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Abstract 
Polyhedral shapes can be found in crystalline materials ranging from macros-
copic natural mineral solids to microscopic or nanoscopic particles. These 
shapes originate from the crystallographic properties of the constituting ma-
terial, and the outer shape depends on several unique habit planes. In this 
study, polyhedral crystal growth was simulated considering the surface energy 
and crystallographic characteristics. A series of polyhedrons, including cube, 
truncated hexahedron, cuboctahedron, truncated octahedron, and regular oc-
tahedron, was targeted. First, the polyhedron’s static surface energy and dy-
namic energy variation during crystal growth were computed. Then, the crys-
tal-growth process was simulated based on the energy minimization policy. 
Interestingly, when the simulation began with truncated hexahedral nucleus, 
the shape changed to a cuboctahedron; however, a certain type of truncated 
octahedron was obtained when starting with different types of truncated oc-
tahedrons. In addition, once converged cuboctahedron abruptly changed the 
shape to a truncated octahedron as the crystal became larger. These results 
were supported by the static and dynamic energy curves. Furthermore, the 
method was applied to different materials by assuming virtual parameters, 
yielding various morphologies.  
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1. Introduction 

Crystalline materials have distinct crystallographic properties, and various natu-
ral minerals exhibit specific shapes [1], such as the cubic shape in NaCl and 
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hexagonal prism in quartz. Habitat planes, which are intrinsically based on the 
crystal structure, construct such polyhedral shapes, and atomistic characteristics 
determine the shape of macroscopic objects. It is interesting that the polyhedral 
shapes are also observed at the nanoscale. Nanoparticles are small particles with 
a diameter of tens or hundreds of nanometers and are used in various fields, in-
cluding medicine, pharmacy, and functional materials [2] [3]. It is crucial to 
control the shape of the particles because various properties strongly depend on 
the outer shape. However, artificial shape-control methods, such as mechanical 
machining or molding of nanoparticles are difficult to use; thus, natural forma-
tion of shapes by crystal growth is the only possible procedure [4] [5]. In con-
trast to macro-crystals, the shapes of nanoparticles directly depend on crystallo-
graphic characteristics. These characteristics possibly change the shape during 
particle growth because the balance of the volume and surface area depends on 
the particle size. To predict the stable shape of the particles and the change in 
shape during crystal growth, the surface energy must be evaluated. However, 
experimentally measuring the surface energy is challenging; thus, computer si-
mulation is available alternative, and especially molecular dynamics simulation 
is effective for capturing the atomistic and crystallographic properties [6] [7] [8] 
[9] [10], although the focused scale is limited in nanoscale. A phase-field model 
is suitable for simulating the crystal-growth process on a larger scale [11]. The 
model is often applied for crystal growth in solidification process, and compli-
cated shapes such as dendrites can be successfully regenerated. This model is al-
so applied for faceted surfaces, and polyhedral shapes are obtained [12] [13]. 
However, the surface energy should be expressed in a continuous function with 
respect to the crystal orientation, which makes it difficult to introduce the ato-
mistic discrete properties.  

Polyhedral shapes can also be seen in a foam structure [14]. Interfacial energy 
plays an important role in determining the shape of the foam cells, where energy 
minimization leads to optimum morphology. The Kelvin cell is a well-known 
shape that is an equal-edged truncated octahedron, whereas the Weaire–Phelan 
cell is the alternate best shape [15] [16]. The authors applied phase-field model to 
the foam pattern optimization and obtained Kelvin cell as a stable structure [17] 
[18]. Although these results are not directly related to the morphology of a single 
particle, the interfacial energy is frequently used in conjunction with the surface 
energy and is applicable for this study. Nevertheless, these estimates mostly fo-
cus on macroscopic structures, ignoring the vast range from nano to macroscale.  

Therefore, we are motivated to demonstrate crystal growth simulation from a 
small nucleus to a large size and morphological change in the process using a 
simplified equation. To evaluate the surface energy of polyhedral crystal from 
atomistic model, we have demonstrated molecular dynamics simulation of po-
lyhedral nanoparticles and analyzed the surface energy of typical crystallograph-
ic planes and edges [19]. In that study, we proposed a polynomial equation and 
demonstrated that the equation accurately reflected the surface energy of the 
polyhedral nanoparticle. In this study, the equation is applied to wide range of 
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polyhedral solid sizes, and the surface energy and total energy, including the vo-
lumetric effect, are assessed. Then the crystal-growth process is simulated, where 
the change in shape is accepted if the morphological change decreases the ener-
gy. In addition, virtual parameters are applied to demonstrate the applicability of 
the present method to various types of crystalline materials. 

