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Abstract 
This paper presents pressure variation in fluid flow over a porous media. In 
the model, we considered water as an incompressible fluid: the flow as non-
steady and uniform. We derived an equation for the nonuniform bottom to-
pography (flow depth) and substituted into the governing equation for shal-
low water flow with nonuniform bottom topography. We made use of Dar-
cy’s law to construct equation for Darcy flux, which in turn related pressure 
gradient to the flow velocity, the porosity, and the permeability of the porous 
media. From the governing equation of shallow water flow with nonuniform 
bottom topography, we solved for the flow velocity using Homotopy Pertur-
bation Method (HPM). We incorporated the flow velocity into the equation 
for the pressure gradient and solved for the pressure variation in the channel. 
We analyzed and found out that, the higher the permeability the lower the 
pressure within the flow and the lower the permeability the higher the pres-
sure, because there is going to be a pressure build-up under this condition. 
We also found that the higher the flow height (H) the higher the pressure. 
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1. Introduction 

The modern understanding of fluid motion began several centuries ago, with the 
work of L. Euler, Isaac Newton, Bernoulli, Lagrange etc. [1]. The ocean and the 
atmosphere remain phenomenal and have been a wonder, source of curiosity 
over the years. It’s properties like buoyancy, wave and weather, transport of 
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mass and heat, all have been a source of curiosity to the scientist and the philo-
sopher over the years till date [2]. One of their contemplations is to understand 
why the ocean and the atmosphere behave as they do. The major forces that in-
fluence flow in open channel are those of inertia, gravity and pressure gradient 
[3]. The study of shallow water flow is important, for it can be used to predict 
the insurgent of natural phenomena like tsunami, flooding, rise in water level etc. 
One of the motivations to study shallow water over a porous non-uniform bot-
tom topography is to understand the effect of porous medium on the water 
flowing in the channel. 

Porous medium is a solid containing void spaces (spores) either connected or 
unconnected, dispersed within it in either regular or random manner. If the pore 
represents a certain portion of the bulk volume, a complex network can be 
formed, which is able to carry fluid or even store it [4]. 

[5] worked on shallow water wave and assumed a slopping bottom topogra-
phy where he treated the wave to be linear. He considered the effect of disper-
sion on the flow mechanism, which many work before his did not consider. Lat-
er on, [6] considered the flow to have a constant flow depth, which of course is 
not realistic enough. [7] also contributed in this area, by taking into considera-
tion non-uniformity of bottom topography at different points. Their work is 
close to reality but for their assumption that angular measurement of the 
non-uniform bottom region is constant cannot be taken as true. 

[8] extended the work by [7], by taking the angular measurement of the depth 
of the non-uniform bottom region to be changing with respect to time. A typical 
case, he pointed out is the erosion flow over a contoured region along the flow 
path, like sandy area, where the non-uniform region is being filled by the debris 
transported by the flow. This is more realistic than [7], but this work does not 
completely describe the dynamics of non-uniform bottom topography of a nat-
ural channel. [9] investigated transcritical shallow water flow past topography. 
In their work they considered an obstacle or say ridge on the bed of the channel. 
They considered upstream and downstream waves that arise due to the obstacle 
that localized in the flow direction. They used the framework of the forced 
Su-Gardner (SG) system of equation. They took a primary focus on the tran-
scritical regime when the Froude number of the oncoming flow is close to unity. 
[3] modeled an open channel flow over porous media (river). They considered 
water as incompressible fluid and assumed a steady and uniform flow, laminar 
flow pattern and the system to be isothermal. They used an analytical method to 
solve the resulting Brinkman equation. They found out that flow velocity de-
creases with an increase in permeability and increases in the height of the chan-
nel increased flow velocity. Also, that increase in permeability resulted in a de-
crease in pressure. [10] studied shallow water flow over non-uniform varying 
bottom topography, which is an extension from work by [6] and [8], they em-
ployed the use of perturbation method to solve the governing equation for shal-
low water flow over non-uniform varying bottom topography. Their solution to 
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the wave equation for shallow water flow showed there exists a single wave ele-
vation which still has a singularity in the profile. 

