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Abstract 
Co-precipitation method was used for the synthesis of biochar/Fe3O4 to hete-
rogeneously degrade methylene blue (MB) in an aqueous medium. This cata-
lyst was characterized by different techniques such as Fourier Transform Infra-
red (FTIR) Spectroscopy, X-ray diffraction (XRD), Scanning Electron Micro-
scopy (SEM), Energy Dispersive X-ray Spectroscopy (EDX) and Raman Mi-
croscopy. The analysis highlighted the presence of iron oxides on the surface of 
the biochar in the form of magnetite (Fe3O4). Catalytic tests performed on this 
composite showed significant degradation and simple magnetic separation in 
the solution for reuse. Maximum degradation was carried out after stirring it 
for 90 minutes in an MB aqueous solution at different concentrations. The per-
centages of degradation were 99% and 98.6% 93.3% and 91% for concentra-
tions of MB 40 mg/L and 60 mg/L, 80 mg/L and 120 mg/L respectively. The 
reactions followed a second-order kinetics with correlation coefficients r2 = 
0.9598, 0.9247, 0.9548 and 0.9614 for the same concentrations of MB at pH = 2, 
0.2 mL/L H2O2 and 15 mg of biochar/Fe3O4. This work provides a simple and 
an effective method for the preparation of biochar/Fe3O4 and its use for the 
oxidation of MB by means of heterogeneous Fenton. 
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1. Introduction 

Water pollution by dyes has become a concern for the world’s population for dec-
ades. These dyes are listed in more than 100,000 types with an annual pollution 
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of 7 × 105 tons. The textile industries are considered as major consumers with 
around 36,000 tons per year. The World Bank estimates that around 20% of dye 
pollution comes from dyeing and textile processing [1]. According to studies 50 L 
to 100 L of water are consumed to tint 1 kg of cotton [2]. Insufficient treatment 
of textile effluents can lead to their accumulation in the water cycle, which can af-
fect people living either through direct consumption of polluted water or through 
the food chain. 

Physical techniques including adsorption are used for the treatment of indus-
trial wastewater, but they are limited to a simple transfer of the pollutant from 
the effluent to the adsorbent, without any degradation occurs. The Advanced Oxi-
dation process (AOP) is the burgeoning method of the chemical treatment of or-
ganic contaminants, considered to be bio-recalcitrant and/or for the disinfection 
of emerging pathogens [3]. It is based on the formation of highly reactive oxida-
tive species (free radicals ˚OH) that can be induced by catalytic, sonochemical, 
biological, electrochemical and/or photochemical activations [4]. The high reac-
tivity of the hydroxide radical with an oxidation potential of +2.80 V (ESH), has 
the power to oxidize many organic and inorganic molecules leading to their mi-
neralization [5] [6]. The mechanism of generation of ˚OH by the Fenton reac-
tions has been taken up by Xuang and Kim (2018) according to the following 
equations: 

( ) ( )2 2Fe II H O Fe III OH OH−+ → + ° +               (1) 

( ) ( )2
2 2 2Fe III H O Fe HO H+ ++ → +                (2) 

( ) ( )2
2 2Fe HO Fe II HO+ → +                   (3) 

( )2
2O Fe III Fe(II) O− + → +                   (4) 

2 2 2 2OH H O HO H O° + → +                   (5) 

Unlike the homogeneous Fenton method using iron ion and hydrogen perox-
ide, the heterogeneous Fe3O4 method is increasingly used because it is easy to 
recover in a solvent using a magnetic field and can be regenerated for multiple 
uses [7] [8] [9]. 

