
Materials Sciences and Applications, 2020, 11, 837-850 
https://www.scirp.org/journal/msa 

ISSN Online: 2153-1188 
ISSN Print: 2153-117X 

 

DOI: 10.4236/msa.2020.1112055  Dec. 17, 2020 837 Materials Sciences and Applications 
 

 
 
 

Numerical Evaluation  
of the Surface Energy of  
Polyhedral Nanoparticles 

Takuya Uehara1*, Junya Fujiwara2 

1Department of Mechanical Systems Engineering, Yamagata University, Yonezawa, Japan 
2Graduate School of Science and Engineering, Yamagata University, Yonezawa, Japan 

 
 
 

Abstract 
Nanoparticles have been used widely in various fields, and their size and 
shape greatly affect the functional properties. Therefore, controlling the 
morphology of the particles is important, and evaluation of the surface 
energy is indispensable for that purpose. In this study, the surface energy of 
nanoparticles was evaluated by numerical simulation and formulated in a 
polynomial equation. First, molecular dynamics simulations were carried 
out for variously shaped polyhedral nanoparticles. A cube and an octahe-
dron were introduced as reference shapes, and truncated hexahedrons and 
truncated octahedrons were created by cutting out their vertices. The sur-
face energy was plotted for various polyhedrons. The lowest energy was ob-
served in an octahedron because of the stability of the (111) plane, and the 
highest energy was observed in a cube because of the relatively higher 
energy of the (100) plane. Then, the surface energy was formulated in a po-
lynomial equation, in which the parameters obtained by the molecu-
lar-dynamics simulations were introduced. As a result, stability of the octa-
hedron and relative instability of the cube were fairly captured by the pro-
posed polynomial equation, while a slight underestimation was inevitable. 
Finally, the parameters were revised to continuous numbers to extend the 
application range. Consequently, an application for various materials, such 
as a cube having equivalent stability to an octahedron, was demonstrated by 
imposing rather exaggerated parameters. 
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1. Introduction 

A small particle with a nano-meter order diameter is called a “nanoparticle”, and 
it has been used in a wide range of fields such as electronics, photonics, envi-
ronmental engineering, medical sciences, and pharmaceuticals [1] [2]. In prac-
tical application, nanoparticles are typically scattered in a base material rather 
than being used as a single particle. Nonetheless, the individual size and shape of 
every particle affect the properties of the entire material. Therefore, controlling 
the morphology of nanoparticles is a key issue in practical application, and 
theoretical understanding of the morphological stability in an atomistic scale is 
indispensable. There are several ways of producing nanoparticles. These are typ-
ically divided into physical and chemical processes. In the latter, the chemical 
reaction should be considered, and the covalent bonding and electronic struc-
ture should be modeled based on the first-principle or quantum chemical ana-
lyses. In contrast, the mechanism in the physical process, which is dominant for 
metallic particles, is rather simple because homogeneous interatomic potentials 
can be applied to an atomistic-order modeling. The molecular dynamics (MD) 
method [3], by which the motions of all atoms in the considered system are 
tracked, is suitable for simulating the formation process of nanoparticles and 
evaluating their stability. The parameters in the interatomic potential, however, 
depend on the materials, and a wide variety of stable shapes can be observed de-
pending on the parameters. Hence, the method is suitable for studying a speci-
fied material but ineffective for general investigation. Meanwhile, an approxima-
tion of the nanoparticles based on polyhedral shape is important and effective 
for estimating the stability of particles and capturing their characteristics. In this 
regard, various studies have been conducted [4]-[9]. However, a general theory 
on the stability of nanoparticles remains incomplete. 

