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Abstract 
Scanning electrochemical microscopy (SECM) feedback mode has been used 
to investigate kinetics of dye regeneration in DSSC. Organic dye C343 and 
CW1 are used as sensitizers for nickel oxide (NiO) photoelectrochemical 
cells. The influence of film thickness on dye regeneration kinetics in the films 
for NiO/C343 for six different films was investigated. SECM was used to ana-
lyze effective rate constant, keff and reduction rate kred, absorption cross sec-
tion, Φhv for the dye regeneration process. The data reveal a significant varia-
tion of keff and kred with a variation of light intensity, sample thickness and 
dye difference. This research found remarkable dependence of the dye rege-
neration kinetic parameters on illumination flux, dye types and film thickness 
of electrode. 
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1. Introduction 

Recently dye-sensitized solar cells (DSSC) have got much attention due to low 
production cost, flexibility and transparency relative to other solar cells [1] [2] 
[3]. Until now a lot of research had been done on sensitization of n-type oxides 
such as titanium dioxide (TiO2) and Zinc oxide (ZnO) [4] [5]. In n-type sensi-
tized oxides an electron is injected into conduction band of semiconductor 
(n-SC) from the excited state sensitizer. During the past three decades, DSSCs 
have got much attention as another concept to p-n junction photovoltaics, be-
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cause they bargain significantly reduced production costs [6] [7]. Recently P- 
DSSC, has emerged as new generation of photoelectrochemical cells. In p-type 
DSSC, the photo-excited sensitizer (HOMO) is reductively quenched by hole in-
jection into the valence band of a p-type semiconductor (p-SC) [8] [9]. 

The operation principles of P-type DSSC depend on process, the sensitizer ex-
cited state dye D* injects a hole into the valence band (VB) of the semiconductor 
leading to the reduction of the dye D. If the charge recombination reaction be-
tween D− and the hole in the valence band (h+/VB p-SC) is slow enough; the re-
duced sensitizer can be intercepted by the redox mediator (M). The injected 
holes diffuse to the back transparent conducting electrode (TCO) pass into the 
external circuit and reach the counter electrode where they oxidize the redox 
mediator back to its original state [10] [11]. A lot of research has been done to 
explore the parameters that determine the overall performance conversion effi-
ciency and stability. The efforts were made to develop P-type nanostructure 
films such as NiO [12], CuO [13], CuSCN [14], CuGaO2 [15], CuCrO2 [16], and 
K-doped ZnO [17] [18], with compared to that given to n-type DSSC. Among 
the P-type semiconductors, NiO has got attention because of wide bandgap Eg 
3.6 to 4 eV with good stability. 

Dye regeneration is a crucial step to avoid charge recombination between 
photo oxidized dye and the injected electron to minimize dye degradation. The 
interfacial kinetic process is clearly crucial to the operation of a photoelectro-
chemical cell. In P-type DSSC, regeneration depends on hole injection and re-
combination of electrons with holes in valance band of p-type oxides. The film 
thickness can significantly influence the regeneration kinetics and photovoltaic 
performance of dye sensitized solar cells [19] [20]. The time-resolved spectroscopy 
(TRTS) was developed to analyze kinetics of electron transfer at dye-sensitized so-
lar cells to describe the rate constant of electron transfer of interface [21] [22] 
[23] [24]. Moreover, scanning electrochemical microscopy has been demon-
strated to be an effective technique for determining ET kinetics at various inter-
faces, including polymer/liquid, [25] and liquid/liquid ones, [26] and redox en-
zymes [27]. Recently Prof. G. Wittstock group at University of Oldenburg Ger-
many reported scanning electrochemical microscopy is a new tool to study 
electron transfer at dye sensitized semiconductor/electrolyte interface. They re-
ported ZnO/Eosin Y, ruthenium (II)-sensitized TiO2, and ZnO/D149 interface 
regeneration kinetics [28] [29].  

