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Abstract 
Chemical heat storage is a promising technology for improving thermal 
energy efficiency. In this study, CaCl2 and H2O were selected as a reaction 
system for utilization of low-grade exhaust heat that is cooler than 200˚C. 
Heat discharging and charging were conducted through the CaCl2 hydration 
reaction. A silicon carbide honeycomb was adopted to improve heat transfer 
in the CaCl2 packed bed. The heat storage, condenser, and evaporator tem-
perature were set at 150˚C, 30˚C and 90˚C respectively. Repeated trials and 
experiments are time consuming for optimizing design of the equipment. 
Therefore, in this research, we constructed a simulation that can predict the 
performance of the device. A numerical simulation model was utilized in 
preparation for the design of the heat storage module. The consistency of 
both the simulation and the experimental results was confirmed by compar-
ing them. 
 

Keywords 
Chemical Heat Storage, CaCl2, Heat Discharging, Simulation 

 

1. Introduction 

The development of technologies and systems for improving the energy effi-
ciency and preventing global warming has received increasing attention in re-
cent years. Improving thermal energy efficiency is vital for mitigating carbon 
dioxide emissions. A large amount of thermal energy is used in industrial 
processes, which is accompanied by a large amount of exhaust heat. Therefore, it 
is necessary to store and reuse exhaust heat [1] [2]. 

Chemical heat storage is among the promising heat management technologies 
for reducing exhaust heat and fuel consumption [3] [4] [5]. In this study, we fo-
cused on chemical heat storage, which has a high heat storage density. Chemical 
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heat storage systems that use a gas-solid reaction offer a higher thermal storage 
capacity and a wider temperature application than absorption-based heat man-
agement systems [3]. The CaCl2/H2O reaction system was adopted, which in-
volves a reversible chemical endothermic or exothermic reaction, as follows. The 
material used in this system is environmentally sustainable, commonly used, 
readily available, nontoxic, and chemically stable [6], and the working tempera-
ture is below 200˚C. Moreover, the CaCl2/H2O reaction system has already been 
studied for chemical heat storage, and the potential use of both sides of the re-
versible CaCl2/H2O reaction has been demonstrated in previous studies [6]. 

( ) ( )2 2 2 2CaCl 2H O g CaCl 2H O s 125.1 kJ mol⋅+ ⇔ +          (1) 

The requirements for chemical heat storage by a packed bed-type reactor in-
clude a high heat output density, and the heat transfer rate of the packed bed is a 
key issue when enhancing this factor. We examined heat release and storage us-
ing a corrugated aluminum fin module, as aluminum has high thermal conduc-
tivity. However, there is the possibility of corrosion when using aluminum for 
chemical heat storage materials [7]. In this study, we selected silicon carbide 
(SiC) as a heat exchanger module, as it is a promising material for increasing 
corrosion resistance. In addition, SiC has excellent characteristics, including its 
low density and high specific thermal conductivity. It is well known that SiC has 
excellent thermal stability and corrosion resistance [8] [9] [10]. We evaluated 
heat release and storage using a module containing a honeycomb structure 
composed of SiC. 

2. Experimental 
2.1. Matelial 

Reagent anhydrous CaCl2 particles (>95% purity) were obtained from Wako 
Chemicals (Japan). The material was dried in an electric furnace at 180˚C for 24 
hours. The CaCl2 powder was unified by diameter (dp = 125 - 250 μm). 

2.2. Experimental Apparatus 

A schematic of the experimental setup for heat storage and release by the 
CaCl2/H2O reaction is shown in Figure 1. The equipment included a reactor, an 
evaporator, and a condenser, and the system alternates heat release and storage 
by changing the state of the control valve. During heat release, the valve between 
the reactor and evaporator was opened and a stream was supplied to a reactor. 
Each of these components was connected by vapor flow tubes. The components 
and vapor flow tubes were covered with glass wool and a combination of glass 
wool and electric heaters, respectively, to prevent condensation or heat loss. 
Each component was also connected to a thermostat bath as a heat source. The 
heat medium fluids supplied from the thermostat bath were circulated through 
the components. During heat storage, the valve between the reactor and con-
denser was opened and the stream was collected from a reactor. The reactor 
containing a SiC honeycomb structure is presented in detail in Figure 2. The  
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Figure 1. Experimental apparatus. 