Concerning the evaluation of surface energy, a phase-field method [10] [11] 
is another potential approach. In this method, optimization of various types of 
morphology, including the microstructure of materials and mechanical struc-
ture of beams, is possible based on the notion of energy minimization. There-
fore, if the surface energy is formulated using continuous variables, it would be 
possible to predict the stable shape of the particles by applying the energy 
formula to the phase-field method. The author demonstrated phase-field si-
mulation for evaluating the stability of polyhedral shapes in foam materials 
and for investigating domain tessellation in three-dimensional space [12] [13]. 
Currently, we are motivated to apply this procedure in evaluating the stability 
of nanoparticles. As a first step, in this paper, an expression of the surface 
energy in a polynomial equation is proposed following MD simulations to ob-
tain relevant parameters. Representative polyhedrons are considered in a series 
of truncated hexahedrons and truncated octahedrons by cutting the vertices of 
a cube or an octahedron [14]. In addition to the parameters obtained by MD 
simulations, several trials are conducted to indicate the possibility of applica-
tion to various materials. 

https://doi.org/10.4236/msa.2020.1112055


T. Uehara, J. Fujiwara 
 

 

DOI: 10.4236/msa.2020.1112055 839 Materials Sciences and Applications 
 

2. Making Polyhedron Models 
2.1. Target Polyhedrons 

Face-centered-cubic (fcc) metals are considered in this study. In the fcc crystal, 
(111) planes are the most stable, and this is followed by (100) planes, and other 
planes are relatively unstable. As such, only these two planes were focused on in 
this study. One of the typical polyhedral shapes is a cube, which has six (100) 
planes, 12 edges, and eight vertices. Another preferable shape is an octahedron, 
which comprises eight (111) planes, 12 edges, and six vertices. By setting these 
two shape types as the standard shapes for the current study, various polyhe-
drons were created as shown in Figure 1. Truncated hexahedrons were created 
by cutting the eight vertices of a cube in Figure 1(a), generating six octagons of 
the (100) planes and eight triangles of the (111) planes as shown in Figure 1(b). 
Conversely, truncated octahedrons were created by cutting the vertices of an oc-
tahedron shown in Figure 1(f), which comprised eight regular hexagons and six  

 

 
Figure 1. Target polyhedrons: a truncated hexahedron (b) and truncated octahedron (e) 
are created by cutting the vertices of a cube (a) and regular octahedron (f), respectively. 
Cuboctahedrons (c) and (d) are created by either from cube or octahedron, respectively. 
In addition to these polyhedrons, a regular tetrahedron (g) and an asymmetric truncated 
octahedron (h) are considered. 

https://doi.org/10.4236/msa.2020.1112055


T. Uehara, J. Fujiwara 
 

 

DOI: 10.4236/msa.2020.1112055 840 Materials Sciences and Applications 
 

squares as shown in Figure 1(e). Generally, the hexagons have three long edges 
and three short edges. When the lengths of all edges become the same, the poly-
hedron is called a Kelvin cell. This shape is geometrically special in the sense that 
it is the best space-filling shape in three-dimensional space with the smallest 
surface area under a given volume. A cuboctahedron was created in both ways 
by cutting the cube and by cutting the octahedron, as shown in Figure 1(c) and 
Figure 1(d), respectively. 

All these polyhedrons comprise either or both the (100) and (111) planes. In 
addition to these shapes, a regular tetrahedron and an asymmetric truncated oc-
tahedron illustrated in Figure 1(g) and Figure 1(h), respectively, were consi-
dered. All four faces of a regular tetrahedron are the (111) plane, and six edges 
are included. The number of faces, edges and vertices of an asymmetric trun-
cated octahedron is the same as those of a truncated octahedron, while the faces 
differently comprise four large hexagons, four small hexagons, and six rectan-
gles. Many other shapes can be generated using the (100) and (111) planes, but 
only the shapes mentioned above were targeted herein because of their symme-
tric character. 

In these polyhedrons, cube, regular octahedron, and regular tetrahedron 
shapes are termed regular polyhedrons or Platonic solids, in which all faces are 
identical regular polygons, and all edges and vertices have the same characteris-
tics. In addition, a cuboctahedron and Kelvin cell are termed semi-regular poly-
gons or Archimedean solids. The number of faces, edges, and vertices as well as 
the Miller indexes of the relevant faces are listed in Table 1, in which the abbre-
viated designations used in this paper are also noted. 