To increase the catalytic activity of Fe3O4, it is more and more immobilized in 
porous supports. Biochar [9] [10]; clay [11]; activated carbon [12] [13] [14], 
carbon microspheres [5], graphenes [15] [16], multi-walled carbon nanotube [17] 
are the most used because of their small sizes, the hydrophilic groups on their sur-
faces, their thermal stability as well as their ease in being dispersed in water. Bi-
ochar is used as an excellent platform to support various catalytic nanoparticles 
due to its unique surface properties, easily adjustable functional groups, chemical 
stability and electrical conductivity [18]. It is considered a reservoir of electrons, 
and the quinone groups on the surface facilitate electronic exchanges during catal-
ysis [19] [20]. Banana peel is used for the preparation of biochar by its abundance. 
In 2016, Cameroon was considered the first banana producer in Africa. Therefore, 
it has been proved banana peels equivalent to 40% of the total weight of fresh ba-
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nana, are generated as a wasted product in industries producing banana products 
[21]. These peels are not being used for any other purposes and or mostly dumped 
as solid waste at large expense; hence the need to transform it into biochar and 
use it as a catalytic support. We now count several methods of immobilization of 
Fe3O4 of magnetism on a biochar support, namely the co-precipitation technique, 
the hydrothermal method, ball mill method; the sol gel method [22] [23] [24]. 
The co-precipitation method is the one most used because it is easy to imple-
ment that and it takes place at low temperature. The coprecipitation method has 
the advantage of directly obtaining homogeneous nanomaterials with small size 
and size distribution through various chemical reactions in the solution. The main 
advantage is that a large quantity of nanoparticles material can be produced. The 
coprecipitation technique is probably the simplest and most convenient chemi-
cal pathway to synthesize magnetic nanoparticles [25]. 

In this work, the biochar from the dry banana peels was prepared by simple py-
rolysis under nitrogen atmosphere and the co-precipitation method was used for 
the immobilization of magnetite used as precursors FeCl2·4H2O and FeCl3·6H2O. 
The catalyst prepared was characterized by Fourier transform infrared (FTIR), 
Raman spectroscopy, X-ray diffraction (XRD), Scanning electron microscopy 
(SEM), energy dispersive X-ray spectroscopy (EDX). The ability of the particles 
to facilitate the Fenton oxidation of methylene blue (MB) has been studied under 
conditions of pH, pollutant concentration, agitation time, catalyst mass and very 
precise H2O2 concentration. 

2. Experimental Section 
2.1. Reagents and Materials 

The “Musa” banana peels, collected in municipal garbage cans were washed, dried 
and used as precursors of char. Iron III chloride hexahydrate (FeCl3·6H2O, 99% 
purity) and iron II chloride tetrahydrate (FeCl2·4H2O 99% purity) was supplied 
by LaboChemie. Sodium Hydroxide (NaOH, ≥99% purity) purchased from Sigma 
Aldrich. Hydrochloric acid (HCl 37%) from CarloERBA. Ethanol (CH3CH2OH, 
≥99%) purchased from Sigma Aldrich. Hydrogen peroxide (H2O2, 30.1%) from 
PROLABO. Methylene blue (MB, 98%) of formula C16H18ClN3S from Reactive RAL. 
All chemicals are analytical grade and were used without further purification. 

2.2. Preparation of Biochar/Fe3O4 

Raw materials (ripe banana peels), collected in municipal garbage cans were 
washed, dried in the sun for 8 hours and then at 80˚C in an oven for 24 hours. 
Later on, the samples were scrambled into small particles followed by the intro-
duction of 15 g of obtained samples into the carbolite brand turbolace and their 
carbonization at 500˚C under nitrogen N2 atmosphere (0.15 mL/min) with a 
temperature change of 10˚C/min and a residence time of 2 h. The oven was al-
lowed to cool down to room temperature. The biochar was then recovered, dried 
in an oven during 24 hours and then stored.  

The biochar/Fe3O4 was prepared by co-precipitation method as described by 
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Monica et al. [13]: 2 g of biochar previously prepared were introduced in 200 mL 
of an aqueous solution containing 7.32 g of FeCl3·6H2O (27 mM) and 2, 67 g of 
FeCl2·4H2O (13.5 mM) (Fer III/Fer II ratio 2: 1) under magnetic stirring at 80˚C; 
50 mL of NaOH solution (5M) was added while maintaining the temperature 
80˚C, pH (10 - 12). The suspension was stirred for about 1 hour until the color 
changed from the brown to black color. The whole left at room temperature was 
filtered and the precipitate was washed several times with distilled water and 
ethanol to neutral pH. The obtained sample was dried at 80˚C and stored for 
physico-chemical characterizations. Pure magnetite was prepared by the same 
procedure in the absence of biochar. 

