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Abstract 
A modified approach closely related to the Drude, Lorentz-Drude and Bren-
del-Bormann theories is developed to fit the experimental data of the optical 
properties of metals. This work, while simplifying and redefining the para-
meters of previous models, can be directly compared with the parameters of 
the Brendel-Bormann model. As a test of validity, our model is compared 
with the Brendel-Bormann model and experimental data for gold. Our model 
shows excellent agreement with the experimental data for gold (up to 5 eV) 
and iron (up to 30 eV). 
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1. Introduction 

This work is motivated by the need for the optical characteristics of ferromag-
netic materials, especially iron, for use in waveguide optical isolators. These 
metals may be used as one or more layers of an optical waveguide or they may be 
used as metal “dopant” atoms or clusters of metal atoms in a host material such 
as a semiconductor, glass or polymer to form one or more ferromagnetic layers 
in an optical waveguide [1] [2] [3] [4] [5]. Ferromagnetic materials are aniso-
tropic and are characterized by a susceptibility tensor with non-zero off-diagonal 
elements whose values change with an applied magnetic field. Designing wave-
guide isolators requires accurate knowledge of such susceptibility tensors which 
are obtained from the electronic band structure of materials [6]-[11]. 

Ehrenheich et al. [6] analyzed experimental data for the dielectric constants 
for silver and copper from 1 to 25 eV with the help of three mechanisms which 
are free electron effects, interband transitions, and plasma oscillations. In order 
to distinguish plasma transitions from interband transitions, theoretical values 
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of the real { }ℜ ε  and imaginary parts { }ℑ ε  of the dielectric constant, as well 
as the loss function { }1−ℑ ε  were plotted as a function of photon energy. They 
acquire average optical mass values for silver and copper for the free electron ef-
fect region by combining the theoretical and experimental values of the dielec-
tric constant. In 1987, Adachi used a harmonic oscillator model with a critical 
point-parabolic band model that incorporated Lorentzian broadening and tem-
perature dependence to find optical constants as a function of alloy composition 
for Zinc-Blende semiconductors [7]. The resulting model showed that contribu-
tions from indirect transitions can be significant [7]. 

The Drude model for the permittivity (based on free electrons) [12] [13] [14] 
was extensively used until the late 1980s to obtain the optical constants of metals. 
An extension of this model, referred to as the Lorentz-Drude (LD) model in-
cluded bound electrons by assuming damped harmonic oscillators at critical 
wavelengths that correspond to interband transitions [15] [16] [17] [18]. 

Brendel and Bormann (BB) extended previous work to obtain optical con-
stants of amorphous solids in the infrared by including a superposition of oscil-
lators at critical wavelengths with linewidths that were a convolution of Gaussian 
and Lorentzian linewidths (Voigt profiles) [10], resulting in good agreement 
with experimental values at room temperatures [11]. Rakic et al. applied the BB 
approach to obtain optical constants for various metals in the infrared, visible 
and ultraviolet regions [17]. 

In this work, we build on the BB model and the work of Rakics’ to obtain a 
model for the optical constants of iron based on experimental data [19] [20]. We 
verify our model by comparing our theoretical calculations to the experimental 
data for gold and to Rakics’ theoretical model for gold. Our modified BB model 
used a reduced number of parameters yet provides excellent agreement with ex-
perimental data. 

2. Optical Properties of Iron 

To evaluate the susceptibility of iron under the influence of an external magnetic 
bias it is necessary to model the valence electrons that play a major role in the 
characteristics of metals. The Drude model assumed that free electrons deter-
mined the susceptibility while the LD model included valence and other bound 
electrons in the susceptibility calculation [21]. 

The optical properties of iron have been extensively studied experimentally 
with results that are somewhat divergent. However, several data indicate similar 
interband transitions of bound electrons that produce undulations in the suscep-
tibility as a function of photon energy.  

The susceptibility in Figure 1 was calculated from the refractive index and ex-
tinction coefficients [19] [20] [22], obtained from optical reflection of light from 
films. The divergence of the results is probably due to oxide formations on the 
surface [22] which tends to reduce the reflections and thus lower the value of the 
dielectric constants. Note that the spurious data for r

bχ  and i
bχ  at 5.5 eVh ≈ν   
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Figure 1. The real, rχ , and imaginary, iχ , parts of the susceptibility of iron as a func-

tion of photon energy. Data for r
aχ  and i

aχ  is computed from references [19] [20] 

while data for r
bχ  and i

bχ  is computed from reference [22].  

 
does not appear in the data for r

aχ  and i
aχ  while the spurious data in r

aχ  
and i

aχ  at 2.25 eVh ≈ν  does not appear in the data for r
bχ  and i

bχ . 