 

 
Figure 2. (A) Photograph of the heat storage reactor with honeycomb structure. (B) 
Overview of honeycomb structure.  

 
size of the cell was 1.5 × 1.5 mm, and the SiC wall thickness was 0.5 mm. The 
SiC acted as the heat transfer enhancement body of the filling layer. In addition, 
CaCl2 was used to fill the open spaces in the honeycomb’s structure. The heat 
exchange fluid was fed around the core, and the heat storage module was filled 
with 84 g of the anhydrous CaCl2 particles. Its top and bottom were covered with 
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nickel mesh before it was installed in the reactor chamber. The filling fraction 
based on the filling space was 0.38. As a final step before initiating the experi-
ments, the air was removed from the three components and vapor flow tubes by 
a vacuum pump. We measured the inlet and outlet temperature and flow rate of 
the heat exchange fluid that circulated through the reactor. 

In the following experiments, the evaluation parameters were calculated based on 
the experimental results of the heat medium fluid’s temperature and flow rate in the 
reactor. The fluid temperatures at the inlet and outlet of the heat storage module 
were measured using platinum resistance temperature detectors, and the fluid flow 
volume was measured using a turbine flow meter from Japan Flow Controls Co. 
Ltd. (Japan). Thermal H350, obtained from JULABO (Germany), was used as the 
heat medium fluid in the reactor. Water was used in the evaporator and condenser. 
The evaluation parameters included average volumetric power density, Qcum, 

,0
cum

module

t
p f fC F T

Q
V

ρ
=

⋅ ⋅ ⋅∆∫                      (2) 

and the reaction conditions were selected carefully because hysteresis effects 
have been reported in previous studies. As indicated in Figure 3, the heat 
charging/discharging operation followed the chemically defined reaction lines 
for the hydration and dehydration of CaCl2, as well as the experimental condi-
tions (the vapor pressure was controlled by the evaporator or condenser and the 
inlet temperature of the heat medium fluid tempering the reactor) applied in this 
study (charging/discharging conditions are denoted by white/black circles, re-
spectively). During discharging, the water vapor was transported from the eva-
porator to the reactor, subsequently undergoing the exothermic reaction. During 
charging, the endothermic reaction thermally charged the reactor and the re-
leased water vapor was transported to the condenser. The operations were switched 
between using the control valves on the vapor flow tubes. The flow rate of the  
 

 
Figure 3. Temporal change in inlet and outlet temperature of heat exchange fluid. 
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heat medium fluid in the reactor was 2 L/min for both operations. The reaction, 
condenser, and evaporator temperatures were set at 150˚C, 30˚C, and 90˚C, re-
spectively. In the heat storage process, water vapor dehydrated from CaCl2 is re-
covered by the condenser. During the heat release process, water vapor generat-
ed from the evaporator undergoes a hydration reaction with CaCl2. The experi-
mental conditions are outlined in Table 1. 

3. Result of Heat Release and Storage Behavior and  
Discussion 

The temporal changes in the temperature of the heat exchange fluid in the SiC 
honeycomb type reactor are shown in Figure 3. During heat release, the outlet 
temperature of heat exchange fluid was higher than the inlet temperature. How-
ever, during heat storage, the outlet temperature of the heat exchange fluid was 
lower than the inlet temperature. To compare the SiC honeycomb- and alumi-
num corrugated fin-type reactors [6]. The heat output and conversion ratio is 
shown in Figure 4. The maximum average heat output of the SiC honey-
comb-type reactor was approximately 0.4 - 0.5 times lower than that of corru-
gated aluminum fin type reactor. The hydration rate within 700 seconds after the 
start of heat release is similar, and the difference in the hydration rate increases  
 
Table 1. Experimental conditions for heat storage and heat discharging process. 

 Reactor Evaporator Condenser 

Heat storage 
150˚C 

90˚C  

Heat storage  30˚C 

 

 
Figure 4. Comparison of heat release per volume between corrugated aluminum fin type 
and SiC honeycomb type reactor. 
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as the time progresses. This is thought to be due to the thermal resistance be-
tween the heat exchange fluid and the packed bed. The time required for the 
reaction rate to reach 80% was approximately 2.8 times longer than that of the 
aluminum fin reactor. It is necessary to optimize the structure of packed bed and 
heat exchange flow path to upgrade the heat output performance. 