2.3. Characterization of the Catalyst 

The pH of zero charge was determined as follows: 50 mL of an aqueous solution 
of NaCl (0.01M) were introduced into six pH bottles; the pH was adjusted to 2, 
4, 6, 8 and 10. These different bottles were bubbled with nitrogen to stabilize the 
pH. 0.15 g of Biochar/Fe3O4 was introduced into these different flasks. The mix-
tures, stirred during 48 hours were filtered and the final pH of the filtrate was 
measured using a pH meter (HI 2209 pH meter). The encounter with the first 
bisector of the pH curve (final) = f (initial pH) indicates the pH of charge zero 
charge [26]. Similarly, the pH of the material was carried out using 0.15 g Bio-
char/Fe3O4 in 50 mL of distilled water, stirred for 48 h and measuring the pH. 

The functional groups present in Biochar/Fe3O4 were ascertained by Fourier 
transform Infrared spectroscopy (FTIR, Vertex 70 de BRUKER) over the region 
400 - 4000 cm−1 in pellet form the powder samples of 1 mg mixed with spectros-
copic grade KBr (Merck) of 9 mg with a resolution of 4 cm−1 (32 scans). Spectra 
X-ray diffraction on XRD powder (RigakuGeigerflex, Cu Kα, λ = 1.5406A) pro-
duced at 30 kV and 25 mA scanned the diffraction angles (2θ) between 10˚ and 
80˚ with the step size of 0.002˚ 2θ per second. Elemental EDX analysis performed 
using EDAX TEAM, 125.9 ev of resolution, to know the composition of the ele-
ments present in the material as well as SEM (VEGA3 TESCAN) to know the sur-
face morphology. Raman spectroscopy to determine the structural and electronic 
properties of materials performed with a Nano brand SP (Confotec MR-SOL in-
strument) with the 570 nm wavelength laser. All these analyzes were carried out 
at the “Centre d’Analyseet de Caractérisation” Semlalia-Marrakech Faculty of 
Sciences of Cadi Ayyad University (Morocco). 

2.4. Experimental Procedure 

To evaluate the catalytic activity of the material, an aqueous solution of methy-
lene blue at the concentrations of 40 mg/L and 60 mg/L, 80 and 120 mg/L were 
used. 15 mg of the catalyst was added to 50 mL of the MB solution, pH = 2. 0.2 
mL/L of hydrogen peroxide (H2O2) was added to the MB solution. The whole 
solution was stirred for 90 min and after the solid phase was separated from liquid 
one by magnetization (Figure 1). The residual concentration of MB was meas-
ured by means of SECOMAN brand UV-Vis spectrometer. 
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Figure 1. Separation of biochar/Fe3O4 from the rest 
of the liquid solution by a magnet. 

 
The MB degradation percentage was calculated using the following formula 
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Co is the initial concentration of MB (mg/L); Ce is the concentration at any 
time (mg/L) and %R is the percentage of elimination of MB (%). Kinetic studies 
were performed and the equations corresponding to the different orders are given 
by the formulas [27]: 

The kinetics of the zero order, is given by Equation (6) 

[ ] [ ] oi tMB MB k t− =                       (6) 

The first order is given by Equation (7) 

[ ]
[ ] 2ln t
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                      (7) 

with [MB]i and [MB]t the concentrations t = 0 and t = t respectively, k is the 
speed constant (min−1) and t the time (min). 