2. Target Polyhedrons 

This paper aims to study the morphological shifts occurring during the crystal 
growth. The volumetric dilatation process is simulated with an initial nucleus 
created with a specific polyhedral shape. The change in shape is accepted if the 
energy decreases because of the operation, and this process is repeated conti-
nuously. Therefore, the target polyhedrons should be expressed using a conti-
nuous parameter. In [19], a series of shapes illustrated in Figure 1(a) are consi-
dered. In present study, these shapes are studied, and the definition of the para-
meter follows. A cube is considered as a reference of the series (Figure 1(a)(i)). 
A truncated hexahedron is generated by equally cutting the eight vertices of the 
cube, as shown in Figure 1(a)(ii). When the length is cut equal to the half of the 
edge, the shape is called a cuboctahedron, as shown in Figure 1(a)(iii). If the 
vertices are cut more deeply, a truncated octahedron is generated, as shown in 
Figure 1(a)(iv). Finally, when the full length of the original cube is cut, the re-
maining body becomes a regular octahedron, as shown in Figure 1(a)(v). He-
reafter, the cutting length from the cube’s vertex is used as the shape parameter 
c, i.e., c = 0 represents a cube, 0.5 a cuboctahedron, and c = 1 a regular octahe-
dron. 

These shapes are suitable for the face-centered cubic (fcc) crystal because the fac-
es appearing in this series are (100) and (111) planes only. Figure 1(b) represents 
 

 

Figure 1. Polyhedrons considered in this study. (a) Target polyhedrons, (i) Cube, (ii) 
Truncated hexahedron, (iii) Cuboctahedron, (iv) Truncated octahedron, (v) Regular oc-
tahedron; (b) Atomistic models, (i) c = 0, (ii) c = 0.3, (iii) c = 0.5, (iv) c = 0.7, (v) c = 1.0. 
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the atomistic model corresponding to these shapes; the colors indicate the po-
tential energies of the atoms, where red corresponds to the highest value, blue to 
the lowest, and green to the middle. The bulk atoms present inside have low 
energy and are stable than the surface. The face, edge, and vertex energies of the 
specific elements were evaluated using these models and the calculation details 
are reported in [19]. 

3. Surface Energy Equation of Polyhedral Crystals 

A regular polyhedron is defined as a polyhedron in which all the faces, edges, 
and vertices have equivalent shape, area, length, and geometrical symmetry. 
Further, it is assumed that the surface energy U of such polyhedron is different 
from the contribution of the face, edge, and vertex, i.e., UF, UE and UV. In the 
case of UF, equal contributions are expected from all faces, and it is expressed as 
UF = FSuF, where F is the number of faces in the polyhedron, S is the area of a 
single face, and uF is the facial energy per unit area. Similarly, UE is expressed as 
UE = ELuE and UV = VuV, where E and V are the number of edges and vertices in 
the polyhedron, respectively, L is the length of a single edge, and uE and uV are 
the edge energy per unit length and vertex energy per point, respectively. Then 
the surface energy of the polyhedron is expressed as follows:  

F E V F E VU U U U FSu ELu Vu= + + = + + .             (1) 

However, Equation (1) is invalid when we consider a crystalline material be-
cause not all faces are equivalent and have different characteristics depending on 
the crystallographic feature. Therefore, Equation (1) is modified as follows:  

1 1 1
FF E V F E V

i
E V

i j j ki j kU U U U S u L u u
= = =

= + + = + +∑ ∑ ∑ .        (2) 

Here, i, j, and k are indexes identifying a face, edge, and vertex, respectively, Si 
is the area of face i, Lj is the length of edge j, and F

iu , E
ju , and V

ku  are the 
energies of the face i, edge j, and vertex k, respectively. These energies are eva-
luated depending on the crystallographic characteristics. For example, the facial 
energy F

iu  depends on the Miller index of each face, and the edge energy de-
pends on the indices of the two faces constructing the edge. Because a vertex is 
constructed by three or four faces, the vertex energy is denoted with three or 
four Miller indices.  