This work stemmed from the work of [3] [8] and [10] and we are going to 
look into a situation where such contoured region is being dug continually, what 
happens over time if it is not controlled and effect of permeability on pressure 
gradient along the channel. 

2. Model Formulation 

We see that the total depth of the flow from the free surface is given by: 

H h y yδ′= + +  

cotH h x β⇒ = +                        (1) 

from Figure 1, Equation (1) above gives the flow depth of the contour region. 
We recall Darcy’s law: 

( )b aP PAQ k
Lµ
−

= −  

where Q is the total discharge, k is the permeability, A is the area, ( )b aP P−  is 
the pressure drop, and L is the length over which the pressure drop. Darcy’s law 
is an equation that describes the flow of a fluid in a porous medium [11]. 

kq P
µ

= − ∇                             (2) 

where Qq
A

=  is the flux or Darcy flux(discharge per unit area) and 

( )b aP P
P

L
−

∇ =  is pressure gradient vector. 

 

 
 

 
Figure 1. Contour region of a river bed [8].  
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We have an equation which shows relationship between the Darcy flux and 
the fluid velocity in the pore [12] as given below: 

qU
φ

=  

q Uφ⇒ =                           (3) 

substituting Equation (3) into Equation (2), we have: 

kU Pφ
µ

= − ∇  

P U
k
µφ

⇒∇ = −                         (4) 

P∇  gives the pressure variation in the channel and U is the flow velocity. 

3. Model Analysis 

To solve for flow velocity (U), we shall consider the equations governing the 
evolution of the weakly non-linear dispersive wave train in shallow water with 
varying nonuniform bottom topography [8]. 

( )( )cot 0U h x t
t x
η θ ψ∂ ∂  + + + = ∂ ∂

                 (5) 

( ){ }23 3

3 2

cot
3

h x tU U UU g
t x x x x t

θ ψη η λ
+ +∂ ∂ ∂ ∂ ∂

+ + + =
∂ ∂ ∂ ∂ ∂ ∂

        (6) 

we consider the x axis as the horizontal and normal to the shore line, the z axis 
as the vertical such that ( ),z x tη=  represents the wave profile occurrence on 
the water surface, z h=  is the constant water depth at the level bottom regions 
of the shallow water flow as measured from the undisturbed water level and 

coth x β+  is the flow depth over the contour region and tβ θ ψ= + . 
We visited work by [2] [8] [10] [13] [14] to solve the problem. Though they 

used different methods in their analysis but Homotopy perturbation method 
(HPM) is applied here, to solve for ( ),U x t . Then choosing initial conditions as: 

( ) 0
ˆ ˆ,0 cot where at 0x x tη η β β θ= = = =             (7) 

( ) 0,0 cosU x U A x= =                       (8) 

We construct a homotopy as follow: 

( ) [ ]( )1 cot 0S S U h x
t t x
η η β∂ ∂ ∂ − + + + = ∂ ∂ ∂ 

               (9) 

( ) [ ]23 3

3 2

cot
1 0

3
h xU U U U US S U g

t t x x x x t
βη λ

 +∂ ∂ ∂ ∂ ∂ ∂
− + + + + − = 

∂ ∂ ∂ ∂ ∂ ∂ ∂  
   (10) 

where S is an embedding parameter in [ ]0,1 , if 0S = , we have 0
t
η∂
=

∂
 and 

0U
t

∂
=

∂
. But if 1S = , we recover the original equation. 

