
Open Access Library Journal
2020, Volume 7, e6209
ISSN Online: 2333-9721

ISSN Print: 2333-9705

DOI: 10.4236/oalib.1106209 Apr. 8, 2020 1 Open Access Library Journal

A Prototype of FPGA Based on Genetic
Algorithm Core Connected to a Cluster

Ahmed D. Alwzan1*, Abdul Sattar Mohammed Khidhir2*, Muhmood Shuker Thabit3

1Northern Technical University, Technical Engineering College, Mosul, Iraq
2Northern Technical University, Computer Center, Mosul, Iraq
3Northern Technical University, Mosul Technical Institute, Mosul, Iraq

Abstract
In this paper, it was proposed to design and implement a system of parallel
processing to find the required solutions from selective algorithms as quickly.
Motives for writing paper are the current performance of computer systems
that depend on evolutionary algorithms (EA), and the wide spread of the
(EA), and its application to a very wide range of scientific fields, and by tak-
ing advantage of the Field programmable gate array (FPGA) board due to its
high speed of implementation. The values were validated and the Genetic
Algorithm (GA) was used as a functional model and implementation. Also, in
the most important stages, the process of calculating fitness function, which is
considered an executive criterion for the (GA), with terminal computers with
high speeds and medium specifications, was done for the purposes of calcu-
lating fitness function independently of Board. Identical results were obtained
at 100% accuracy by applying the work to a non-linear quadratic.

Subject Areas
Engineering/Computer Engineering

Keywords
Evolutionary Algorithms, Genetic Algorithm, FPGA, Parallel GA

1. Introduction

Presently, the need for fast, high-performance computing is pressing since most
computational problems require an excessive amount of computing time [1].
Although FPGA speed and capacity have increased under Moore’s Law, there
has been no increase in design productivity, creating a large gap between the

How to cite this paper: Alwzan, A.D.,
Khidhir, A.S.M. and Thabit, M.S. (2020)
A Prototype of FPGA Based on Genetic
Algorithm Core Connected to a Cluster.
Open Access Library Journal, 7: e6209.
https://doi.org/10.4236/oalib.1106209

Received: March 4, 2020
Accepted: April 5, 2020
Published: April 8, 2020

Copyright © 2020 by author(s) and Open
Access Library Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://doi.org/10.4236/oalib.1106209
http://www.oalib.com/journal
https://doi.org/10.4236/oalib.1106209
http://creativecommons.org/licenses/by/4.0/

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 2 Open Access Library Journal

ability of FPGAs and the ability to use them effectively. This gap increases the
cost of market development time for FPGA-based designs, with insufficient de-
sign tools being one of the main factors [2]. In my research, I applied the fitness
function calculation to the parallel genetic algorithm (PGA) to take advantage
of the high speed of FPGA. EA are population-based metaheuristic optimiza-
tion algorithms that use biology-inspired mechanisms and “survival of the fit-
test” theory to refine a set of solutions iteratively. GAs are a subclass of EAs
where the elements of the search space are binary strings or arrays of other
elementary types [3]. Tabassum et al. found that GAs have many advantages
that make them one of the most preferred and widespread algorithms in Artifi-
cial Intelligence [4]. GAs have many applications; for instance, Metawa et al.
proposed an intelligent model based on the GA to organize bank lending deci-
sions in a highly competitive environment with a credit crunch constraint [5].
Cerrada et al. built up a durable system for the multi-class fault diagnosis in
spur gear by selecting the best set of condition parameters on frequency and
time-frequency domains, which are extracted from vibration signals by using a
GA based on the k-means algorithm [6]. Deng et al. developed a new strategy to
improve the genetic algorithm for solving the traditional combinatorial opti-
mization problem, the traveling salesman problem [7]. Qiu et al. presented a
GA-based optimization algorithm for a chip multiprocessor equipped with
Phase-change memory (PCM) in green clouds [8]. Paul Graham et al. described
a Splash 2 GA, a parallel genetic algorithm that improved symmetrical traveling
salesman problems using Splash 2. In this study, each processor consisted of
four FPGAs and associated memories that performed 6.8 to 10.6 times the
speed of equivalent software [9]. Tang et al. implemented a GA using the do-
main programming gate FPGA array, which improved the speed of the genetic
algorithm in parallel with the devices [10]. Finally, Torquato et al. proposed full
implementation of optimized parallel GA based on FPGA to minimize system
processing time, which is the main objective of this project. Torquato’s results
showed that the full parallel GA implementation yielded about 16 million gen-
erations per second and acceleration between 17 and 170,000 m/s3 as supported
by several works in the literature [11].