The second order is given by Equation (8) 

[ ] [ ] 2
1 1

t i

K t
MB MB

− =                      (8) 

3. Results and Discussion 
3.1. Characterization 

Fourier transform infrared spectrum (FTIR) is done to determine the structural 
characterization of the dry banana peels, biochar and biochar/Fe3O4. Figure 2 
shows the FTIR spectra of the banana peels, biochar and biochar/Fe3O4 in wave 
number range of 4000 - 400 cm−1. 
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Some characteristic bands from dry banana peels disappeared for the benefit 
of others bands. The wide band around 3500 - 3250 cm−1 attributable to the −OH 
stretching vibrations. This band reappears intensely when magnetite is intro-
duced; due to the fact that the impregnation reaction is carried out in an aqueous 
medium (co-precipitation). The bands around 1583.4 - 1635 cm−1 attributed to 
the elongation vibrations of C=O, C=C functions remained unchanged and 
having almost the same intensities on the dried banana peel as on the calcined 
and magnetized peel. Just a decrease in the intensity of the peaks (on banana 
peel calcined at 500˚C) due to pyrolysis. The presence of O-H deformation bond 
is observed at 1300 cm−1. We observe the C-O stretching vibration band at 1053 
cm−1 with a higher intensity on the black curve. Two bands, one very intense (650 - 
567 cm−1) and the other less intense (444 cm−1) are observed and respectively cor-
responded to iron oxides (Fe-O) and oxides iron and silica (Fe-O-Si) [28] [29] 
revealed that the band between 450 - 740 cm−1 belonged to the Fe-O vibrations 
of the nanoparticles of iron oxides. We have in this case the chemical shifts to-
wards the high wavelengths (hypochromic effect) of the probably biochar which 
thanks to its surface rich in electrons, has the capacity to reduce the gap energy 
of the semiconductors thus causing an increase its chemical shift [30].  

Raman spectroscopy is a non-destructive method used to characterize the 
structural and electronic properties of materials. Figure 3 is the Raman analysis 
curves for our biochar and biochar/Fe3O4 samples. 

The Raman spectra of the biochar from the banana peels (Figure 3(a)) have 
several bands, three of which are larger and have corresponding chemical shifts. 
The band at 1567 cm−1 corresponding to the band G (G = graphite) of the E2g 
mode of hexagonal graphite. It is related to the vibration involving sp2 of hybrid 
carbon atoms that includes graphene sheet [31] [32]. This position of the peak G 
indicates the degree of charge transfer. Due to the stiffness of G-peak related links, 
the phonon mode energy increases [33]. On the other hand, when we mix the bi-
ochar with the iron oxides, the Raman spectrum (Figure 3(b)) indicates the 
very weak G band (ID/IG = 2.4). This low intensity as well as the ID/IG ratio shows 
that iron oxides create a lot of disorder in the biochar structure. 

Band D (D = disorder) at about 1372.2 cm−1 (Figure 3(a)) is known as the 
disorder or defect band and represents a carbon ring breathing pattern sp2, al-
though to be active the ring must be adjacent to a graphene edge or defect. Its 
intensity is much greater in our material (Figure 3(a)) and the ratio ID/IG = 0.98 
thus confirms the defect in the carbon structure. The presence of defects improves 
the performance of carbon materials because of the strong anisotropy, mechani-
cal strength, or electrical conductivity between the plane and out-of-plane direc-
tion [34]. On the spectrum in Figure 3(b) we observe a weak intensity as well as 
a Raman shift towards the low wavelengths (1291.3 cm−1). This decrease is ac-
companied by the absence of band G.In the end the strongest and most intense 
band covers an area between 2400 cm−1 and 3300 cm−1at is the 2D band. This 
band has no defect and is still used to determine the thickness of the graphene 
layer. This is one of the characteristic bands of grapheme. 
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Figure 2. IR spectrum of biochar/Fe3O4. 