Expanding Equations (9) and (10), we have: 
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[ ]( )cotS U h x
t t x t
η η ηβ∂ ∂ ∂ ∂ = − + + − ∂ ∂ ∂ ∂ 

               (11) 

[ ]23 3

3 2

cot
3

h xU U U U U US U g
t t x x x x t t

βη λ
 +∂ ∂ ∂ ∂ ∂ ∂ ∂

= − + + + − − 
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂  

    (12) 

The basic assumption is, the solution of Equations (5) and (6) with the initial 
conditions can be written as a power series in S: 

2 3
0 1 2 3S S Sη η η η η= + + + +                  (13) 

2 3
0 1 2 3U U SU S U S U= + + + +                 (14) 

Substituting Equations (13) and (14) into Equations (11) and (12), and expand. 
Also equating the terms with identical powers of S, and substituting initial con-
ditions, but let ˆθ β=  ⇒  at 0t = , ˆβ θ β= =  for 0η , so we have: 

( )0
ˆ, cotx t xη β=                         (15) 

( )0 , cosU x t A x=                         (16) 

( ) [ ] [ ]1 , sin sin ln sin cos ln sinA Ax t Ath x x x xη β β
ψ ψ

= + −          (17) 

( )
2

1
ˆ, sin2 cot sin

2
AU x t x g A x tβ λ

 
= − − 
 

             (18) 

( )

( ) ( )

( )

2
2

2

2
22

2
2

2

ˆ, sin2 cot sin cos2 cos
2

1 iln sin isin2 cos2 1
2

1 iln 2sin ln cos2 cos
2 2

Ax t x g A x A x x Ax x

t Li

tA h x Ah x

η β λ λ

β β β β
ψ ψ

ββ β λ
ψ ψ

 
= − − + − 
 
  × − − − − +  

   − − + −    

    (19) 

( )

[ ] ( ) ( )( )

( )

3
3 2

2

2 2
2 2 2

2
2

2

ˆ, cos cos2 sin sin2 sin cot cos
2

4 cos2 cos 2 sin2 sin
2 3

2sin cos isin 2 cos 2 1
2

1 i 1ln 2sin ln 2 sin2 sin
2 3

AU x t A x x A x x Ag x Agh x

t hA x A x A x A x t

A ig x x x Li

A x A x

λ β

λ λ λ

β β β
ψ ψ

ββ β λ
ψ ψ


= − + − −



 + − + − +  


  − + − − − +  

  + + + − +   

[ ] 2
ˆ2 1ln sin coth x x t ββ β

ψ ψ ψ



  
× − + +  
   

 (20) 

Recalling Equations (13) and (14), we have: 

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3, , , , ,x t x t S x t S x t S x tη η η η η= + + + +  

( ) ( ) ( ) ( ) ( )2 3
0 1 2 3, , , , ,U x t U x t SU x t S U x t S U x t= + + + +  

Let the ( )3o S  be very small, such that by asymptotic series approximation, 
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we have: 

( ) ( ) ( ) ( ) ( )2 3
0 1 2, , , ,U x t U x t SU x t S U x t o S= + + +  

( ) ( ) ( ) ( ) ( )2 3
0 1 2, , , ,U x t U x t SU x t S U x t o S− − − <  

( ) ( ) ( ) ( )2
0 1 2, , , ,U x t U x t SU x t S U x t≈ + +                 (21) 

Also, we have: 

( ) ( ) ( ) ( ) ( )2 3
0 1 2, , , ,x t x t S x t S x t o Sη η η η= + + +  

( ) ( ) ( ) ( ) ( )2 3
0 1 2, , , ,x t x t S x t S x t o Sη η η η− − − <  

( ) ( ) ( ) ( )2
0 1 2, , , ,x t x t S x t S x tη η η η≈ + +                  (22) 

Substituting Equations (16), (18) and (20) into Equation (21) and evaluating 
at 1S = , we have: 

( )

[ ]

( ) ( )( ) ( )

2
3 2

3 2
2 2

2
2

2
2

ˆ, cos sin2 cot sin cos cos2
2

ˆsin sin2 sin cot cos 4 cos2 cos
2 2

2 sin2 sin 2sin cos
3

i 1isin 2 cos 2 1 ln 2sin ln
2

AU x t A x x g A x t A x x A

A tx x Ag x Agh x A x A x

h AA x A x t g x x x

Li

β λ λ

β λ λ

λ
ψ

ββ β β β β
ψ ψ ψ

  
= + − − + −  

 