2. Theory

A GA is a heuristic search and optimization technique that uses algorithms to
mimic the process of natural evolution [12]. Drawing from the theory of evolu-
tion by natural selection [13], GAs have important applications for problems re-
lated to optimization, ma-chine learning, game theory, design automation,
evolvable hardware, distributed sys-terms, network security, and bioinformatics.
A GA is an iterative procedure that works on groups of solution representations
called chromosomes. Each chromosome consists of smaller segments of data
called genes and a set of chromosomes forms a population. Genes are usually in-
itialized randomly in each chromosome. The basic iterative work of the GA is an

https://doi.org/10.4236/oalib.1106209

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 3 Open Access Library Journal

evolution from one population, (k), to the next population, (k+1). The solution
of the optimization problem evolves toward a better solution [14]. Usually, a
simple GA consists of three operations: selection, crossover, and mutation. Fig-
ure 1 below shows a flowchart of the genetic algorithm. The GA follows 6 steps:

1) Initialization: the initial population of candidate solutions is usually gener-
ated randomly across the search space.

2) Evaluation: once the population is initialized or an offspring population is
created. Then, the fitness function is calculated for each element created.

3) Selection: the algorithm creates more copies of those solutions with higher
fitness values, thus imposing a “survival of the fittest” mechanism on the candi-
date solutions.

4) Crossover: parts of two or more parent chromosomes are combined to
create new solutions.

5) Mutation: while recombination operates on two or more parental chromo-
somes, mutation acts locally to randomly modify a solution.

6) Replacement: the offspring population created by selection, recombination,
and mutation replaces the original parental population [15].

3. System Model

The system consists of five parts which are shown in Figure 2. This system in-
cludes FPGA, Arduino, a server PC, a router, and three client PCs.

1) FPGA used Xilinx Spartan 6 (SP 601). In this part of the model, we used 24
numbers from a random number generator (RAD) to increase the population in
the genetic algorithm and we can use the Equation (1), is to generate these
numbers.

() () ()RAD 0 NOT RAD 7 XOR RAD 6≤ (1)

where RAD is random number generator, NOT is inverse gate and XOR is defe-
rential gate.

2) Arduino (UNO), an open-source platform used for constructing and pro-
gramming electronics [16], was used to transfer the RAD and the constructor in
FPGA by connected warring in the J13 Hader in SP601 and pin 4 in Arduino.

3) The PC server has the following specifications: CORE i5, RAM 8 G, CPU
2.5MHZ. The PC server was used to redirect the RAD to several PC clients using
JAVA software.

4) The router is a local area network using router type TP _link and was used
to send and receive between the server and client’s PC.

5) The client PCs had the following specifications: 1) CORE i3, RAM 4 G,
CPU 2.5MHZ, 2) CORE i5, RAM 6 G, CPU 2.4MHZ, and 3) CORE i7, RAM 8
G, CPU 2.6MHZ. These PCs were used to receive the RNG and calculate the fit-
ness function and send the result to the server.

In the following Figure 3, a flowchart for all the stages of the proposed work
system.

https://doi.org/10.4236/oalib.1106209

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 4 Open Access Library Journal

Figure 1. Flowchart of the genetic algorithm [15].

Figure 2. Proposed system schematic diagram.

4. Result

Through this study, 24 RAD is generated inside the FPGA, as shown in Figure 4
below.