 

 
(a) 

 
(b) 

Figure 3. Raman spectra of the biochar (a) and biochar/Fe3O4 (b). 
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Some bands absent on the spectrum Figure 3(a) are present in Figure 3(b) 
between 200 cm−1 and 1050 cm−1. These bands are 209.8 cm−1 respectively; 278.5 
cm−1; 391.75 cm−1; 481.5 cm−1 and 603 cm−1. The band observed at 603 cm−1 is 
assigned to the A1g mode which provides the stretching vibration of the oxygen 
atoms along the Fe-O bonds [35]. This expected band around 590 cm−1 moves 
towards the strong wavelengths of the biochar. The bands around 209.8 cm−1; 
278.5 cm−1; 481.5 cm−1 corresponds to T2g (1) asymmetric Fe-O bonding mode; Eg 
symmetrical Fe-O and T2g (2) symmetrical Fe-O stretch band of magnetite. We 
have at the end a 1090 cm−1 band that could be a harmonic band of maghemite 
melted into magnetite [36]. 

The SEM/EDX analyze of the carbonized material and the magnetized mate-
rials are represented by Figure 4. 

The SEM image of biochar Figure 4(a) showed a porous surface due to the 
carbonization process which favored the development of the porosity of materials. 
The SEM image of the magnetized banana peels Figure 4(c) showed a surface filled 
with cavity resulting from the pyrolysis of the banana peels at 500˚C. However, it 
is covered with iron oxides which obstruct these cavities. The presence of pores in 
the form of a cavity on the surface of a material is favorable to the adsorption of 
iron particles during the synthesis process as shown in Figure 4(c) [13] [14]. 

The elemental and semi-quantitative composition of the biochar and the cat-
alyst (Biochar/Fe3O4) are represented on the EDX spectra in Figure 4(b) and 
Figure 4(d) and the summary is shown in Table 1. We observe on the EDX 
spectrum, the variation of the percentage (C, O, Al, Si, P, Cl), the disappearance 
of elements (K, Mg) and the appearance of the new elements (Fe, N) after im-
pregnation of magnetite. The presence of various elements even after impregna-
tion of magnetite, informe us about the impure nature of Biochar/Fe3O4. 

X-Ray Diffraction is an indispensable technique for identifying the crystalline 
phases of a compound. It is based on the observation of constructive interferences 
starting from a monochromatic radiation of wavelength λ using Bragg’s law: 

2 sind nθ λ= . 

where: θ is the diffraction angle and the area under the peak is proportional to the 
diffracted intensity; d: distance between the crystalline plane; n: diffraction order.  

The position of the peaks in the diagram corresponds to the angle 2θ.  
The X-ray diffraction spectra of our two materials are shown in Figure 5. 
The biochar curve powder diffractogram (black) showed several peaks, one of 

which is stronger and the others are not excessively good. This makes us under-
stand that more than 80% of the carbon structure is amorphous. This tells us that 
pyrolysis at 500˚C of banana peel is not complete and that amorphous carbon still 
exists. According to the position of the peaks, the banana peel would be thermally 
decomposed Fullerene and chaolite. Peaks 2θ = 11.4˚ and 31.7˚ are those of fulle-
renes and those at 2θ = 23.06˚; 28.34˚; 30.7˚; 31.62˚; 37.92˚ and 40.58˚ are attri-
buted to chaolite [37]. On the other hand, according to Li et al. (2007), the more 
intense peak at 2θ = 28.34 could be the turbostratic structure of graphite carbon. 

https://doi.org/10.4236/msa.2020.116026


E. S. Ngankam et al. 
 

 

DOI: 10.4236/msa.2020.116026 390 Materials Sciences and Applications 
 

 
    (a)                                  (b) 

 
(c)                                       (d) 

Figure 4. Scanning Electron Microscopy (SEM) and EDX biochar (a, b) and biochar/Fe3O4 
(c, d). 

 

 
Figure 5. XRD Curves of biochar (Black) and Biochar/Fe3O4 (Red). 
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Table 1. Elemental composition of biochar and biochar/Fe3O4 catalysts. 