2.1. Electron Displacement in an Electromagnetic Field  

The dielectric constant of metals such as nanoparticles composed of iron, cobalt, 
or nickel can be developed assuming some of the electrons from each atomic site 
are free to move about within the metal while some are bound to the nucleus at 
each atomic site. Furthermore, it is generally assumed that only valence electrons 
participate in the behavior of the dielectric constant. Drude’s theory assumed 
that the free electrons in metals [23] [24] explained the behavior of the dielectric 
constant or conductivity at low frequencies (below microwave frequencies). For 
example, the DC conductivity of metals is determined from the slope of the im-
aginary part of the susceptibility iχ  at low energy photons. At higher photon 
energies ( 0.1 eVE h= >ν ) the electrons bound to atomic sites greatly influence 
the behavior of the susceptibility and produce the undulations in the real and 
imaginary parts of the susceptibility such as that illustrated in Figure 1. Note 
that both sets of data for iron show a type of resonance at about 2.5 eV. 

The force produced by an electromagnetic field acting on a (free or bound) 
electron of charge q and velocity v  is given by the Lorentz force  

( ) ( )( ) ( )s s ,q t t q t = + × + ≈ + ×   F e v b B e v B              (1) 

where e  and b  are a wave’s time varying electric and magnetic fields while 

s 1 2 3ˆ ˆ ˆB B B= + +B x y z  is an externally-applied static magnetic field. In (1) the 
force due to a wave’s magnetic field, ( )tb , may be neglected compared to force 
produced by the wave’s electric field, ( )te . For example, a plane wave has the 
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ratio n c=b e , where n is the refractive index. Since the velocity of electrons 
is much smaller than c, (1) is a good approximation of the force acting on a free 
electron. 

The Drude model assumes an unbound electron has an equation of motion 
that can be written as  

2
*

c2m
tt

 ∂ ∂
+ = ∂∂ 
γr r F                         (2) 

where r  is the electron position relative to an atom, *m  is the electron effec-
tive mass, cγ  is a “damping factor” related to electron collisions with atomic 
sites. 

Lorentz modified Drude’s theory by assuming electrons bound to the nucleus 
have a harmonic-like restoring force so that (2) was modified to include the res-
toring force kr . There are numerous electrons bound to the nucleus and each 
exhibits different resonant and collision frequencies. Quantum mechanically, an 
electron may occupy different discrete energy levels that are separated according 
to the solution of the Schrodinger equation for the harmonic oscillator and the 
electron may move from one level to another and the electron lifetime at a cer-
tain energy level is inversely related to the “damping constant”, iγ  [25]. 

The modified equation of motion of, say, the ith electron is  
2

* 2
2
i

i i i im
tt

 ∂ ∂
+ + = 

∂∂ 
γ ω

r r r F                      (3) 

where the resonant frequency of the harmonic oscillator is ( )* 1 2

i i ik m=ω . Eq-
uation (3) has been frequently used to model dispersion in dielectrics, conduc-
tors, and plasmas [21] [25] [26] [27]. (The equation of motion for an electron in 
the Drude model can be obtained from (3) by placing 1 0=ω , i.e., 1i =  de-
notes free electrons). 

For a harmonic time variation exp j tω  of the electromagnetic field, the dis-
placement vector expi i j t= ωr R , expi ij j t= ω ωv R , ( ) expt j t= ωe E  and 
( ) expt j t= ωb B , so that (3) can be written as  

( ) ( )2 2
s* .i i i i

qj j
m

+ − = + ×ω ωγ ω ωR E R B               (4) 

The vector product may be written as  

s B ,i s i× = ⋅


R B R  

where Bs



 is the asymmetric dyad (in matrix form)  

0
B 0 .

0

z y

s z x

y x

B B
B B

B B

 −
 

= − 
 − 



                    (5) 

For free and bound electrons (4) may be written as  

( ) 1I B ,i i
ij

− ⋅ =
Λ

 

ω
R E                      (6) 
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where *
i ij m qΛ = Ω ω , 21i i ijΩ = −Ω − Γ , i iΩ =ω ω  is the normalized re-

sonant frequency, i iΓ = γ ω  is the normalized collision frequency, I


 is the 
unit dyad and the frequency-dependent dyad ( )Bi



ω  is  

( )
( ) ( )

( ) ( )
( ) ( )

z y

z x

y x

0
B 0 ,

0

i i

i i i

i i

b b
b b

b b

 −
 

= − 
 − 



ω ω
ω ω ω

ω ω
                (7) 

where ( ) ( )x xi ib B= Λω ω . The components ( )yib ω  and ( )zib ω  satisfy sim-
ilar expressions (Note that iΛ  has the dimension of the magnetic field, which 
is Tesla in SI units). In the absence of a static magnetic field, B 0i =



, the zero 
dyad. 