2.2. Parameters Determining the Polyhedrons 

To parameterize the size and shape of the polyhedrons, the following variables 
were introduced: lc, the edge length of the original cube; c, the cutting length 
from the vertex of the cube along the edge; lo, the edge length of the original oc-
tahedron; and d, the cutting length from the vertex of the octahedron along the 
edge. The ranges of c and d are limited as 0 2cc l≤ ≤ , and 0 2od l≤ ≤ , re-
spectively. The cuboctahedron is generated from the cube when c = lc/2 and 
from the octahedron when d = lo/2. The Kelvin cell is formed from the octahe-
dron when d = lo/3. Here, the truncated octahedrons can be generated from a 
cube by setting the value of c as 2c cl c l≤ ≤ . However, this process induces the 
overlap of the cut parts, which hinders intuitive understanding. Nonetheless, it is 
useful for simplifying the parameters. Therefore, in this paper, the parameters lc 
and c are used to identify the shape and size of a polyhedron. The cutting lengths 
from alternative vertices are set as c1 and c2 (the diagonal vertices in the original 
square face have the same index) under a limitation of ( )1 2 2c cl c c l≤ + ≤ . Fi-
nally, the size of a regular tetrahedron is simply expressed by the edge length, lt. 

The length, l, irrespective of the subscript, is expressed by the number of 
atoms along the edge and is denoted by integer n. Cutting parameter c is also  
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Table 1. Number of faces, edges, and vertices of the polyhedrons targeted in this paper. 

Name Abbreviation Faces Edges Vertices 

Cube Cube 6 (100) 12 (100)-(100) 8 (100)-(100)-(100) 

Truncated hexahedron trHexa 
6 (100) 
8 (111) 

12 (100)-(100) 
24 (111)-(100) 

24 (100)-(100)-(111) 

Cuboctahedron Cubocta 
6 (100) 
8 (111) 

24 (111)-(100) 12 (100)-(100)-(111)-(111) 

Truncated octahedron trOcta 
6 (100) 
8 (111) 

24 (111)-(100) 
12 (111)-(111) 

24 (100)-(111)-(111) 

Octahedron Octa 8 (111) 12 (111)-(111) 6 (111)-(111)-(111)-(111) 

Tetrahedron Tetra 4 (111) 6 (111)-(111)’ 4 (111)-(111)-(111) 

Asymmetric truncated 
octahedron 

astrOcta 
6 (100) 
8 (111) 

24 (111)-(100) 
12 (111)-(111) 

24 (100)-(111)-(111) 

 
expressed by the integer number of atomic layers. The models are identified by 
the abbreviated notation for their shape, as listed in Table 1, and by the values of 
n and c. For example, “Cube (n12)” refers to the cube with lc = 12 La (La: lattice 
constant), and “trOcta (n12c6)” denotes the truncated octahedron made by cut-
ting six atomic layers from the vertices of Cube (n12). 

3. Surface-Energy Evaluation by MD Simulation 
3.1. Simulation Method 

The surface energy of nanoparticles can be directly calculated using an atomistic 
model assuming a specific interatomic potential function. In this study, the 
Lennard–Jones potential function was applied. A quantitative evaluation of a 
specific material is sensitive to the choice of potential function, but we applied a 
simple two-body function because our purpose was to present a general metho-
dology. The atoms were arranged on the lattice points of the fcc structure in a 
cubic space so that the (100), (010), and (001) planes are on the –y z , –z x  
and –x y  planes, respectively. Then, an arbitrary polyhedral shape was formed by 
removing the atoms out of the target range. For the truncated octahedron, a regular 
octahedron was made first by the above-mentioned procedure, and then, the atoms 
in the cutting area were deleted. The initial position of the atoms was equilibrated by 
the MD method for the 10,000 time-steps, and the surface energy and other proper-
ties were calculated. The fundamental equations involved are as follows.  