In this study, we NiO/C343 films of different film thicknesses were prepared 
by varying the NiO dip coating deposition method overnight in the C343. In ad-
dition, the kinetics of C343 and CW1 regeneration by iodide ions in the electro-
lyte was studied using an SECM feedback mode approach for different thickness 
and different illumination intensity. The reduced electrolyte (I−) in acetonitrile 
solvent with supporting electrolyte LiTFS is used as a mediator [29]. This paper’s 
first section presented a comparative study of SECM dye regeneration of C343 
and CW1 dyes as shown in Figure 1. The second section discussed SECM kinet-
ic parameters of C343 dye sensitized NiO film with different thicknesses. 
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Figure 1. Chemical structure of (a) CW1; (b) C343 dyes; (c) Absorbance of CW1 and 
C343 dyes.  

2. Experimental Section 
2.1. Preparation of the NiO/Dye Film 

Nickel Oxide (NiO) nanoparticles (particle size ~20 nm, 99.9%, Informant Ad-
vanced Materials) were ball-milled in ethanol with few droplets of acetate. The 
mixture of above colloidal solution, ethyl cellulose (Aldrich) and terpinol an-
hydrous (≥99.5%, Fluka) were sonicated and stirred alternatively to obtain a fine 
dispersion. A paste was made by evaporating the ethanol from the mixture on a 
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rotary evaporator. FTO glass (Nippon sheet glass, resistance 13 Ω/square) were 
coated with nickel acetate (+98%, Alfa Aesar) ethanol (≥99.7%, Merck) solution 
(0.05M) by dip coating and subsequently dried before screen print [30] [31]. 

2.2. SECM Apparatus and Procedure 

SECM experiments were performed on cell contained a Pt wire counter elec-
trode and a Pt wire quasi-reference electrode. Positioning was performed with 
an x-y-z stepper motor system. A Pt wire radius 12.5 µm was sealed into a 5 cm 
Pyrex glass capillary under vacuum. The UME was polished and shaped conical-
ly by a wheel with 180-grid Carbimet paper disks and micro polishing cloths 
with 0.3 μm for 3 minuties. The UME was sharpened to RG ~ 10, where RG is 
the ratio of the diameters of the glass sheath and the Pt wire. Before each expe-
riment, the UME was polished with 0.3 μm powder, rinsed with water and etha-
nol. The sensitized NiO electrode was placed at the bottom of a small volume 
electrochemical cell and short circuited by a Pt wire to the electrolyte. The emis-
sion spectra of the LEDs compared with the absorption spectrum of NiO/C343 
and NiO/CW1 film. The LEDs were placed close to the cell and focused on the 
dye-sensitized film by an objective lens (so that the photo-illuminated spot had a 
diameter of about (0.0785 cm2) [32] [33] [34] [35]. 

3. Results and Discussion 
3.1. SECM Measurement of the Dye Regeneration Rate 

According to various applications SECM has been a prevailing technique for 
probing interface kinetics [36] [37]. SECM feedback mod based on an ultra mi-
croelectrode (UME) to substrate and subsequent its current response as a func-
tion of the distance from the surface provide dye regeneration kinetics in sensi-
tized solar cells [19] [38] [39] [40] [41]. In feedback mode scanning probe based 
on the motion of ultra microelectrode (tip) close to the surface of conductive 
or non-conducting (insulting) substrate. For the UME, tip reaction for charge 
transfer reaction and the study state current of given by Equation (1a) and Equa-
tion (1b) respectively  

O e Rn −+ →                          (1a) 

2eff4T T
k

I nF Cr
κ∞

 =  
 

                      (1b) 

where, F: Faraday’s constant, n is number of electrons transferred in reaction 
Equation (1b), keff reaction rate constant, C is concentration of electrolyte, rT is 
UME radius and κ, normalized rate constant. 

The photon induces electrochemical reaction on the NiO/dye surface a change 
of the tip current as the UME approaches the interface. In order to scrutinize the 
kinetics of dye regeneration we measured SECM current-distance curves of dye 
sensitized NiO film with blue illumination in different wavelengths. The effect of 
illumination intensity on the kinetics of dye regeneration was studied by mea-
suring approach curves at different Jhv, its value increases clearly as the Jhv is in-
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creased. The kinetics of regeneration by the electrolyte was studied using SECM 
feedback mode approach on the NiO films with two dyes of C343 and CW1 dif-
ferent intensity as documented in Table 1 and Table 2. 