4. Simulation Model 

The results show that the heat release performance is affected by the structure of 
the heat exchanger. To practically use the chemical heat storage device, the 
structure of the reactor needs to be optimized. It is necessary to predict how the 
heat release performance changes when the structure of the reactor is changed, 
and the influence factor of the heat radiation performance should be extracted. 
The three-dimensional cylinder model with a honeycomb structure shown in 
Figure 5 was constructed. The calculation used the following equations for mass 
transfer, heat movement, and chemical reaction rate. The height of the cylin-
drical packed bed is (Z), which is the thickness of the packed bed and the length 
of the flow path. The heat transfer of the contact surface between CaCl2 and SiC 
is calculated using the coefficient of overall heat transfer (hc). The equilibrium 
lines of the 0.3, 1, and 2 hydration states during the heat release step are shown 
in Table 2. The reaction lines for the hydration and dehydration were reported 
[11] [12] [13]. During the heat discharging process, hydration of the anhydrous 
CaCl2 occurs. There is a distribution in the hydration rate in the packed bed. 
This is because there is a distribution of temperature and water vapor pressure 
in the packed bed. The equilibrium line used for calculation is changed accord-
ing to the hydration rate. The physical property values shown in Table 3 were 
obtained from the experiment. 
 
Table 2. Relationship between vapor pressure and temperature for each CaCl2 hydration 
state. 

Hydration state Equilibrium pressure, P [Pa] 

0 ⇔ 0.3 
0.3 ⇔ 1 
1 ⇔ 2 

( )exp 69304.7 148.85P R T R= − +  

( )exp 59519.5 132.69P R T R= − +  

( )exp 47460.5 106.42P R T R= − +  

 
Table 3. Simulation conditions. 

 SiC CaCl2 SUS 

Density, ρ [kg/m3] 
Specific heat, c [J/kg/K] 

Thermal conductivity, λ [W/m/K] 

3000 
667 
150 

817 
903 
0.13 

8000 
625 
20 

coefficient of overall heat transfer 
between CaCl2 and SiC, hc [W/m2/K] 

170 

 Heat exchange fluid 

Density, ρ [kg/m3] 
Specific heat, c [J/kg/K] 

Convective heat transfer coefficient, hl [W/m2/K] 

951 
2033 
210 
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Figure 5. Three-dimensional cylindrical model with a honeycomb structure. 
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Chemical reaction rate 
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5. Result of the Heat Release Simulation and Experiment 

The temporal changes in the inlet and outlet temperature difference of the heat ex-
change fluid are shown in Figure 6. Under each condition, the highest difference  
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Figure 6. Temporal changes in the inlet and outlet temperature difference of the heat ex-
change. 
 
in temperature appeared at approximately 50 s, and it decreased smoothly after 
100 s. It is thought that the 0.3 and 1 hydration conditions were processed until 
reaching a calcium chloride hydration condition of 2. Comparing the results of 
the simulation and the experiment confirmed that they were consistent. It has 
been demonstrated that this method of analysis could be used to design the heat 
storage module.  

6. Conclusion 

A CaCl2/H2O reaction system was adopted as a heat storage material, and could 
store heat at temperatures lower than 200˚C. The heat release and storage per-
formance of the CaCl2 hydration reaction were examined. We presented the heat 
release and storage abilities of a reactor with an SiC honeycomb structure. The 
maximum average heat output of the SiC honeycomb-type reactor was approx-
imately 0.4 - 0.5 times lower than that of the corrugated aluminum fin-type 
reactor. The time required for reaching a reaction rate of 80% was approximately 
2.8 times longer than that of the aluminum reactor. Optimizing the structure of 
the packed bed and the heat exchange flow path is necessary to upgrade the heat 
output performance. Repeated trials and experiments are time consuming for 
optimizing design of the equipment. Therefore, in this research, we constructed 
a simulation that can predict the performance of the device. Analysis model that 
simulates heat discharging was created. The validity of the analysis result was 
determined by comparing it with the experimental result. It was demonstrated 
that this analysis method could be applied to design a heat storage module.  
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Nomenclature 

h ： Heat amount based value 

theo : Theory 

b : Reactant packed bed 

eva : Evaporator 

c : Contact surface with CaCl2 and SiC 

l : Contact surface with SUS and heat exchange fluid 

Q : Averaged volumetric power density [W/L] 

t : Elapsed time [s] 

Cp : Heat capacity [J/kg/K] 

ρ : Density [kg/m3] 

ΔT : Temperature difference [K] 

T : Temperature [K] 

F : Fluid flow rate [m3/s] 

V : Volume [m3] 

X : Conversion ratio [-] 

ΔH : Amount of heat [kJ/mol] 

P : Pressure [kPa] 

ρM : Mol/volume [mol/m3] 

ε : Porosity [-] 

Cp,M : Heat capacity per mol [J/mol/K] 

λ : Thermal conductivity [W/m/K] 

k : Reaction rate coefficient [1/s] 

1/h : Contact thermal resistance [K·m2/W] 

u : Flow velocity [m/s] 
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