The solution for the electron displacement from the nucleus is  

( )( ) 11 I B ,i i
ij

−
= − ⋅

Λ

 



ω
ω

R E                      (8) 

and the inverse is  

( )( )
( )

2
x x y z x z y

1 2
x y z y y z x2

2s
x z y y z x z

1
1I B 1 ,

1 1

i i i i i i i

i i i i i i i i

i
i i i i i i i

b b b b b b b
b b b b b b b

B b b b b b b b

−
 + + −
 

− = − + + 
+ Λ  + − + 

 



ω     (9) 

where 2 2 2 2
s x y zB B B B= + + . When the static field is directed along x, y, or z, there 

is only one off-diagonal component of ( ) 1
I Bi

−
−
 

. For the case of a static field 
directed along the y axis, s sˆB=B y ,  

( )( ) 1
1 0

I B 0 1 0 .
0 1

s i

i

s i

B

B

−
 Λ
 

− ≈  
 Λ 



 



ω                (10) 

The resulting dipole moment is i iq=p R  has a single off-axis component. 

2.2. Electric Susceptibility from the Lorentz-Drude Model  

When the dipole moment for a single charge is 1 1q=p R , the polarization pro-
duced by the free charges becomes  

1 1 1 o 1X ,N= = ⋅


εP p E                        (11) 

where 1N  is the number of electrons per unit volume that have the dipole mo-
ment 1p . The Drude model for most metals does not generally fit to the com-
puted values of susceptibility determined from experimental measurements used 
to estimate the index of refraction and extinction coefficients in the infrared. How-
ever, it does give a reasonable representation at DC to microwave frequencies. 

When the static magnetic field is directed along y, there are 2 off-diagonal 
components of the susceptibility so the susceptibility dyadic can be written as  

 
v o

c

o v

0
X 0 0 .

0

 
 =  
 − 



χ χ
χ

χ χ
                     (12) 

Defining the plasma frequency as 2 2 *
p1 1 o 1q N m=ω ε , and a complex norma-
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lized frequency for “free electrons” as 1 11 jΩ = − Γ , and a normalized collision 
frequency as 1 1Γ = γ ω , so that the electric susceptibility due to free electrons 
becomes  

( ) ( )
2

1 1p11
1 1 1

o 1 1

X I B I B .
N q

j
− −Ω

= − = − −
Λ Ω

    

 ε ω
            (13) 

In the absence of a static magnetic field, the dyad 1B 0=


 so the susceptibility is 
a scalar times the unit dyad, where the scalar value is  

( )
2 2 2

p1 p1 p1 1
1 2 2 2 2

1 1 1

j
Ω

= − = − −
Ω + +

ω ω γ
χ

ω γ ω ω γ
             (14) 

and thus 1χ  is the susceptibility due to the free electrons. Because the harmonic 
time variation is of the form ( )exp j tω , the real and imaginary parts of 1χ  are 
negative and its imaginary part has a singularity at 0=ω , implying the low 
frequency conductance is 2

o p1 1=σ ε ω γ . The diagonal component is c 1=χ χ , 
the susceptibility in the absence of a magnetic bias, while the “variable” part  

( )
c

v c2

s 1

.
1 B

= ≈
+ Λ

χ
χ χ                     (15) 

The off-diagonal component satisfies  

( )
2

p1 2 *s 1
o p1 1 cy2 2

1 1s 1

1 ,
1

B
j

B

Ω Λ
= ≈ Ω Ω
Ω Ω+ Λ



 



χ              (16) 

where cyΩ  is the normalized cyclotron frequency, and using q e= − ,  

cy eseB mΩ = ω , and * *
1 e 1m m=  is the ratio of the mass of the electron and 

effective mass of the free electron. With a static field of 1 Tesla, the cyclotron 
frequency cy 0.116 meV≈ω  is just a measure of the static field strength. The 
diagonal components of the susceptibility dyad contain the electron effective 
mass in the expression of the plasma frequency. However, the off-diagonal ele-
ments depend explicitly on the effective mass. The relative anisotropic dielectric 
constant is obtained from (12) and the unit dyad. 