Following [19], the face, edge and vertex energies were calculated using mo-
lecular dynamics simulation, and obtained values for the specific crystallograph-
ic elements, i.e., face, edge, or vertex, are listed in Table 1. These energies, eF, eE, 
and eV were calculated by taking an average of the atoms on the target element, 
and hence the values are those per atom. In this study, the relative difference 
corresponds to determinant, and we assume these values as those per area, per 
length and per point of vertex.  

Surface energy is defined as the energy difference between the surface and 
bulk region. Therefore, the bulk energy was also calculated using the same 
atomic model and estimated as eB = −8.224. The surface energy U is, conse-
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quently, calculated by substituting e − eB for u in Equation (2). In addition, the 
general surface energy is expressed as the value per unit area, i.e., g = U/SA, 
where g is energy per area and SA is the total surface area of the solid, but we will 
denote U as the surface energy to show the size dependency explicitly.  

4. Surface Energy Calculation of Various Polyhedrons 
4.1. Energy Calculation 

The surface energy of the polyhedral crystals is calculated using Equation (2) 
and parameters in Table 1. The results are shown in Figure 2(a). In addition, 
the total energy G of the polyhedron, which is calculated as the sum of the sur-
face energy U and bulk energy GB = eBV (Figure 2(b)). The calculations were 
performed for polyhedrons of various sizes. When making the polyhedrons ac-
cording to the shape parameter c (Figure 1), the volume is reduced. To make a 
fair comparison based on the shape only, the volume is kept constant with the 
cube. Different colors indicate the results for different volume, expressed by the 
edge length of the initial cube; L10 (red) is the smallest model and L400 (blue) is 
the largest in this calculation. The relative values in the vertical axis are calcu-
lated by normalizing the energy by the value obtained for the cube. Note that the  
 

 

Figure 2. Relative surface energy for typical polyhedrons of various sizes, where shape 
parameterc represents the shape of polyhedrons; 0: cube, 0.5: cuboctahedron, and 1: reg-
ular octahedron. (a) Surface energy; (b) Total energy. 
 

Table 1. Calculated energy of representative faces, edges, and vertices. 

111 face 100 face 111-100 edge 111-111 edge 100-100 edge 

−5.709 −5.353 −4.462 −4.301 −3.398 

111-111-100 vertex 111-100-100 vertex 100-100-100 vertex 111-111-111-111 vertex 111-111-100-100 vertex 

−3.704 −3.300 −2.107 −2.377 −3.074 

Bulk: –8.224. 
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values for c = 0 (cube), 0.5 (cuboctahedron), and 1 (octahedron) have singular 
value because the number of vertices is discontinuous for these shapes. The in-
fluence of the vertices is remarkable when the size is small. However, the discon-
tinuity reduces rapidly as the size becomes large and becomes almost negligible 
for L40 and larger. 

4.2. Surface Energy and Total Energy 

The cube has higher surface energy than tetrahedron, as shown in Figure 1(a) 
because the cube’s (100) face has a higher energy than that of the tetrahedron’s 
(111) face. As the shape parameter c becomes larger from 0 to 0.5, the energy 
decreases steadily because the high-energy area of the (100) decreases and the 
low-energy area of the (111) increases. This tendency changes at c = 0.5 for cu-
boctahedron. The decreasing gradient becomes steep instantaneously above c = 
0.5, and the energy reaches a minimum between c = 0.65 and 0.70. Then the 
energy increases gradually until c reaches 1 (octahedron). Geometrically, a 
sphere has the minimum surface area for the same volume body. Among the 
polyhedrons in this study, the truncated octahedron has the minimum surface 
area. Nevertheless, the total edge length is the shortest for the cube, and the 
longest for the cuboctahedron. Because of the contradictory effects, the mini-
mum point appears around c = 0.65 - 0.70, and the minimum point slightly va-
ries depending on the size.  

The size dependency is more apparent in the total energy, as shown in Figure 
2(b). As the volume becomes larger, the effect of the bulk energy becomes do-
minant, and the energy difference between different shapes reduces. Neverthe-
less, it should be noted that this is a relative effect of the shape on the total ener-
gy, and that the absolute difference in energies between different shapes is still 
significant.  