+ − − + − 

 + − + − + 

 × − − − + + + 

( )2 2

i
2

ˆ1 2 12 sin2 sin ln sin cot
3

hA x A x x x t ββ β
ψ ψ ψ

  
    

  
 + − + − + +   

   

 (23) 

Also substituting Equations (15), (17) and (19) into Equation (22) and eva-
luating at 1S = , we have: 

( ) [ ] [ ]

( ) ( )

( )

2
2

2
22

2
2

2

ˆ, cot sin sin ln sin cos ln sin

ˆsin2 cot sin cos2 cos
2

1 iln sin isin 2 cos2 1
2

1 iln 2sin ln cos2 cos
2 2

A Ax t x Ath x x x x

A x g A x A x x Ax x

t Li

tA h x Ah x

η β β β
ψ ψ

β λ λ

β β β β
ψ ψ

ββ β λ
ψ ψ

= + + −

 
+ − − + − 
 
  × − − − − +  

   − − + −    

    (24) 

Recalling Equation (4), we have: 

P U
k
µφ

∇ = −  

where PP
x

∂
∇ =

∂
 such that: 

( ) ( ),
,

P x t
U x t

x k
µφ∂

= −
∂
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( ) ( ), , dP x t U x t x
k
µφ

⇒ = − ∫                 (25) 

Substituting Equation (23) into Equation (25) and integrate w.r.t x, we have: 

( )

( ) ( )( ) ( )

2

2 3
2

2
2 2 2

2
2

ˆ, sin cos2 cot cos
4

5 ˆcos sin2 2sin cos2 cos cot
2 3 2

sin 2 sin2 sin cos2 cos
3

i 1isin 2 cos 2 1 ln 2sin
2

AP x t A x t x gx A x
k

t A x x x x A x Ag x

hAgh x A x A x t A x A x

A g Li

µφ β λ

λ β

λ λ λ

β β β β β
ψ ψ ψ

  
= − + − − −  

 
  + − − +   

  − + − + −  
  − − − − + + 


 

[ ] ( )[ ]

( )
2

2

2 2

i 2ln sin 3cos ln sin sin cos
2 3

4 1ln sin sin 2 cos2
3 4 2

ˆ1 cot cos 2 sin 2cos
3

ˆ2 1 1cot sin2 cos2 cos2
3 2 2 4

Ahx x x x x x

A h xx x

A t x x x x x

A x xt x x x

β λ β
ψ ψ

β
ψ

βλ β
ψ ψ

ββ
ψ ψ

 + − + −  

 − −  

 
 − + + − + +   

 
   

+ + + − +   
   

      (26) 

4. Analysis of Result 

Having obtained the expression for the pressure gradient and the flow velocity in 
the contoured region along the channel, we assign value to the parameters, some 
of which we extract from literature and others are estimated to simulate the 
problem. Since we are dealing with real-life situations, we are considering only 
the real part of our solution. We have to note that the contour region is either 
filling or digging. This depends on the facts that tβ θ ψ= +  and that  

0
2

β π
< < , this is considered at different points of interest and is measured in  

radians such that we have: 
 

Parameters Values Source 

A 5 Estimated 

λ  0.1 Estimated 

h 6 [8] 

ψ  0.01 [10] 

φ  0.5 [3] 

k 0.369, 0.00223 and 0.000084 [15] 

µ  0.00089 [16] 

g 9.8 Standard 
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x is considered from −2 to 2 and is measured in meter(m) while t is measured in 
second(s). All the analysis carried out in this section is done using MAPLE 18. 
We considered the cases below: 

For case 1, we studied the velocity at a particular time (fixed time) over dif-
ferent points of x. For this we fixed t to 10t = , that is 10s of fluid flow over our 
area of interest (i.e. points of x). Different graphs of flow velocity were plotted 
for different values of θ , this is shown in Figure 2.  