Figure 2(a) shows the normalized curve at UME to CW1/NiO under blue 
LED illumination photon flux increased from 2.2 × 10−9 mol·cm−2·s−1 to 22.4 × 
10−9 mol·cm−2·s−1. The rate constant keff increased from 1.45 × 10−3 to 8.18 × 10−3 
cm·s−1 in blue LED for CW1/NiO. Figure 2(b) shows the normalized curve at 
NiO/C343 under illumination with blue LED at different intensities. The rate 
constant keff of NiO/C343, increased from 0.92 × 10−3 to 4.93 × 10−3 cm·s−1 in 
blue LED as documented in Table 1.  

Figure 3(a) shows the normalized approach curve on C343/NiO under red il-
lumination flux density increased from 2.12 × 10−9 mol·cm−2·s−1 to 14.7 × 10−9 
mol·cm−2·s−1 its rate constant keff increased from 2.43 × 10−3 to 7.39 × 10−3 cm·s−1. 
Figure 3(b) shows the approach curve on NiO/CW1 under illumination with 
red illumination at different intensities rate constant increased from 1.82 × 10−3 
to 5.64 × 10−3 cm·s−1 in red LED as documented in Table 2. 

Generally, according to several studies illuminated dye excited (D*) injects a 
hole into the valence band (VB) of the P-type semiconductor succeed to the re-
duction of the dye (D−). There are a number of reactions mechanism of dye re-
generation in P-type DSSC most likely by 2a-e [42] [43]. The regeneration of the 
dye at the dye-sensitized electrode-electrolyte interface. Therefore, at the illumi-
nated D-sensitized NiO electrode-electrolyte-UME probe [44] [45]: 

 
Table 1. Normalized rate constants keff of CW1/NiO and C343/NiO in blue illumination 
D = 1.86 × 10−5 cm2·s−1, rT = 12.5 lm, keff = κD/rT. 

Jhv/10−9 mol·cm−2·s−1 Curve # k keff/10−3 cm·s−1 

(a) CW1    

2.2 1 0.067 1.45 

6.1 2 0.132 3.48 

6.8 3 0.156 3.79 

11.8 4 0.178 5.62 

13.9 5 0.189 6.25 

19.8 6 0.214 7.67 

22.4 7 0.219 8.18 

(b) C343    

2.2 1 0.065 0.92 

6.1 2 0.129 2.18 

6.8 3 0.137 2.37 

11.8 4 0.174 3.46 

13.9 5 0.185 3.82 

19.8 6 0.205 4.64 

22.4 7 0.213 4.93 
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Table 2. Normalized rate constants keff of C343/NiO and CW1/NiO in red illumination D 
= 1.86 × 10−5 cm2·s−1, rT = 12.5 μm, keff = κD/rT. 

Jhv/10−9 (mol·cm−2·s−1) Curve # k keff/10−3 cm·s−1 

(a) C343    

14.7 7 0.0484 7.39 

13.1 6 0.0457 7.09 

12.1 5 0.0444 6.89 

9.4 4 0.0401 6.21 

6.8 3 0.0342 5.31 

4.2 2 0.0271 4.01 

2.12 1 0.0163 2.43 

(b) CW1    

14.7 7 0.0379 5.64 

13.1 6 0.0363 5.41 

12.1 5 0.0352 5.24 

9.4 4 0.0317 4.72 

6.8 3 0.0271 4.02 

4.2 2 0.0202 3.01 

2.12 1 0.0122 1.82 

 

 
Figure 2. Normalized SECM feedback approach curves for the approach of a Pt disk UME towards (a) NiO/C343, (b) NiO/CW1. 
 

*NiO / D hv D / NiO : excitation+ →                  (2a) 
hv*NiO / D D h / NiO : chargr separation− +→ →             (2b) 

( )NiO h D NiO / D : germinate recombination+ −+ →            (2c) 
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Figure 3. Normalized feedback approach curves for the approach of a Pt disk UME towards (a) NiO/C343, (b) NiO/CW1 in red 
illumination. 
 

( ) ( )3 2NiO h / D I D / NiO I I : regeneration+ − − − −+ → + + +           (2d) 

33I e I : regeneration on the UME− − −− →                (2e) 

when illuminated dye is excited there is charge separation and a hole injection 
into the NiO valence band, and the dye is reduced. Then dye will react with the 
oxidized species of the electrolyte ( 3I

− ) and regenerate to its ground state. Under 
illumination excited dye injects holes to valance band NiO oxide (charge separa-
tion) represented by Equation (2b) heterogeneous electron transfer (regenera-
tion) 3I / D− −  Equation (2d). In order to rationalize influence of light on dye 
regeneration we performed measurement at two different dyes in blue LED in 
different intensity as shown in Figure 2 & Figure 3.  