There are only two parameters in the Drude model of the electric susceptibili-
ty, p1ω  and 1γ  and they may be estimated from experimental data [14]. Here 
it is estimated that for iron p1 3.5 eV≈ω , while the low-frequency conductivity 
of iron, 71.044 10≈ ×σ  Siemens per meter, is used to determine  

2
1 o p 0.0158 eV= ≈γ ε ω σ  (The real part of the susceptibility is rather insensitive 

to the small values of 1γ , { } ( )2
1 p1ℜ ≈ −χ ω ω , so that it can describe experi-

mental data in the infrared region by adjusting only the plasma frequency for 
free electrons). Figure 2 illustrates the result of “fitting” p1ω  and 1γ  to the 
experimental data. In the infrared region, the real part of the susceptibility de-
termined from the Drude model is satisfactory to about 2 eV, however, the im-
aginary part, { }1ℑ χ  diverges from experimental values near 0.1 eV. When 

1.55 m= µλ  (≈0.8 eV), the susceptibility of iron is 19 41j≈ − −χ  which pro-
duces ( ) 2

1
11 3.66 5.6j+ ≈ −χ  while the Drude model has 1 19 0.37j≈ − −χ  

which produces ( ) 2
1

11 0.44 4.24j+ ≈ −χ .  

https://doi.org/10.4236/msa.2021.1212042


J. K. Butler et al. 
 

 

DOI: 10.4236/msa.2021.1212042 628 Materials Sciences and Applications 
 

 
Figure 2. The real, rχ , and imaginary, iχ , parts of the susceptibility of iron using the 
Drude model. The plasma frequency is p 3.5 eV=ω  and the collision frequency is de-

termined from the DC conductivity, σ , 2
1 o p=γ ε ω σ . Experimental values were com-

puted from the data in [19] [20] as in Figure 1.  
 

To develop a more comprehensive model of the anisotropic susceptibility of 
iron the modification of the susceptibility due to the bound electrons of the Lo-
rentz theory are added to the model. Accordingly, the anisotropic susceptibility 
will be written as  

1
X X ,

Z

i
i=

= ∑
 

                          (17) 

where  

( )
2

1pX I B ,i
i i

i

−Ω
= − −

Ω

  



                     (18) 

where Z represents the number of electrons that can be bunched into groups 
having populations iN  electrons per unit volume within each group. As before, 

1N  represents free electrons per unit volume while 2 3, ,N N  represent the 
number of bound electrons that can be grouped with identical collision and re-
sonant frequencies. Iron is a transition metal and has about 28

Fe 8.46 10N = ×  
atoms per cubic meter and 26 electrons per atom so that 1 2 ZN N N+ + +  
cannot exceed Fe26N . 

The off-diagonal component of the susceptibility, 13 o=χ χ , satisfies  

( )
* 2

p
o cy2 2

1 11

Z Z
i is i

i
i i is i

B
j

B= =

 ΩΛ
= − ≈ Ω   Ω+ Λ  
∑ ∑








χ χ            (19) 

In the absence of a magnetic bias, the susceptibility tensor is diagonal and that 
produced by the individual groups, iχ , of the LD model is given by  
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1
,

Z

i
i=

= ∑χ χ                            (20) 

where  
2

p .i
i

i

Ω
= −

Ω
χ                           (21) 

The value 1χ  represents the susceptibility of the free electrons while iχ , 
2, ,i Z=   represent the susceptibilities due to various groups of bound elec-

trons, and Z is the number of “bunchable” groups that can be identified by expe-
rimental data. The susceptibility tensor may be written in terms of the applied 
static field and the unbiased group susceptibilities, iχ  as  

( )
1

1
X I B .

Z

i i
i

−

=

 = − ∑
  

χ ω                     (22) 

The electron magnetic dipole moments are determined from a combination of 
the orbital and spin moments. Because the contribution to the magnetic field 
from the orbital path of the electron is insignificant compared to that of the 
electron spin, magnetic moments in iron tend to be dominated by the electron 
spin [21].  

