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ABSTRACT 
It is extremely fearful for the pestilences covering our Earth. Does that mean the “World 
End” is around the corner? For the so-called “Atheists” originally proposed by Karl Max and 
Friedrich Engels, “there is a Beginning, there must be an End”, meaning our Earth will fi-
nally no longer exist in the entire Universe by colliding with the other planet. According to 
Holly Bible, however, Jesus, will send out his angels to separate the wicked from the righ-
teous and throw the former into the fiery furnace. For such a special time-period, many 
useful ideas or outcomes can be acquired by the Internet Institutes. 

 

1. INTRODUCTION 
As of July-03-2020, more than 230 countries on the Earth have been attacked by the coronavirus dis-

ease 2019 (COVID-19): for USA alone with reported 2,803,454 cases of which 130,995 result in deaths; for 
United Kingdom with 283,757 cases and 43,995 to deaths. 

2. FACTS AND DISCUSSIONS 
It is much more fearful than the “atomic bombs” (2nd World War, 1945) or any kind of terrorists 

(“911”, 2001). The death number has also far beyond the reach of the death of military persons killed in 
any of war involved with USA. 

For the so-called “Atheists”, typically represented by “Karl Max” and “Friedrich Engels”, claiming 
“there is a Beginning, there must be an End”, meaning our Earth will finally no longer exist in the entire 
Universe by colliding with the other planet. 

According to Bible, however, close to the “World-End”, nation will rise against nation, and kingdom 
against kingdom. There will be great earthquakes, famines and pestilences in various places, and fearful 
events and great signs from Heaven.” 

Jesus will send out his angels to weed out those who are sin, evil and wicked. They will be thrown by 
the angels into the fiery furnace, where they will be weeping and gnashing of teeth. In contrast to this, the 
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righteous will be raised to the Heaven. 
Coronavirus disease 2019 (COVID-19) is an infectious disease caused by severe acute respiratory 

syndrome, which was first identified in December 2019 in Wuhan, Hubei, China. After April 2020 and 
causing about 4000 deaths, although no remarkable infectious cases reported in Wuhan. Nevertheless and 
unfortunately, the 2nd-wave coronavirus diseases have been also identified on Beijing during May 2020. 
This kind of originally from “East-Globe” or “Eastern hemisphere” to “West “Globe” or “Hemisphere” and 
then kicked back from the West to the East, very much like playing “Tennis”, “ping-pong” or “Badmin-
ton”, “ball”. The extremely dangerous ball is none but “Coronavirus”. 

Since all the scientists working in a sharing laboratory of the Universities or most conversional Insti-
tutes must wear masks except those working in the “Internet Institute” such as the “Gordon Life Scient 
Institute” [1, 2]. And the results thus obtained will be of real usage for the other planet as indicated in [3] 
as well as widely and increasingly agreeable as supported by many papers from different angles or aspects, 
particularly for the idea of “Pseudo Amino Acid Composition” or “PseAAC” [4-74], the “5-steps Rule” 
[75-96], the “Wenxiang Diagram” [98-100], the “HIV protease inhibitor prediction” [101-106], and the 
“Graphic Rules” [107-115]. Using graphic approaches to study biological and medical systems can provide 
an intuitive vision and useful insights for helping analyze complicated relations therein as shown by the 
eight master pieces of pioneering papers from the then Chairman of Nobel Prize Committee Sture Forsen 
[107, 109, 110, 116-120] and many follow-up papers [67, 98, 99, 113, 115, 121-163], and a series of recent 
papers [164-180]. 

3. CONCLUSIONS 
For our Earth, after several waves of the killings as described in the Section 2, the time of its “End” 

will become much faster according to the exponential mode. Before its “End”, it will provide the most 
useful knowledge to do the science with the “Internet Institutes”. 
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