


= + 
= + 


= + 


= + 

                   (17) 

where 1 1 1 1 1, , , ,U V Pθ φ  are the steady state solution and 1 1 1 1 1, , , ,U V Pθ φ  are the 
disturbance. 

Substituting Equation (17) into Equations (12), (13), (14), (15) and (16), with 
its boundary conditions, we get the following equations: 

2 2 0U V
X Y

∂ ∂
+ =

∂ ∂
                        (18) 

( )2 2 2
2 2 2 2

22 2

1 1
 

ReU P U U U
Gr X X YGr Da Grτ

−  ∂ ∂ ∂ ∂
= + + − ∂ ∂ ∂ ∂ 

      (19) 
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2 2 22 2

1ReV P V V M GrV
Gr Y GrX YGr Gr

θ φ
τ
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2 2
2 2 2

2 2

1 
X YSc Gr

φ φ φ
τ

 ∂ ∂ ∂
= + ∂ ∂ ∂ 

                  (22) 

With the boundary conditions: 

2
2 2 2

2
2 2 2

0, 0, 0 at 0,1

0, 0, 0 at 0,1

U V y
y

U V y
y

θ
θ

φ
φ

∂ = = = = = ∂ 
∂ = = = = =
∂ 

              (23) 

4. Stability Analysis in the Case of the Variable Amplitude 

To solve the linearized system (or to analyze the stability) and because the coef-
ficient in the differential equations is independent of the attempt to find the so-
lution of the form [5]: 
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( )
( )
( )
( )
( )

2

2

2

2

2

e e

e e
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e e

e e

ikx at

ikx at

ikx at

ikx at

ikx at

U U y

V V y

P P y

y

y

θ θ

φ φ

=


= 


= 


= 
= 

                       (24) 

where ( ) ( ) ( ) ( ) ( ), , , ,y y P y V y U yθ φ  are the amplitude functions, k is wave 
number in the direction of x, and a is the complex number which has the form

1 2 1 2, ,a a ia a a R= + ∈  is speed number, when 1 0a >  the system is unstable 
while 1 0a < , the system is stable. 

From Equations (18), (19), (20), (21), (22) and (24), we get: 

( ) ( )( )e e 0ikx atikU y V y′+ =                      (25) 

( )

( ) ( ) ( )

2

2

1
 

  1  e e 0ikx at

ka U y
Gr Da Gr

ik Re
P y U y

Gr Gr

 
+ +  

 
′′ + − =

    

              (26) 

( ) ( ) ( )

( ) ( ) ( )

22 2

*1 e e 0ikx at

Rek Ma V y P y
GrGr Gr

GrV y y y
GrGr

θ φ

 
′ + − +  
 

′′− + + =    

            (27) 

( ) ( )
2 *

e e 0ikx atk Ra y y
Pr Gr Gr

θ θ
    

′′+ − =         
            (28) 

( ) ( )
2 1 e e 0ikx atka y y

Sc Gr Sc Gr
φ φ

  
′′+ − =     

            (29) 

Since e e 0ikx at ≠ , then: 

( ) ( )( )  0ikU y V y′+ =                       (30) 

( ) ( ) ( ) ( )
22  1 1  0

 
ik Reka U y P y U y

GrGr Da Gr Gr

    ′′ + + + − =        
    (31) 
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( ) ( ) ( )

22 2
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Rek Ma V y P y
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GrV y y y
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θ φ

 
′ + − +  
 

′′− + +     

              (32) 
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0k Ra y y
Pr Gr Gr

θ θ
    

′′+ − =         
             (33) 

( ) ( )
2 1 0ka y y

Sc Gr Sc Gr
φ φ

     ′′+ − =        
            (34) 

Hence, we get the following system: 
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( )
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2
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*
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2

*
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θ

θ

φ

φ

′ =

  ′  = + + +      
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   + −′    = − −
   
   
   
   − −
   
   

′ =

+
′ =

′ =

′′ = +





























 

And Ω  system matrix of transaction such that 

( )
( )

2
2

2

1 , , ,
ik Re ik GrA a Gr k B C ik D

Da Gr Re

    = + + = = − = −      
 

( ) ( ) ( )

2 2 *

2 2 2, ,aGr k Gr M Gr Gr GrE F G
Re Re Re

     + −     = − = − = −
     
     

 

( )
2

2
* ,aPr Gr kH W aSc Gr k

PrR
 +

= − = − +  
 

 

By using 0IδΩ− =  we get the following equation: 

( ) ( )
( )
( )

8 6

4

2

0

f DB A W H

WBD WA CBE HW BDH AH

BCEH WBCE AWH WHBD WHBCE

λ δ δ

δ

δ

= − + + +

+ + − + + + +

+ + − − −

=

        (36) 

where 
Now, we solve Equation (36) numerically using (Maple 11) [12], to find the 

roots of these equations as shown in Figures 2-5. 
 

 
Figure 2. Effect of Reynolds number (Re = 250, 1000, 4000). 
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Figure 3. Effect of Schmidt number (Sc = 0.1, 0.3, 0.5). 

 

 
Figure 4. Effect of Grash of number (Gr = 0.1, 0.5, 1). 

 

 
Figure 5. Effect of wave number (k = 2, 4, 8). 
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