After creating random numbers within the FPGA, a 10-bit header was at-
tached to inform the server computer to prepare to receive the beginning of the

https://doi.org/10.4236/oalib.1106209

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 5 Open Access Library Journal

Figure 3. Flowchart for all the stages.

Figure 4. The 24 random numbers generated inside the board.

packet. In addition, 2 bits were attached to the beginning of each of the three
random numbers as shown in Table 1. After receiving the frame completely
from the server computer, the header or the 2-bit that is used for identifying
each group is ignored and each group is sent to the client computer after con-
verting all numbers from binary to integers, using the following Equation (2):

() () (), 2 7 ^ 2 2 5 ^ 2f x y x y x y= + − + + − (2)

In the following Figure 5, the numbers are sent after creating the frame to be
sent to the Board of Arduino. Figures 6-8 below show the results of the values
obtained from all client computers.

In the following Figure 9, the results are re-sent to the FPGA board. For
comparison purposes, we note that there is a difference between the work pro-
posed by us and the research done by researchers [17], where we note their sug-
gestion of a parallel method for the genetic algorithm by proposing the same
numbers and taking a specific set of these numbers while we suggest different
groups of numbers be in one and thus the process of obtaining the correct solu-
tion or The closest solution to the correct more quickly compared to the re-
search referred to above.

5. Conclusion

This work contributes to the implementation on FPGA and this paper proposed

https://doi.org/10.4236/oalib.1106209

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 6 Open Access Library Journal

Table 1. Header and indication of each group.

header and indication

Header 1000110111

Identification group 1 00

Identification group 2 01

Identification group 3 10

Figure 5. Send data to the Arduino board.

Figure 6. Results of client 1.

Figure 7. Results of client 2.

https://doi.org/10.4236/oalib.1106209

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 7 Open Access Library Journal

Figure 8. Results of client 3.

Figure 9. Results send to FPGA bord.

system to calculate and solve complex equations, such as high order equations in
less time than other systems and with high accuracy, using PCs with only me-
dium specifications. The proposed system adopted an enhanced genetic algo-
rithm based on an FPGA board. The proposed system used a microcontroller
based on Arduino (Uno), PCs, a Wi-Fi module, and an FPGA board. The expe-
riments were conducted to calculate values for non-linear equations of the
second order. The experiments’ results indicate that the proposed genetic algo-
rithm can calculate the value of the equation with 100% accuracy.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Quartian, E.S., Sibaroni, Y. and Nhita, F. (2016) Parallel Genetic Algorithm for

Traveling Salesman Problem on Graphic Processing Unit. Journal of Information
Technology Education, 3, 139-146. https://doi.org/10.12988/jite.2016.6829

[2] Hoo, C.H. (2017) ParaDiMe : A Distributed Memory FPGA Router Based on Speculative
Parallelism and Path Encoding. IEEE 25th Symposium on Field-Programmable Custom
Computing, CA, USA, March 2017, 172-179.
https://doi.org/10.1109/FCCM.2017.34

[3] Malhotra, R., Singh, N. and Singh, Y. (2011) Genetic Algorithms: Concepts, Design

https://doi.org/10.4236/oalib.1106209
https://doi.org/10.12988/jite.2016.6829
https://doi.org/10.1109/FCCM.2017.34

A. D. Alwzan et al.

DOI: 10.4236/oalib.1106209 8 Open Access Library Journal

for Optimization of Process Controllers. Computer and Information Science, 4,
39-54. https://doi.org/10.5539/cis.v4n2p39

[4] Tabassum, M. and Mathew, K. (2014) A Genetic Algorithm Analysis towards Opti-
mization Solutions. International Journal of Digital Information and Wireless
Communications, 4, 124-142. https://doi.org/10.17781/P001091

[5] Metawa, N., Hassan, M.K. and Elhoseny, M. (2017) Genetic Algorithm Based Model
for Optimizing Bank Lending Decisions. Expert Systems with Applications, 80,
75-82. https://doi.org/10.1016/j.eswa.2017.03.021