4.3. Surface Energy of Different Crystal 

The surface energy depends on the crystallographic characteristics. Here, the 
reference values of the surface energy are virtually changed. Assuming a crystal 
for which the (100) face is more stable than the (111) face, the energies for (100) 
and (111) in Table 1 were transposed. Likewise, the energies of the 111-111 and 
100-100 edges were also exchanged, and this model is referred as (100)-base 
model. In addition, another model that has an identical uF for all faces, identical 
uE for all edges, and identical uV for all vertices was considered, and this model is 
referred as constant-value model. The calculated results for the (100)-base model 
and constant-value model are shown in Figure 3(a) and Figure 3(b), respec-
tively. In the (100)-base model, low energy is assigned to the (100) face and the 
cube exhibits the lowest energy for L10 model, as shown in Figure 3(a). Howev-
er, when the size increases, the energy in the intermediate range reduces and the 
minimum point appeared around c = 0.5. This is because the total surface area is 
smaller than the cube, and the total surface energy decreases even when it has a 
high-energy face. A similar tendency is also observed when a constant value is  
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Figure 3. Relative surface energy for various polyhedrons with modified parameters: (a) 
(100)-base values and (b) constant values. (a) (100)-base; (b) Constant value. 
 
assigned, and the result is shown in Figure 3(b). This model demonstrates the 
direct effect of the surface area, and the minimum point appears around c = 0.6. 
In the case of L10 size, local minima are also observed at c = 0 and c = 0.45, 
whereas it disappears as the size increases. This indicates that the morphological 
change occurs during crystal growth from a small nucleus, which is discussed in 
the later section.  

5. Variation in Energy during Crystal Growth 

According to the well-known classical nucleation theory, the crystal-growth 
process consists of nucleation and growth. As the crystal grows larger, the sur-
face area S and volume V increase. The increasing surface area increases the 
energy, whereas increasing volume decreases the bulk energy. Because the rela-
tive effect of the surface is more evident than volume when the size is small, the 
solid shrinks to vanish to minimize energy. However, if the solid exceeds the 
critical size, it expands because the total energy decreases as it grows. When the 
crystal is assumed to have a spherical shape, the total energy of the crystal is ex-
pressed as follows: 

2 344
3

G S gV R R gγ γ= − ∆ = π − π ∆ ,                 (3) 

where g is the surface energy per area, Δg is the bulk energy per volume, and R is 
the radius of the crystal. Then, the critical radius is obtained as 2 ΔR gγ= . 
This theory is used to investigate the polyhedral crystal targeted in this study.  

At first, the effect of the crystallographic character is neglected, and constant 
surface energy is assumed for all faces. The result is shown in Figure 4(a), where 
the surface and bulk energies are assumed as γ= 2 and Δg = 3, respectively. 
Overall, the initial increase below the peak at the critical volume and the conti-
nuous decrease afterward are commonly observed for all shapes. The energy for 
a certain volume follows the sequence: sphere < cuboctahedron < truncated oc-
tahedron (denoted as Kelvin) < octahedron < cube. 
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Figure 4. Variation in free energy (DG) during crystal growth for (a) without considering 
crystallographic orientation, (b) MD-base values, (c) (100)-base values, and (d) constant 
values. 
 

Then, the crystallographic character was considered, and the values in Table 1 
were applied. The calculated energies are shown in Figure 4(b). Here, the sphere 
is out of target and excluded from the plot. Then the order from the lowest 
energy is replaced from Figure 4(a), and the octahedron becomes the smallest. 
Interestingly, the curves for other shapes are crossed, and the truncated octahe-
dron (Kelvin) is higher than the others in the small range, whereas it gets lower 
in the large range. 

Assuming the different crystallographic properties, the reference energy val-
ues of the (100)-base and constant-value models were applied as in the previous 
section. Figure 4(c) and Figure 4(d) show the energy curves for these models, 
respectively. The cube has the lowest energy in the (100)-base model, followed 
by the cuboctahedron and truncated octahedron. The octahedron curve crosses 
the cuboctahedron and truncated octahedron as the volume increases. The cros-
sover in the energy curves during crystal growth is not observed in the con-
stant-value model, though the difference in shape decreases. Therefore, the cross-
ing in the energy curve is considered the typical result brought by the crystallo-
graphic characteristics. 
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6. Crystal-Growth Simulation 
6.1. Simulation Procedure 