Newton’s equation of motion: 
d
d

ij ij
i i i j i

ij

m
r r
φ

≠
= = −∑

r
r F .                    (1) 

Interatomic potential function (Lennard-Jones type): 
12 6

4ij
ij ijr r
σ σφ ε

    
 = −           

.                    (2) 

Here, mi is mass of the i-th atom, ri is the position vector of the i-th atom, and 
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Fi is the force acting on the i-th atom, which is defined as the position derivative 
of interatomic potential function φij. The parameters ε and σ depend on the ma-
terial, and a nondimensional analysis is demonstrated by standardizing the 
energy and length based on ε and σ, respectively. 

Common-neighbor analysis (CNA) [15] is applied to determine the crystal 
structure. Furthermore, whether an atom is in the bulk, on a surface, on an edge, 
or a vertex can be specified by this method. The structures considered in this 
paper are listed in Table 2, where the color column indicates the legend used in 
the presentation of the results. 

3.2. Definition of the Surface Energy of an Atomic Model 

Surface energy γ is defined as the increase in energy due to the existence of a 
surface and is expressed as the difference in the energy between the atoms on a 
surface and the atoms in bulk where the energy is unaffected by the surface. 
Here, the value of γ is calculated as the energy per atom in the atomistic model, 
while surface energy in general is typically defined as a value per area. In a par-
ticle model, if the atoms are observably divided into surface and bulk atoms, the 
surface energy can be calculated as follow: 

( )surface
s b
ii e e

S
γ ∈

−
=
∑

,                     (3) 

where s
ie  and eb are the energy of the atoms on surface and in bulk, respective-

ly, and S is the surface area. However, establishing a definition of the surface 
atom is difficult because the influence of the surface acts across more than one 
atomic layer. Now, assuming the internal atoms are unaffected by the surface 
and have the same energy as eb, Equation (3) can be calculated as follows: 

( )particle
b

ii e e

S
γ ∈

−
=
∑

,                     (4) 

where the summation in taken over all atoms in the model without the need for 
distinguishing the surface and bulk atoms, and the surface energy finally cor-
responds to the difference in energy between the particle model and bulk model 
[16]. The bulk energy eb is obtained by a separate simulation using a fully bulk 
model with periodic boundary condition. 

Another difficulty is defining the surface area of the particle. In this study, the 
particle model was created based on a polyhedral shape, and the surface area of  

 
Table 2. Surfaces and edges determined by CNA and color legend used in this paper. 

No. Color Type Property No. Color Type Property 

1 ● bulk fcc 5 ● edge (100)-(111) 

2 ● bulk hcp 6 ● edge (111)-(111) 

3 ● surface (111) 7 ● edge (100)-(100) 

4 ● surface (100) 8 ● others  
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the initial polyhedron was applied by neglecting a slight volume change and 
roughing of the surface occurred during relaxation calculation. 

3.3. Results of MD Simulation 

Snapshots of the MD models after the relaxation steps are shown in Figure 2, 
where a truncated hexahedron (a), a cuboctahedron (b), and a truncated octa-
hedron (c) are shown, and the color indicates CNA distinction (i) and potential 
energy (ii). The polyhedral shapes were maintained via the relaxation steps for 
all models. In CNA colors, atoms on the surface and edges are properly distin-
guished, whereas some of the vertices on the edge are not specified. The bulk 
atoms, depicted in blue, are visible between the surface atoms. The potential 
energy of the bulk atoms is significantly lower than that of the surface atoms, 
and the atoms are colored in blue in Figures (ii). The face atoms have a higher 
energy compared to the bulk atoms, and both the (100) and (111) atoms are co-
lored in green, since the difference in energy is relatively small in the exhibited 
range. The edge atoms have much higher energy than the face atoms. The edge 
between two (111) faces and the edge between (100) and (111) faces are shown 
in yellow, whereas the edge between two (100) faces is denoted in red, which 
represents that the (100)-(100) edge has the highest energy in the model. This is 
clear from the fact that the angle between the two faces is sharper compared with 
other edges. 