Figure 4 shows the plot keff vs Jhν for CW1 and C343 sensitized (a) in blue il-
lumination and (b) in red illumination. An experiment values of kred = 6.95 × 105 
mol−1·cm3·s−1 and Φhv(λ) = 3.16 × 106 cm2·mol−1 for C343 blue, LED, respectively. 
An experiment values of kred = 7.95 × 105 mol−1·cm3·s−1 and Φhv(λ) = 3.32 × 106 
cm2·mol−1 for CW1 in the blue, LED, respectively Table 3. When the sensitized 
NiO film back-illuminated, the ground state dye is denoted by D, photo-reduced 
dyes D− and photo excited dye molecules D*. The mathematical expression for 
excited dye D* can be derivative from the mass conservation and the steady-state 
approximations for surface concentrations of the photo excited dye represented 
by Equation (3a) the reduced dye Equation (3b) 

*

*
D

hv hv D inj D
J k

t
φ

∂Γ
= Γ − Γ

∂
                      (3a) 

*

1 2D
red 3 injD D

I
S

k k
t
−

−
−

∂Γ
 = Γ + Γ ∂

                    (3b) 
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Figure 4. keff vs Jhν for (a) CW1 and (b) C343 sensitized NiO films in blue and red LED. 

 
Table 3. Regeneration parameters for C343/NiO and CW1/NiO in blue illumination.  

Dye kred/mol−1·cm3·s−1 Φhv/cm2·mol−1 Illumination 

C343 6.95 × 105 3.16 × 106 Blue 

CW1 7.95 × 105 3.32 × 106 Blue 

 
Thus, the rate constants kred for the regeneration of the reduced dye after in-

jection the hole into the valance band of P-type semiconductor by the reduced 
state of redox at incident light of given by Equation (4). A kinetic analysis rate 
constant keff, for regeneration processes expressed in terms of reduction rate 
constant kred, absorption cross-section of dye ϕhv, thickness of sample L, dye 
concentration on NiO film Do and electrolyte concentration [I−] as 

red hv hv eff

I1 2 1
o

L
k J kD φ

−    = +
 
 

                      (4) 

where, keff represents the regeneration rate, and Φhv absorption rate.  
Due to dependence of regeneration on illumination wave length, result in dif-

ferent values of keff of the different wavelengths. Under illumination of the thin 
film with blue LED incident photon fluxes the rate constants extracted by fitting 
kred of 7.95 × 105 mol−1·cm3·s−1 for CW1 Φhv of 3.3 × 106 cm2·mol−1 and 6.73 × 105 
mol−1·cm3·s−1 for C343, Φhv of 2.3 × 106 cm2·mol−1.  

3.2. SECM Approach Curves of Different Thickness 

A number of studies on film thickness state to macroscopic characteristics of dye 
sensitized solar cells parameters depend on the rate of charge transfer reactions. 
SECM feedback analysis permitted to investigate dye regeneration kinetics at a 
microscopic sample [46] [47] [48] [49]. The film thickness has implicitly affected 
on the performance of dye sensitized solar cells which increase the accumulation 
probability, which promotes more light absorption [19] [20]. In order to inves-
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tigate the effect of dye thickness absorption spectra of C343 adsorbed on the 
porous NiO films of varied thickness as shown in (Table 4). In this work, we 
used six samples with t thickness (2.8 μm, 34 μm, 3.8 µm, 4.4 µm 5.4 μm, and 5.8 
μm respectively). Figure 5(a) shows absorption spectra of C343 adsorbed on the 
porous NiO films in different thicknesses. The spectra clearly show broad ab-
sorption bands peaking at approximately 490 nm, superimposed to a background 
signal due to scattering of light by the nickel oxide film. This proves the successful 
saturation of the films with the dye of the pores for all films. The film thickness is 
in line with the trend of peak heights in the solid-state absorption on the surface 
NiO spectra, pick highest for 5.8 μm and minimum spectra pick for 2.8 μm. 