The crystal-growth process was simulated using the surface energy calculated in 
the preceding section. A nucleus is set initially with the size represented by a re-
ferential length of a cube L0 and the shape expressed by shape parameter c0, and 
the corresponding initial energy G0 is calculated. First, the volumetric change is 
tried. The reference length is tentatively increased by +ΔL with keeping the 
shape parameter, and the total energy G’ is calculated. If the energy decreases 
and G' < G0, the volumetric change is accepted and moved to the shape-change 
trial. If the energy increases by the volumetric change, the reference length is 
reduced by −ΔL, and moves to shape change. In the shape-change trial, the 
shape parameter is varied randomly by +Δc or −Δc. The preliminary total energy 
is calculated, and if the energy decreases, the shape modification is accepted. 
This procedure is repeated, and if ten successive unaccepted trials occur, the 
shape is deemed to be stable for that size. The calculation then continues to the 
next step of the volumetric change, and these processes are repeated until the 
crystal becomes large enough or diminishes. 

6.2. Simulation Results 

When the initial size of a nucleus was set below L0 = 2.1, in the case of c0 = 0.4, 
the solid shrunk and disappeared, whereas it started to grow larger when the ini-
tial size was over 2.2. This critical size varied slightly depending on the value in 
c0, but L0 = 3.0 was large enough to start growing for all cases.  

The results for the case of L0 = 5.0 and various values in c0 are shown in Fig-
ure 5, representing the change in shape at the early stage just after the nucleus 
set. Green and yellow represent the (100) and (111) faces, respectively. When the 
initial nucleus is a cube (c0 = 0.0) or a regular octahedron (c0 = 1.0), the shape 
change does not occur, and the crystal starts growing with maintaining the 
shape. No shape change was observed also for a cuboctahedron (c0 = 0.5), though 
the result is not shown here. When the initial shape is truncated hexahedron, as 
shown in the case of c0 = 0.2 and 0.4, the shape starts changing first. After 
reaching a cuboctahedral shape, the crystal starts growing. When the initial nuc-
leus is a truncated octahedron (c0 = 0.6, 0.8, and 0.95), the crystal shape changes 
into a truncated octahedron of 0.7c ≅ . 

Figure 6 shows the variation of the shape parameter. When the calculation is 
initiated with 0 < c0 < 0.5, the parameter immediately changes to c = 0.5, and the 
shape is maintained until the 95th calculation step. When the simulation is 
started with 0.5 < c0 < 1.0, the parameter changes to 0.7c ≅  for each scenario, 
but the merged value gradually decreases, and finally converges to c = 0.67. As a 
result, at the early stages of formation, the crystal of this material has the shape 
of a cuboctahedron or truncated octahedron. Interestingly, at the 95th calcula-
tion step, the cuboctahedron suddenly changes shape and merges with the  
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Figure 5. Change in shape in the early stage of the crystal growth for various initial values 
in the shape parameter c0. Green and yellow face represents the (100) and (111) faces, re-
spectively. 
 

 

Figure 6. Variation in the shape parameter c during crystal growth for various initial 
values c0. 
 
truncated octahedron’s curve. The change in the shape is visually shown in Fig-
ure 7. A quadruple vertex of 111-111-100-100 splits into two triple vertices of 
111-111-100 vertex, and triangular 111 face changes to a hexagonal shape. 
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Figure 7. Change in shape during crystal growth at the later stage for c0 = 0.2. 
 

The surface energy calculated in Sections 4 and 5 is used to explain these 
changes in shape. As shown in Figure 2, the surface energy distributes conti-
nuously, but there is a singular minimum point at c = 0.5. When a nucleus is set 
in the range 0 < c0 < 0.5, the shape changes toward the energy-minimizing direction. 
Because the gradient of the energy curve is negative in this range, the shape 
changes toward increasing c and falls into the cusp at c = 0.5. The cusp is deep 
when the size is small but eventually becomes shallower, and finally, the stable 
state pops out. The energy curve in the range 0.5 < c0 < 1.0, there is a local min-
imum between c = 0.65 and 0.7. Therefore, a nucleus in this range changes its 
shape to the truncated octahedron represented by this minimum. Because the 
minimum point slightly moves as the size becomes larger, the crystal shape also 
changes according to the transfer. Figure 4(b) shows the transition from a cu-
boctahedron to a truncated octahedron in the later stages. When the volume is 
small, the energy curve for the cuboctahedron is lower than the truncated octa-
hedron (Kelvin). Meanwhile, the two curves cross together, and the truncated 
octahedron shows lower energy. The shape shift occurred at this point, accord-
ing to the energy advantage.  