Figure 3 shows the variations of the potential energy per atom averaged 
across all atoms (a) and the average of the surface atoms (b). The values fluc-
tuated initially from the artificially given initial position but soon converged by  

 

 
Figure 2. MD model and simulation results; (a) truncated hexahedron with n = 11, c = 8, 
(b) cuboctahedron with n = 11, and (c) truncated octahedron (Kelvin cell) with n = 13, 
colored by CNA (i) and potential energy (ii). Color index for CNA is listed in Table 2. 
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the 2000th time-step. The energy of the entire particle was slightly low in the Kel-
vin cell, and the truncated hexahedron and cuboctahedron were almost the same 
as shown in Figure 3(a). However, if only the surface atoms are considered (as 
shown in Figure 3(b)), the cuboctahedron shows a lower energy than the trun-
cated hexahedron, and the low energy of the Kelvin cell is more significant. This 
is because the stable (111) plane occupies a larger fraction in the Kelvin cell, and 
the presence of the (100)-(100) edges affect the high energy of the cubic shape. 

Various polyhedron models were also created, and MD simulations were car-
ried out. The configurations of the atoms are shown in Figure 4, where different 
colors indicate the potential energy. The (100)-(100) edges in the cube and 
truncated hexahedron had higher energies than the (100)-(111) and (111)-(111) 
edges. The (111)-(111) edges in the regular tetrahedron are different from the  

 

 
Figure 3. Variation of the potential energy of polyhedral particles: (a) total average of all atoms, 
(b) average of surface atoms (including face, edge and vertices). 

 

 
Figure 4. Simulation results for verious polyhedrons. The different colors indicate the 
potential energy. 
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(111)-(111) edges in the octahedron; i.e., the angle between the faces in the te-
trahedron is much sharper than that of the octahedron. The actual Miller indices 
are (111) and ( 111) or (111) in the octahedron, and (111) and ( 111) in the te-
trahedron.  

The total energy averaged across all atoms in a particle, U, and the average of 
the atoms on the surface, e, are plotted in relation to the number of atoms in a 
particle, N, in Figure 5(a) and Figure 5(b), respectively. The total energy de-
creased as the particle became larger because the fraction of surface atoms with 
high energy against bulk atoms with low energy decreased. The difference in the 
shape of a particle did not particularly affect the value as shown in Figure 5(a). 
However, the energy of the surface atoms showed a notable difference (see Fig-
ure 5(b)). Cubes comprising only (100) faces had the highest energy, whereas 
tetrahedrons and octahedrons, both of which comprised (111) faces, had the 
lowest energy. This indicates that the energy of the (100) face is higher compared 
with that of the (111) face. Furthermore, face energy was dominant for the total 
surface energy. For other polyhedrons, the energy became lower as the (100) 
area decreased and the (111) increased; the energy decreases in the order of 
cube, truncated hexahedron, cuboctahedron, truncated octahedron, and octahe-
dron. The difference between the tetrahedron and octahedron was their consti-
tuent edges. As shown in Figure 4(d) and Figure 4(f), the edge of the tetrahe-
dron is sharper and has higher energy, but the total length of the edges is longer 
in the octahedron. These effects compensate for one another, and the resulting 
energy came close to an almost identical value. 

4. Formulation of Surface Energy 
4.1. Polynomial Equation 

According to the MD simulations in the previous section, the surface energy γ of 
nanoparticles is assumed to be approximated by the following equation: 

 

 
Figure 5. Potential energy vs. the number of atoms in various polyhedron models: (a) total average of all 
atoms; (b) average of surface atoms (including faces, edges and vertices). 
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( )0
1

k k kk D N e e
S

γ
∈

= −∑                      (5) 