2.3. Susceptibility: Brendel-Bormann Model  

The Brendel-Bormann model [10], BB, is a slight extension of the LD theory and 
was used previously to explain frequency response of the dielectric constant of 
metals [17]. The resonant frequencies of bound electrons were assumed to be 
random variables iω  that have Gaussian distributions centered about iω , 

2,3, ,i Z=  . Thus, the susceptibility given by (22) becomes a random function 
of the set of random transition frequencies { } 2

Z
i i=

ω  whose mean values are giv-
en by the set { } 2

Z
i i=

ω , so that  

( ) ( ) ( ) ( ) ( )
1 1

2 3 1 1
2

X ; , , , I B ; I B .
Z

Z i i i
i

− −

=

   = − −   ∑
    

ω ω ω ω χ ω ω χ ω ω ω   (23) 

Assuming the random variables are independent, the joint probability density 
function is assumed to have the Gaussian form  

( )

( )( ) ( ) ( ) ( )22 22 2 2
2 2 2 3 3 31

2 3

2 2 21 2
2 3

2

, , ,

2 e .Z Z Z

Z

Z
Z

p
 − − + − + + −−   

−
 =  π







ω ω σ ω ω σ ω ω σ

ω ω ω

σ σ σ
  (24) 

The expected value of the susceptibility tensor becomes  

( ) ( ) ( ) ( )
1 1

1 1
2

X I B , I B , ,
Z

i i i i
i

− −

=

   = − + −   ∑
    

χ ω ω χ ω ω ω ω       (25) 

where  

( ) ( )

( ) ( ) ( ) ( )2 21 2

1

1 22

, I B ,

2 , I B , e d .i i i

i i i i

i i i i i i

−

−∞ −

−∞

− −

 − 

 = − π ∫

 

  ω ω σ

χ ω ω ω ω

σ χ ω ω ω ω ω
       (26) 
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when the static bias is along the y direction,  

v o

c

o v

0
X 0 0 ,

0

 
 =  
 − 



χ χ
χ

χ χ
                   (27) 

where the expected value of cχ  is  
2

p1 2
c p

21

1 ,
Z

i
i i=

Ω
= − − Ω

Ω Ω∑
 

χ                    (28) 

which is independent of bias and is thus the susceptibility in the absence of a bi-
as. The expected value of the diagonal component that is dependent on the bias 
is  

( )
2

p1 2
v p c2 2 2

21 cys 1

1

1

Z
i

i
i iB =

Ω Ω
= − − Ω ≈

Ω Ω −Ω+ Λ
∑



 



χ χ       (29) 

The expected value of the off-diagonal susceptibility tensor is  
* 2

1 p1 * 2
o c p2 2

21

1 ,
Z

y i i
i i

j
=

 Ω
≈ Ω + Ω  Ω Ω 

∑
 


χ            (30) 

so that the expected value of oχ  depends on 2
11 Ω  (see Appendix). 

3. Formulation, Results and Discussion  

The objective here is to match the theoretical susceptibility governed by the LD 
and the BB theories to the experimental data obtained from unbiased samples of 
iron. Previous models were concerned with matching the theoretical dielectric 
constant governed by the LD and the BB theories with experimental data [15] 
[17]. The approach here somewhat resembles that of Rakic et al. [17]. The expe-
rimental values in Figure 1, given in Weaver et al. [19] [20], are used because 
they are more extensive and extend over a larger range of energies than those 
given in Johnson and Christy [22]. Some spurious data points were dropped be-
cause we were unable to associate neighboring points with the dropped point to 
produce a so-called resonant transition condition. 

In fitting experimental data to theory, the number of variables depends on the 
number of grouped electrons in the LD model. As discussed earlier, bound elec-
trons have only two unknown parameters: 2

piω , the square of the plasma fre-
quency, determined from iN , and the collision frequency iγ . All bound elec-
trons are collected into different groups according to their plasma, collision and 
resonant frequencies. Unknown variables are contained in the vector *X  and 
are grouped into sets, namely, the Group 1 set is { } { }2

p1 1 1 2, ,X X=ω γ , while the 
Group 2 set is { } { }2

p2 2 2 3 4 5, , , ,X X X=ω γ ω , etc. For free electrons, 1 11 2= πτ γ  
represents the mean time between collisions, while for bound electrons 1 2i i= πτ γ  
is the electron life time at an energy level. The frequency iω  represents the 
transition frequency when an electron changes from one state to another. Thus, 
if there are Z groups of electrons, then there will be 3 1ZN Z= −  unknown pa-

https://doi.org/10.4236/msa.2021.1212042


J. K. Butler et al. 
 

 

DOI: 10.4236/msa.2021.1212042 631 Materials Sciences and Applications 
 

rameters. The unknowns 1 3 6, , ,X X X   are 2
piω , 1,3,6,i =  . 