6.3. Different Crystal Model 

Values of the reference energy of the polyhedrons were virtually varied, and si-
mulations were performed. The (100)-base and constant-value models were in-
vestigated after Section 4.3. Figure 8(a) and Figure 8(b) show the variation of 
the shape parameter for the (100)-base and constant-value models, respectively,  
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Figure 8. Variations in the shape parameter c during crystal growth for various initial 
values c0 for the (100)-base and constant-value models. (a) (100) base; (b) Constant value. 
 
in which the results for different initial shapes indicated by c0 = 0.2, 0.4, 0.6, 0.8, 
and 0.95 are plotted.  

When the initial shape parameter is 0 < c0 < 0.5 in the (100)-base model, the 
shape changes to a cube. The shape changes toward cuboctahedron when the in-
itial shape is 0.5 < c0 < 1.0, though the converging value is not exactly 0.5 and 
slightly larger. Figure 9(a) shows the visual illustration of the shape. As shown 
in the snapshot of the 8th calculation step, the shape is almost cuboctahedron, 
but there is a short edge between two yellow triangular faces. The energy curve 
in Figure 3(a) supports these variations. Because the gradient is positive for the 
curve between c = 0 and 0.5, the shape shifts toward c = 0. Meanwhile, in the 
range between c = 0.5 and 1.0, a local minimum exists at a point slightly larger 
than 0.5 for a small crystal. Therefore, the stable shape is not a complete cuboc-
tahedron but a truncated octahedron near c = 0.5. 

When using the constant-value model, the shape settles into a cubic shape 
when the simulation is started by c0 = 0.2, whereas the stable shape shifts to a 
cuboctahedron when started by c0 = 0.4. In the energy curve for this model pre-
sented in Figure 3(d), a local maximum exists around c = 0.2. Therefore, when 
the initial shape is smaller than this point, the shape moves to c = 0, and if larger, 
it goes to c = 0.5. When the initial nucleus is a truncated octahedron between c0 
= 0.5 and 1.0, the shape parameter varies into around c = 0.6, where the local 
minimum exits as shown in Figure 3(d). The corresponding shape-change process 
is illustrated in Figure 9(b). 

In these two cases, a drastic shape change did not occur in the later stage. This 
result is also indicated in Figure 5(c) and Figure 5(d), in which there is no cross 
in the energy curve. 
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Figure 9. Change in shape in the early stage of the crystal growth for the (100)-base and 
constant-value models. (a) (100)-base model; (b) Constant-value model. 

7. Conclusions 

Polyhedral crystal growth was simulated based on the surface energy considering 
the crystallographic characteristics. A series of polyhedrons were targeted, in-
cluding cube, truncated hexahedron, cuboctahedron, truncated octahedron, and 
regular octahedron. The static surface energy of the polyhedron was estimated 
first. Then, based on the classical nucleation and growth theory, the variation in 
energy as a function of the growing volume was determined. Finally, a dynamic 
crystal-growth process was simulated. As a result, morphological change was ob-
served in the early stages; when starting with truncated hexahedron, the shape 
converged to a cuboctahedron, while it converged to a certain truncated octahe-
dron when starting with any truncated octahedron. Furthermore, once converged 
octahedron drastically changed its shape to a truncated octahedron as the crystal 
became larger. These changes were reasonably explained by the static and dy-
namic surface-energy curves. Additionally, the method was applied to different 
materials by assuming virtual parameters, and different shapes were obtained. 
Comparison with real material was not performed yet, but similar polyhedral 
shapes are observed in real materials [20]. Therefore, it can be concluded that 
the applicability of the present method to various crystalline materials was indi-
cated. 

The reference energy was taken from the atomistic model in this work, although 
no quantitative verification was performed. A more complete and precise evalu-
ation of the reference energy is required for comparison with the real material 
system, which can be done using a suitable molecular dynamics model. In this 
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study, only a series of polyhedrons consisting of the {100} and {111} planes of an 
FCC crystal was studied. Now, we are trying to expand this method to various 
crystal systems and general polyhedrons. 
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