We observed that at the entrance of the fluid into the contoured region there 
is a rise in flow velocity at the point 2x = −  and as the fluid gets to the center of 
the region there is no velocity as the velocity is zero (i.e. where 0x = ) as shown 
in Figure 2. Also as the fluid continues coming into this region there is a 
build-up of velocity to get out of the region that is from the point after 0x =  to 

2x = . We also observed that the deeper the contour, the higher the velocity, 
that is as θ  decreased the region become deeper which also affects the flow ve-
locity. This is the same as what happened in our shallow water flow in the 
real-life situation. 

For case 2, we studied the velocity of the flow at a particular point over some 
time, say t is from 0 s to 10 s. We picked x at the points 2x = − , 2x =  and 

0x = . For each of these points of x, different graphs of flow velocity were plot-
ted for different values of θ  as above. 

It is observed that the velocity is higher at the highest angle at points 2x = −  
and 2x = , but at the point, 0x =  they all behave alike, this is because at that 
point there is no velocity. But at the center where 0x =  there is turbulent, 
which resulted in that rise in velocity as shown in Figure 3(c). 

Moreover, we simulate the flow velocity in 3-D for different flow height (H) 
(i.e. different values of θ ). 

Figure 4 agrees with what we have seen in the two-dimensional graph, that we 
have discussed above. We see that the deeper the contour region the higher the 
velocity compared to the other two as shown in Figure 4. This shows that the 
region contributes to the rate at which the fluid flow. We can say that as the 
 

 
Figure 2. Effects of flow height (H) on flow velocity over space (x).  
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Figure 3. Effects of flow height (H) on flow velocity over time (t).  
 

 

Figure 4. Effects of flow height (H) on flow velocity. 
 

contour region is being dug or filled, the velocity changes with respect to the rate 
at which it is dug or filled. But once the contour region is filled that is if there is 
no longer contour, the velocity remains unchanged. 

More so, for case 3, since we derived our expression for pressure (P) in terms 
of flow velocity(U) and permeability(k), we are studying the pressure drop, using 
different values of permeability(k). At 0.369k = , 0.00223k =  and also 

0.000084k =  [15]. This is shown in Figure 5. 
From Figure 5, we observed that when 0.000084k = , there is a pressure 

build-up within the region under consideration and this is a result of the com-
pactness of the bed material. This implies that at low permeability, there is going 
to be a rise in pressure. When 0.00223k = , there are slight changes in the 
pressure along the channel. This is as a result of the arrangement of the bed ma-
terials. And lastly, when 0.369k = , there are insignificant changes in the pres-
sure, that is, there is loss of pressure due to the loss of water due to percolation 
in the channel. This shows that the bed materials arrangement contributes to the 
pressure gradient along the channel as shown in Figure 5. 

We also looked at the effect of permeability on pressure over time, this is 
shown by Figure 6. 

We observed that there is rise in pressure (P) over time (t) at lowest value of 
permeability (k) at different points of x and as the permeability (k) increase the  
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Figure 5. Effect of permeability on pressure over space.  

 
pressure(P) drop over time(t). But at the highest value of permeability, there is 
an insignificant change in Pressure (P) over time (t) over different points of x as 
shown in Figure 6. This shows that pressure will drop significantly when there is 
a change in permeability at each point of x. 

And lastly, we fixed k, x and varying time for different value of θ , to check 
for effects of nonuniformity of the bed on the pressure along the channel. This 
we also graph as shown in Figure 7. 

From Figure 7, we observed that when 1.31θ = , that is the deepest flow 
height (H), the pressure (P) is high and as the flow height (H) is reduced the 
pressure (P) also reduce, that is as the flow height (H) increase the pressure (P) 
increases too. And at a point into the contour region and out of the region, the 
pressure (P) is zero and this is equidistant to the center sideways. At this point, 
the channel experience equal pressure (P) for any flow height (H) of the region. 