Figure 5(b) shows the normalized SECM approach curves recorded with Pt 
UME (rT = 12.5 mm) approaching to C343/NiO films of thickness of 38 μm il-
luminated at different Jhν. The keff value obtained at the illuminated C343/NiO 
film, increases as the Jhv increased. Increasing Jhv increased hence keff, as shown in 
Table 3. As Jhv increased from 2.21 × 10−9 mol·cm−2·s−1 to 22.4 × 10−9 mol·cm−2·s−1, 
the cross ponding increased from 1.87 × 10−3 cm·s−1 to 7.73 × 10−3 cm·s−1. The 
result revealed that the normalized approach curves depend on the thickness of 
the film. SECM approach curves of the other films recorded on supporting in-
formation. Figure 5(d) shows the L (10−6 m) vs kred, Φhv for six samples as shown 
Table 5. As film thickness increases the absorption crossection increases because 
when thickness of sample increases the dye deposition increase, it provides 
probability of much light absorption as shown Figure 5(d). In contrary as film  
 
Table 4. Normalized rate constants keff of C343/NiO for different film thickness in blue 
illumination.  

Jhv/10−9 S28 S34 S38 S44 S54 S58 

22.4 7.65 8.57 7.73 7.38 9.75 10.17 

19.8 7.29 8.18 7.39 7.11 9.38 9.87 

13.9 6.21 7.19 6.39 6.22 8.24 8.92 

11.8 5.71 6.44 5.91 5.81 7.68 8.44 

6.12 3.81 4.33 4.05 4.08 5.45 6.33 

2.21 1.71 1.96 1.87 1.94 2.61 3.28 

 
Table 5. Regeneration parameters Φhv and kred, of C343 by I-for different film thickness. 

L/10−6 m Φhv/106 (cm2·mol−1) kred/105 (mol−1·cm3·s−1) 

28 3.713 5.647 

34 3.893 5.457 

38 4.275 4.979 

44 4.979 4.547 

54 5.269 3.947 

58 5.579 3.877 
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Figure 5. (a) Optical absorption spectra of NiO/C343 films of different thickness; (b) SECM approach curves obtained with Pt 
UME (rT = 12.5 mm) on C343-NiO films; (c) keff vs. Jhv for six different C343/NiO photoelectrodes with systematically varied 
thickness; (d) kred vs Thickness of film. 

 
thickness increases the regeneration rate constant decrease due to, the dye con-
centration increases on surface of film, the reaction rate on the sample surface is 
faster than the UME reaction.  

4. Conclusion 

The dye regeneration kinetics were studied on different film thicknesses of C343- 
sensitized NiO photoelectrodes. The clear difference of regeneration parameters 
was analyzed for CW1/NiO and C343/NiO, and there was significant variation 
for both dyes regeneration parameters in different wave length of illumination. 
It was found that SECM feedback approach curve analysis, considerably differ-
ent rate constants kred, and absorption cross section area Φhv for the C343/NiO 
were measured for the photoelectrodes of systematically varied NiO thickness. 
Investigation of SECM kinetic model shows significant different effective C343 
regeneration rate constants kred and absorption cross section Φhv for C343–NiO 
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electrodes of systematically varied film thickness. 
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Supporting Information  
SI.1. Fitting of Steady-State SECM Approach Curves  

Normalized heterogeneous rate constants κ and keff have been extracted from 
experimental approach curves by fitting them to an analytical approximation of 
simulated data evaluated by Cornut and Lefrou [1] [3]. The analytical approxi-
mation of Cornut and Lefrou1 was used for calculating a theoretical current IT 
for each experimental, normalized distance. The formula of Amphlett and De-
nuault given for RG = 10. Constants for other selected RG are also available [2] 
[4]. Normalized approach curves IT vs. L have been calculated from each expe-
rimental approach curves iT(z) using IT = iT/iT,∞ and L = d/rT.  