The BB model of the dielectric constant is an extension of the LD model [10] 
[17] and assumes the resonant/transition frequencies exhibit homogene-
ous/inhomogeneous broadening that can be described by a Gaussian distribu-
tion centered at resonant frequencies with a width of σ . The ith oscillator cen-
tered at iω  has a Gaussian width of iσ  and thus adds a new parameter to the 

*X  vector that must be determined from fitting the theory to the experimental 
data. Accordingly, Group i data has the parameters { }2

p , , ,i i i iω γ ω σ  so that the 
total number of parameters is 4 2ZN Z= − . 

To fit the theoretical susceptibility to experimental data we use a mean-square 
relative error function given by  

( ) ( ) ( ) ( )* 2 * 2 *
r i, , ,m m m

m
E X W E X E X = + ∑ ω ω ω          (31) 

where the real part is ( ) ( ) ( ) ( )* *
r r re re, ,m m m mE X X = − ω χ ω χ ω χ ω . The real 

part of the theoretical susceptibility at mω  is ( )*
r , mXχ ω , while ( )re mχ ω  is 

the experimental data at mω . The imaginary part, ( )*
i , mE X ω  in (31) is ob-

tained by replacing r with i in the above expressions. The weight function 
( ) ( )1 1 2m m m mW + −= −ω ω ω ω  is designed so as to represent sparse data equally 

with bunched data as well as to weigh low energy points equally with high-energy 
ones. This approach is similar to representing equally spaced data on a log ab-
scissa axis. 

The optimization process that minimizes (31) with respect to vector *X  uses 
the NAG Mark 23 optimization library routine E04LBF [28]. The definition of 
components of *X  and their relation to the parameters of the BB model of the 
dielectric constant or susceptibility, defined in (28) are illustrated in Table 1 and 
Table 2. 

Our model is implemented for gold for the sake of comparison with Rakic’s 
work and the data was obtained from Handbook of Optical Constants of Solids 
[29]. The output of the vector *X  from E04LBF was used to compute the 
theoretical dielectric of gold. The theoretical calculation of the dielectric con-
stant of gold obtained by Rakic [17] was obtained for comparison to the results 
obtained by our model. Figure 3 shows the real and imaginary parts of the di-
electric constant as a function of photon energy for both methods. 

Table 1 lists the output of appropriate variables from both methods. Fur-
thermore, the implementation of our model for iron data [19] [20] can be seen 
in Section 4 Figure 4 shows real and imaginary parts of susceptibility for iron. 
The computed parameters for the modified BB model of iron are shown in Ta-
ble 2. 

Rakics’ method used for the analysis of gold employs 6 groups of electrons 
and incorporates 23 unknowns while our method uses 5 groups of electrons and 
a total of 18 unknowns. Also, our model uses 1 less unknown for a given group 
of electrons because the oscillator strength 2 2

p i p if=ω ω  is treated as a single va-
riable without the constraint 1if =∑ . 
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Table 1. The computed components of the *X  vector that describes the dielectric con-
stant of gold using the BB model results from Ref. [17] (first three columns) and that ob-
tained with the model discussed above. All frequencies, iω , damping constants, iγ , and 
linewidths, iσ , have units of eV. Relative oscillator strengths if s have no units. The 
term 2

p iω  in this work is equal to 2
p ifω , which are Rakic’s parameters.  

1X  pω  9.030 1X  2
p1ω  61.754 

2X  1f  0.770 2X  1γ  0.0521 

3X  1γ  0.050    

4X  2f  0.054 3X  2
p 2ω  4.4306 

5X  2γ  0.074 4X  2γ  0.0643 

6X  2ω  0.218 5X  2ω  0.0100 

7X  2σ  0.742 6X  2σ  0.7954 

8X  3f  0.050 7X  2
p 3ω  4.7123 

9X  3γ  0.035 8X  3γ  0.0001 

10X  3ω  2.885 9X  3ω  2.8913 

11X  3σ  0.349 10X  3σ  0.3678 

12X  4f  0.312 11X  2
p 4ω  35.859 

13X  4γ  0.083 12X  4γ  0.0001 

14X  4ω  4.069 13X  4ω  4.2778 

15X  4σ  0.830 14X  4σ  0.8598 

16X  5f  0.719 15X  2
p 5ω  42.881 

17X  5γ  0.125 16X  5γ  0.0001 

18X  5ω  6.137 17X  5ω  6.1026 

19X  5σ  1.246 18X  5σ  0.6107 

20X  6f  1.648 19X  2
p 6ω  - 

21X  6γ  0.179 20X  6γ  - 

22X  6ω  27.970 21X  6ω  - 

23X  6σ  1.795 22X  6σ  - 

3.1. Dielectric Constant of Gold  

The comparative fit of our model with that of Rakic’s for the relative dielectric 
constant of gold is shown in Figure 3. Rakic et al. pointed out the superiority of 
the BB model over the LD model [17].  