Here, Dk is the element constituting the surface, e.g., the (111) face and 
(100)-(111) edge, ek is the energy per atom depending on the element, e0 is the 
average energy in the bulk region, Nk is the number of atoms in Dk, and S is the 
surface area. The values of ek were obtained by the MD simulations. For exam-
ple, the value for {k: (111) face} was evaluated from the calculation for a regular 
octahedron (n28) by taking the average value of the (111) atoms in the model. 
The energy values varied depending on the shape and size of the MD models, 
even those with the same face type. Here, the values for the model having the 
largest area or longest edges were selected because these tend to converge as the 
size becomes larger. The values and relevant polyhedron models are listed in 
Table 3. Using Equation (5) and the parameters in Table 3, the surface energy of 
the cube, regular octahedron and arbitrary polyhedron produced by cutting their 
vertices were calculated. 

4.2. Fitting Results for MD 

The calculated surface energy is plotted in Figure 6. The values for the cubes  
 

Table 3. Energy per atom on the specific elements and the polyhedron model from which 
the values were taken. 

Element Value Model Element Value Model 

(111) face −5.709 octa n28 vertex 111-111-111-111 −2.377 octa n28 

(100) face −5.352 cube n16 vertex 111-111-100-100 −3.074 cubocta n15 

111-100 edge −4.462 cubocta n15 vertex 111-111-100 −3.704 Kelvin n17 

111-111 edge −4.301 trOcta n17c22 vertex 111-100-100 −3.300 trHexa n17c22 

100-100 edge −3.398 trHexa n17c06 vertex 100-100-100 −2.107 Cube n16 

 

 
Figure 6. Surface energy fitted by polynomial equation based on the parameters obtained 
by the MD simulation. 
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and octahedrons presented in Figure 5(b) are also plotted as a reference for the 
maximum and minimum range obtained by MD simulation. The calculated 
energy is distributed with a band-like area, and the upper and lower ends cor-
respond to the results for the cube and octahedron, respectively. The overall 
tendency is appropriately presented, while the values are slightly lower than the 
MD results. The reason for this difference is that the increase in energy around 
the surface element is not included in Equation (5). The atoms in a few layers in 
the depth direction from the surface are affected and generally have higher 
energy. Additionally, even for the atoms in the (111) surface, the energies in the 
center and near the edge are slightly different. These effects should be intro-
duced for precise evaluation. Nonetheless, this study concludes that the overall 
tendency was captured using this method. In the following section, the predic-
tion of the surface energy of various nanoparticles is presented using virtual pa-
rameters. 

4.3. Modification to Continuous Parameter 

The calculation in the previous section was based on atomic arrangement, and 
the edge and cutting length were represented by integer numbers. For a more 
systematic investigation, the lengths were revised to continuous real numbers. 
Then, the cutting length from the cube vertex was standardized by the edge 
length L of the original cube, i.e., c = 0 is the cube, c = 0.5 is the cuboctahedron, 
c = 0.67 is the Kelvin cell, and c = 1 is the regular octahedron. 

The energy per atom was also modified to the energy per area for the faces, 
energy per length for the edges, and energy per point for the vertices. Corres-
ponding values were obtained by considering the planar and linear density of 
each face or edge. This enabled the evaluation of the size dependency of the 
surface energy. Then, size parameters l and c for different shapes could be de-
fined under a constant volume, by which we could compare the difference in 
shape of the surface energy under a constant-volume condition. 

Figure 7(a) shows the variation of the surface area and edge length under 
constant volume V = 500. The surface area decreased as the cutting length in-
creased in the range of 0 < c < 0.5, which means that the maximum and mini-
mum surface areas were obtained for the cube and cuboctahedron, respectively. 
It can be intuitively understood that the surface area decreased as the shape ap-
proached to a sphere. The total edge length, on the other hand, increased as the 
cutting length increased and became the maximum for the cuboctahedron. For 
c > 0.5, the edge length decreased as c increased and became the minimum for 
the octahedron, and this value was larger compared to that of the cube. The sur-
face area continued to decrease even when c exceeded 0.5, and the minimum 
appeared at 0.6c ≅ . Then, the value increased and reached a maximum at c = 1 
for the octahedron, which was smaller than for the cube. It should be noted that 
the orientation of the faces and edges are not included in this figure.  