The fitting of the normalized approach curves yields a dimensionless norma-
lized rate constant k. With the knowledge of rT and the diffusion coefficient of I3 
in the electrolyte, an effective heterogeneous first order rate constant keff [cm·s−1] 
is obtained. 

eff
T

Dk
r

κ=                              (1) 

SI.2. SECM Approach Curves on C343/NiO Sample 

In NiO DSSCs, visible light absorption by dyes is followed by hole injection from 
the excited dye to valence band of the semiconductor. The dye is then regene-
rated by electron transfer from the reduced dye to the oxidized species ( 3I

− ) in 
the electrolyte. If the reduced dye cannot react with the electrolyte within the 
charge-separated lifetime, it may recombine with the hole in the semiconductor 
geminate recombination. The holes in the semiconductor move to the back col-
lector of the working electrode and the reduced species (I−) in the electrolyte 
diffuses to the Pt electrode. This charge collection gives rise to a cathodic pho-
tocurrent in the external circuit. On the basis of the former studies, the following 
mechanism can be proposed: Upon excitation of the dye, charge separation occurs. 
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Figure S1. Normalized SECM feedback approach curves for the approach of a Pt disk UME towards a NiO/C343 film in the dark 
(curve 1) and under illumination by a blue LED electrolyte 1 mM I− + 0.1MLiTFS. Photon flux density of LED in 10−9 mol·cm−2·s−1 
(2) 2.2, (3) 6.1, (4) 11.8, (5) 13.9, (6) 19.8 (7) 22.4; vT = 0.05 mV·s−1, ET = 0.7 V, [I−] k: (a) Optical absorption spectra of NiO/C343 
films of different thickness. (b) Sample thickness 3.6 μm (1) 0.0161, (2) 0.0384, (3) 0.0399, (4) 0.0427 (5) 0.0472 (6) 0.0481 and 
corresponding keff × 10−3 cm·s−1 (1) 0.23, (2) 0.48, (3) 0.52, (4) 0.63, (5) 0.7, (6) 0.75. keff vs. Jhv for six different C343-sensitized NiO 
photoelectrodes with systematically varied thickness. (d) thickness 4.4 μm k (1) 0.0197, (2) 0.0394, (3) 0.0438, (4) 0.0509, (5) 
0.0523, (6) 0.0583 and corresponding keff × 10−3 cm·s−1 (1) 0.29, (2) 0.56, (3) 0.59 (4) 0.69 (5) 0.74 (6) 0.86. (e) Thickness 5.4 μm k 
(1) 0.0243, (2) 0.0324, (3) 0.0351, (4) 0.0433, (5) 0.0501, (6) 0.0609 and corresponding keff × 10−3 cm·s−1 (1) 0.36, (2) 0.59, (3) 0.65, 
(4) 0.76, (5) 0.83, (6) 1.1. (f) Thickness 5.8 μm k (1) 0.0396, (2) 0.0481, (3) 0.0512, (4) 0.0611, (5) 0.0682, (6) 0.0774 and corres-
ponding keff × 10−3 cm·s−1 (1) 0.59, (2) 0.72, (3) 0.76, (4) 0.91, (5) 1.01, (6) 1.5.  

 
Table S1. Normalized rate constants rate constants keff = kD/rT obtained for the reduction 
of photo excited  

Jhv keff/10−3 cm·s−1 

Jhv/10−9 2.8 μm 34 μm 38 μm 44 μm 54 μm 58 μm 

22.4 7.65 8.57 7.73 7.38 9.75 10.17 

19.8 7.29 8.18 7.39 7.11 9.38 9.87 
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Continued 

13.9 6.21 7.19 6.39 6.22 8.24 8.92 

11.8 5.71 6.44 5.91 5.81 7.68 8.44 

6.12 3.81 4.33 4.05 4.08 5.45 6.33 

2.21 1.71 1.96 1.87 1.94 2.61 3.28 

kred 4.89 × 105 5.15 × 105 4.4 × 105 4.1 × 105 4.46 × 105 5.14 × 105 

ΓD 8.21 × 10−8 8.4 × 10−8 10.2 × 10−8 10.8 × 10−8 11.4 × 10−8 13.2 × 10−8 

A 4.31 × 10−7 4.872 × 10−7 5.916 × 10−7 6.264 × 10−7 6.612 × 10−7 7.566 × 10−7 

 
A hole is injected into the NiO valence band, and the dye is reduced. The re-
duced dye will react with the oxidized species ( 3I

− ) of the electrolyte and regene-
rate to its ground state. In this case, 2I −  would be generated, which is also a 
common intermediate in NiO based solar cells [5] [6] (Table S1 & Figure S1). 
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