3.2. Susceptibility of Iron  

The main aim of this work is to develop a theoretical model for the susceptibility 
of iron using experimental data. In the original BB paper, the superiority of the 
Gaussian-Lorentzian convolution over just a Lorentzian profile was explained 
for amorphous solids in the infrared region [10]. In a similar fashion, Rakic et al. 
showed that the model is applicable for various metals not only for the infrared 
region, but also for visible and ultraviolet regions. However, Rakic et al. did not 
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work on optical properties of iron. In our work, we apply our model to iron and 
the computed fit parameters can be seen in Table 2. The main difference be-
tween our analysis and Rakics’ analysis is the elimination of 1if =∑  con-
straint from the system. In Table 2 the first three columns show Rakic’s para-
meters and the last three columns show the parameters used for this work. 

The fit for the susceptibility data of iron in terms of photon energy can be seen 
in Figure 4. The data is acquired from Weaver et al. [19] [20]. The numerical  
 
Table 2. The computed components of the *X  vector describe the susceptibility of iron 
using modified BB model on experimental data for iron [19]. The first three columns 
represent the vector *X  as described by Ref. [17] while the last three columns represent 
the vector *X  obtained with our modified BB model. All frequencies, iω , damping 
constants, iγ , and linewidths, iσ , have units of eV. Relative oscillator strengths if s 
have no units.  

1X  pω  22.46 1X  2
p1ω  11.50 

2X  1f  0.0279 2X  1γ  0.0084 

3X  1γ  0.0084    

4X  2f  0.3247 3X  2
p 2ω  163.8 

5X  2γ  5.051 4X  2γ  5.051 

6X  2ω  0.2060 5X  2ω  0.2060 

7X  2σ  0.0000 6X  2σ  0.0006 

8X  3f  0.0387 7X  2
p 3ω  19.50 

9X  3γ  1.214 8X  3γ  1.214 

10X  3ω  2.464 9X  3ω  2.464 

11X  3σ  0.3078 10X  3σ  0.3078 

12X  4f  0.0194 11X  2
p 4ω  9.758 

13X  4γ  2.169 12X  4γ  2.169 

14X  4ω  6.301 13X  4ω  6.301 

15X  4σ  0.0003 14X  4σ  0.0003 

16X  5f  0.0121 15X  2
p 5ω  6.077 

17X  5γ  0.0000 16X  5γ  0.0000 

18X  5ω  8.892 17X  5ω  8.892 

19X  5σ  1.032 18X  5σ  1.032 

20X  6f  0.0501 19X  2
p 6ω  25.25 

21X  6γ  4.014 20X  6γ  4.014 

22X  6ω  12.25 21X  6ω  12.25 

23X  6σ  0.0072 22X  6σ  0.0072 

24X  7f  0.5324 23X  2
p 7ω  268.5 

25X  7γ  24.06 24X  7γ  24.06 

26X  7ω  19.47 25X  7ω  19.47 

27X  7σ  0.0077 26X  7σ  0.0077 
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Figure 3. The real, rκ , and imaginary, iκ , parts of the dielectric constant of gold using 
the BB model. Experimental values (small circles) were computed from the data in [29]. 
The solid curves were obtained by our model while the dashed curves were obtained from 
the gold data given in Ref. [17].  

 

 
Figure 4. The real, rχ , and imaginary, iχ , parts of the susceptibility of iron using the 
BB model. Experimental values (small circles) were computed from the data in [19] [20]. 
The numbers above the abscissa represent the locations of transitions and the dashes 
above the numbers indicate the various values of iσ , the degree of line broadening in the 
BB model.  