From Figure 8(a) and Figure 8(c), it is observed that the pressure (P) in these 
two-point increases with time and the highest flow height (H) recorded the 
highest pressure (P) at any given time which also buttress the point that the 
higher the contour the higher the pressure (P). But in Figure 8(b) we observed 
that the pressure (P) decreased into negative very well, this is as a result of fluid 
flowing into this point and accumulate before going out of the contoured region. 
That is, this negative value implies that there is pressure (P) build-up at this 
point in the region. 

This we also did for pressure (P) in 3-D for permeability (k) and we have:  
Figure 9 also agreed with what we have in Figure 7 and Figure 8 as there is a 

rise in the pressure (P) as the permeability (k) decrease. As shown in Figure 9(a), 
we see clearly that, that insignificant change in pressure (P) at 0.369k =  in 
Figure 5 and Figure 6 does not mean it is not changing or that there is no  
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Figure 6. Effects of permeability on pressure over time (t).  
 

 
Figure 7. Effect of flow height (H) on pressure over space.  

 

 
Figure 8. Effects of flow height (H) on pressure (P) over time (t).  
 

pressure (P). It is just that the change is insignificant compared to the other two 
values of k. This is a result of a loosed packed bed of the channel which allowed 
fluid loss due to percolation. Also as shown in Figure 9(b), the pressure (P) rise 
due to the fact that the packed bed allow little or no percolation, such that water 
is retained in the region which amount up to pressure (P) build-up while Figure 
9(c) showed the facts that at 0.000084k = , the packed bed is compactly packed  
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Figure 9. Effects of permeability on pressure.  
 

together that it does not allow percolation at all, which may also mean there is a 
movement of fluid from the pores into the open channel since there is a great 
pressure (P) build-up. 

5. Conclusions 

Based on the assumptions of the model, with regard to the conditions and with 
respect to the simulations above, we have that the deeper the contour, the faster 
the velocity but as the contour is filling, the velocity reduces and if the contour 
filled to form a level ground, then the velocity becomes uniform. This is what 
happens in real-life situations and it also agrees with [10]. Obviously, permeabil-
ity (k) of the bed materials has a great effect on the pressure (P) along the chan-
nel. When the permeability (k) is high, the pressure (P) drops significantly due 
to the percolation of fluid through the larger size pores formed by the bed mate-
rials. This is what often causes some rivers to dry up at some season as much 
fluid is lost due to high permeability (k). But when the permeability (k) is low, 
the pressure (P) rises in the channel because there is little or no fluid loss in the 
channel. Even in some cases, there is penetration of fluid from the pores into the 
channel due to capillarity from the pore. This is what we see in the water well at 
our homes. This also agrees with [3] and [4]. This is clearly seen in the desert, 
where the river beds are sandy. Drought is one major problem in these areas. 
The flow height (H) also causes the pressure (P) to either rise or fall. As fluid 
flows into the contoured region, there is pressure (P) build-up in this region 
with respect to the height of this region, which is as predicted in the physical 
situation. 

When the permeability of a river is high, there shall be less flooding in that 
area. Rainfall and snowmelt will cause temporary and gradual flooding. Imper-
meable, surfaces like roads, interlocks, sidewalks, and buildings contribute to 
urban runoff and flood. Because instead of water being absorbed into the ground 
and recharge the aquifer (underground water), it will not but causes a runoff. 
With these impermeable surfaces runoff during rainfall increases, causing rain-
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fall running directly into streams. This resulted in aquifer levels going down 
which also lower the level of the streams creating sudden, unseasonal flooding. 
Swamps and marshes should not be filled with dirt and should not be built upon 
as we are experiencing now. Without swamps and mashes which are also known 
as wetlands, rainwater flows directly into rivers and causes flooding when it 
overflows its bank. Dams or weirs may be built to store water or extracts energy. 
The management of the river should be taken seriously as rivers tend to undo 
the modifications made by people [3]. Agricultural activities should be moni-
tored in the wetland area, as the use of machinery destroyed the permeability or 
made it less permeable or not permeable. 
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