The surface energy is dominated by both the surface area and edge length as  
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Figure 7. Calculation results based on continuously varied parameters under a constant vo-
lume. The cutting lengths c = 0 and 1 correspond to cube and octahedron, respectively, and the 
intermediate values represent truncated hexahedron (0 < c < 0.5), cuboctahedron (c = 0.5), and 
truncated octahedron (0.5 < c < 1.0). (a) Surface area and edge lendgth; (b) Surface energy. 

 
well as by the crystallographic orientation of the faces and edges. Surface ener-
gies were calculated for various volumes and plotted in Figure 7(b), where the 
value is standardized by the energy for the cube for each volume. The surface 
energy monotonically decreases as the value in c increases, with a slight discon-
tinuity in the gradient at c = 0.5 for all volumes. This result shows that the octa-
hedron is, in terms of energy, the most preferable shape. The slopes of the curves 
are steeper for smaller volumes. This means that a change in shape has a larger 
impact on smaller particles. Here, it should be noted that the effect of the vertex 
was excluded in this calculation. In reality, the sharp vertices raise the total 
energy, leading to instability in the sharp shape. The fair inclusion of the effects 
is a problem to be addressed in the next stage of our study. 

4.4. Prediction of Surface Energy for Different Models 

In the previous sections, the parameters obtained by MD simulation were used, 
and they were based on the Lennard–Jones potential, for which the fcc structure 
and the (111) close-packed plane are stable. In this section, the applicability of 
the present method to different material systems is verified. The parameters of 
the constituent faces and edges were virtually varied, and the surface energy of 
the polyhedral particles was calculated. The parameters of the surface energy for 
the (100) and (111) faces and (111)-(111) and (100)-(100) edges were virtually 
varied. The calculated surface energies for V = 500 and 3000 are shown in Fig-
ure 8(a) and Figure 8(b), respectively. In these figures, “base” represents the 
plot based on the MD results and is identical to the plots in Figure 7(b). In the 
calculation for “Sinv”, the energies for the (111) and (100) faces were replaced so 
that the (100) plane has a smaller value than the (111) plane. Similarly, the ener-
gies for the (111)-(111) and (100)-(100) edges were replaced for “Einv”. The over-
all slope of the surface energy became smaller, but the energy for the cube and 
octahedron was not reversed by these operations. Therefore, rather exaggerated  
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Figure 8. Surface energy vs. cutting parameter for virtualy varied parameters under constant 
volumes. (a) V = 500; (b) V = 3000. 

 
values were provided, and the results are shown by the curves noted as “ext”. As 
a result, the surface energy decreased for the cube and increased for the octahe-
dron, and the values for both shapes reach mostly equivalent values. This means 
that the stability of various shapes can be explained by providing individual face 
and edge energies, and it is concluded that the applicability of the proposed 
model to various material particles is presented. 

5. Conclusion 

In this study, the surface energy of nanoparticles with polyhedral shape was cal-
culated by the MD method and formulated as a polynomial equation. In the MD 
simulation, a cube and an octahedron were introduced as reference shapes, and 
various polyhedrons were created by cutting out the vertices. Owing to the sta-
bility of the (111) plane, octahedron showed the lowest energy, and the cube had 
the highest because of the relatively higher energy of the (100) plane. This ten-
dency was fairly captured by the proposed polynomial equation by applying 
atomic energy despite of a slightly inevitable underestimation. The influence 
across a few atomic layers should be taken into account for a more precise eval-
uation. To extend the application range of the proposed equation, the parame-
ters were revised to continuous numbers. The calculated results indicated a 
proper tendency for fcc particle. Additionally, it was shown that a stability of cu-
bic particles could be obtained by imposing rather exaggerated parameters. This 
result indicates the possibility of the proposed method being applied to a broad 
range of materials. 
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