[6] Cerrada, M., Zurita, G., Cabrera, D., Sánchez, R., Artés, M. and Li, C. (2015) Fault
Diagnosis in Spur Gears Based on Genetic Algorithm and Random Forest. Mechan-
ical Systems and Signal Processing, 70-71, 87-103.
https://doi.org/10.1016/j.ymssp.2015.08.030

[7] Deng, Y., Liu, Y. and Zhou, D. (2015) An Improved Genetic Algorithm with Initial
Population Strategy for Symmetric TSP. Mathematical Problems in Engineering,
2015, Article ID: 212794. https://doi.org/10.1155/2015/212794

[8] Qiu, M., Member, S., Ming, Z., Li, J., Gai, K. and Zong, Z. (2015) Phase-Change
Memory Optimization for Green Cloud with Genetic Algorithm. IEEE Transactions
on Computers, Vol. 9340, 1-13. https://doi.org/10.1109/TC.2015.2409857

[9] Graham, P. and Nelson, B. (1995) A Hardware Genetic Algorithm for the Traveling
Salesman Problem on Splash 2. Lect. Notes Comput. Sci. (Including Subser. Lect.
Notes Artif. Intell. Lect. Notes Bioinformatics), Vol. 975, 352-361.
https://doi.org/10.1007/3-540-60294-1_129

[10] Oliver, J. (2013) Hardware Implementation of Genetic Algorithms Using FPGA.
Journal of Chemical Information and Modeling, 53, 1689-1699.
https://doi.org/10.1021/ci400128m

[11] Torquato, M.F. and Fernandes, M.A.C. (2019) High-Performance Parallel Imple-
mentation of Genetic Algorithm on FPGA. Circuits, Systems, and Signal Processing,
38, 4014-4039. https://doi.org/10.1007/s00034-019-01037-w

[12] Bhattacharjya, R.K. (2013) Introduction to Genetic Algorithms. No. November,
1-90.

[13] Mirjalili, S. (2001) Genetic Algorithm. Vol. 13, No. 1, 89-98.

[14] Holland, J.H. (1992) Genetic Algorithms. Scientific American, 267, 66-73.
https://doi.org/10.1038/scientificamerican0792-66

[15] Hermawanto, D. (2013) Genetic Algorithm for Solving Simple Mathematical Equal-
ity Problem.

[16] Sastry, K., Goldberg, D. and Kendall, G. (2005) Genetic Algorithms. In: Burke, E.G.
and Kendall, G., Eds., Search Methodologies: Introductory Tutorials in Optimiza-
tion and Decision Support Techniques, Springer, Berlin, 97-125.
https://doi.org/10.1007/0-387-28356-0_4

[17] Ochi, L.S.D., Figueiredo, L.M.A. and Rosa, M.V. (1997) Design and Implementation
of a Parallel Genetic Algorithm for the Travelling Purchaser Problem.
https://doi.org/10.1145/331697.331750

https://doi.org/10.4236/oalib.1106209
https://doi.org/10.5539/cis.v4n2p39
https://doi.org/10.17781/P001091
https://doi.org/10.1016/j.eswa.2017.03.021
https://doi.org/10.1016/j.ymssp.2015.08.030
https://doi.org/10.1155/2015/212794
https://doi.org/10.1109/TC.2015.2409857
https://doi.org/10.1007/3-540-60294-1_129
https://doi.org/10.1021/ci400128m
https://doi.org/10.1007/s00034-019-01037-w
https://doi.org/10.1038/scientificamerican0792-66
https://doi.org/10.1007/0-387-28356-0_4
https://doi.org/10.1145/331697.331750

	A Prototype of FPGA Based on Genetic Algorithm Core Connected to a Cluster
	Abstract
	Subject Areas
	Keywords
	1. Introduction
	2. Theory
	3. System Model
	4. Result
	5. Conclusion
	Conflicts of Interest
	References