 

values above the abscissa represent the transition energies and the dashes above 
the numbers indicate the broadening width. Figure 4 shows that our improved 
BB model provides an accurate fit even for narrower inter-band transitions and 
validates that our model is applicable to iron up to 30 eV. 
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4. Conclusions 

We analyzed the optical properties of Au, and Fe by using an improved Bren-
del-Bormann (BB) model. As an initial step, the Drude free electron theory is 
used to model the susceptibility of iron as illustrated in Figure 2. However, the 
differences between the Drude predictions and that of the experimental data are 
large, particularly in the near infrared region. The Drude-Lorentz extension 
places damped harmonic oscillators at critical points, referred to as inter-band 
transition points. In addition to the idea of the placement of oscillators at critical 
points, a Voigt lineshape assists in more accurately predicting susceptibility. 
Rakic et al. [17] used the BB method for various metals to show its accuracy for 
modeling the optical constants not only for amorphous solids but also for metals. 
We modified Rakic’s model by reducing the number of unknowns, and relaxing 
a constraint from the system. Table 2 shows that the largest concentrations of 
oscillators occur at 2 0.2 eV≈ω  and 7 20 eV≈ω . The large concentration at 

2ω , about 32%, brings the imaginary part of the susceptibility, i−χ  in line with 
the experimental data, while the concentration at 7ω  tends to render the sus-
ceptibility to almost straight lines on the log-log plot in Figure 4. The fit of our 
model to iron data can be seen in Figure 4. The iron plot results up to 30 eV in-
dicates that our model could perform fairly well for transition metals up to a 
broad range of the spectrum. 

The studies that have been mentioned so far are related to diagonal elements 
of the relative permittivity tensor. However, one needs to take into account the 
off-diagonal elements if there is an external magnetic field in the anisotropic 
medium if the material is ferromagnetic. The off-diagonal elements were also 
incorporated by the contribution of Magneto-Optic Kerr Effect which includes 
the Kerr rotation angle and ellipticity [30]. The investigation of the off-diagonal 
elements was conducted by Krinchik et al. [31] [32] [33] by introducing the 
equatorial Kerr effect (T-MOKE) to the experimental setup.  
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Appendix 

It is convenient to write the closed form integrals that appear in the BB model of 
the dielectric constant/susceptibility tensors as a function of error integrals. In 
particular the expected value of the susceptibility given in (30) requires calcula-
tion of the expected value of the random variable 1 iΩ   

 

( )
( )

( )

2 2

2 2
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        (32) 

where i iS =σ ω  is the variance of the random variable iΩ , 2 1i ia j= − Γ . As 
described in Ref. [17], ( )iI a  can be written as a sum of 2 integrals by partial 
fraction expansion  

2 2

1 1 1 1 .
2 i i i i ii i a a aa

 
= + −Ω +Ω−Ω  

 

As required by convergence of the integral in (32), { }iaℑ  must be positive so 
that  

2 21 1 1 1 1 ,
2i i ia j = − + Γ + + + Γ − 
 

 

i.e., ia  must lie in the 2nd quadrant of the complex plane as opposed to the 4th 
quadrant (Equation (8) in Reference [17] has a different value for the sign of 

ja′ ). The resulting integral in (32) produces  

( ) ( ) ( )1 2
1 ,

2 2i
i i

I a j w z w z
S a

= − +  
π

                 (33) 

where ( ) ( )2
e erfczw z jz−= −  is computed from the NAG Library, using func-

tion S15DDF, ( )1 2i i iz a S= −Ω , and ( )2 2i i iz a S= +Ω . The expected 
value of the off-diagonal element oχ  as given by (30) requires calculation of 
the expected value of the random variable 21 iΩ , written as  

 ( ) ( ) ( ) ( )( )1 2 1 22 3 2

d1 1 2
2 d 8

i
i i i

i ii i i

I a
J a j S w w a w w

a a a S
π ′ ′= = − = − + − +

Ω
 (34) 

The error functions and their derivatives are ( )k kw w z=  and  
2 2k k kw j z wπ′ = − , while 1,2k = , respectively [34]. The recursion relation 

( ) ( ) ( ) ( )2 12 2 1 0n n n
k k k kw z w n w+ ++ + + =  can be used for higher order derivatives. 

 

https://doi.org/10.4236/msa.2021.1212042

	Optical Properties of Iron to 30 eV
	Abstract
	Keywords
	1. Introduction
	2. Optical Properties of Iron
	2.1. Electron Displacement in an Electromagnetic Field 
	2.2. Electric Susceptibility from the Lorentz-Drude Model 
	2.3. Susceptibility: Brendel-Bormann Model 

	3. Formulation, Results and Discussion 
	3.1. Dielectric Constant of Gold 
	3.2. Susceptibility of Iron 

	4. Conclusions
	Conflicts of Interest
	References
	Appendix