Material Element Weight (%) Atomic (%) Material Element Weight (%) Atomic (%) 

Biochar 

C 31.26 52.37 

Biochar/Fe3O4 

C 52.61 66.58 

O 15.19 19.10 O 27.75 26.36 

Mg 0.44 0.36 Fe 13.02 3.54 

Al 0.48 0.36 Al 0.17 0.09 

Si 1.16 0.83 Si 0.39 0.21 

P 1.44 0.94 P 0.47 0.23 

Cl 5.62 3.19 Cl 1.02 0.44 

K 44.41 22.85 Ca 1.70 0.64 

N 0 0 N 2.88 1.90 

Total 100 100 Total 100 100 

 
On the spectrum of biochar/Fe3O4 (red), the diffraction peaks are present at 2θ = 
30.2˚, 35.7˚, 43.3˚, 53.7˚, 57.2˚, 62.9˚ correspond to the indices (220) (221) (400) 
(422) (511) (440) which are the inverse spinel group (Fd-3m) of magnetite ac-
cording to the literature [37] [38]. A peak at 2θ = 26.8˚ would belong to quartz 
grain crystals (SiO2) according to He et al. [10].  

3.2. Catalytic Activities 

The degradation of MB was studied by various processes namely homogeneous 
Fenton (Fe3O4/H2O2), adsorption (Biochar, Fe3O4 and Biochar/Fe3O4), and final-
ly heterogeneous Fenton (Biochar/Fe3O4/H2O2) in a solution of 80 mg/L (MB) at 
pH = 2 (Figure 6), 90 minutes stirring and 0.2 ml/L H2O2. The results indicated 
no degradation effect when Fe3O4 is used, low retention of (5%) when introduc-
ing Biochar/Fe3O4 and 15% for biochar alone. This weak adsorption (5%) might 
be due to the occupation of the sites of adsorption of biochar by magnetite dur-
ing synthesis on the one hand. On the other hand, the MB being a cationic pol-
lutant, the adsorption in an acid medium is not favorable because of the elec-
trostatic repulsions between the MB cation and the biochar surface (pHzc > pH 
of the medium) possessing the same positive charge. When we introduce H2O2 
alone there is no effect. Whereas, when we use Fe3O4/H2O2 in the methylene blue 
solution, we observe a degradation of 65.8% under the same conditions. This 
degradation is due to the generation of hydroxide radicals which leads to the 
oxidation of MB. The degradation reached its maximum at 93.3% (for 80 mg/L 
MB) when passing to heterogeneous Fenton using Biochar/Fe3O4/H2O2 as cata-
lyst. This is due to the electron-rich biochar surface of quinone groups that faci-
litates electronic exchanges during catalysis [19] [20] [39]. 

The kinetic studies made on Biochar/Fe3O4/H2O2 for the different concentra-
tions of MB at 90 min, pH = 2, 0.2 mL/L H2O2, 15 mg of the catalyst indicated 
that they are all first-order with correlation coefficients r2 = 0.9598; 0.9247; 
0.9548 and 0.9614 for the concentrations of 40 mg/L, 60 mg/L and 80 mg/L and 
120 mg/L MB respectively (Table 2). 
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Figures 6. Degradation of methylene blue under different conditions 
at pH = 2, 80 mg/L MB, 15 mg of the material. 

 
Table 2. MB elimination rate as a function of initial concentration at 90 min and parameters 
of kinetic models. 

  Zero-order model First-ordermodel Second-order model 

Concentration 
(mg/L) 

Degradation 
(%) 

K0(min−1) R2 K1(min1) R2 K2(min−1) R2 

40 99 0.4414 0.78 0.0546 0.96 0.0339 0.54 

60 98.6 0.678 0.77 0.0587 0.92 0.0198 0.82 

80 93.3 0.8704 0.79 0.0433 0.95 0.0064 0.65 

120 91.4 1.1561 0.71 0.0461 0.96 0.0084 0.51 

3.3. pH Effects 

Studies on the pH of the medium showed a slight degradation of MB at pH 4 
(Figure 7). This is due to the precipitation of Biochar/Fe3O4 in the MB solution. 
At pH = 2 the degradation is maximal for 15 mg of the catalyst, 0.2 mL/L H2O2, 
90 min. The increase in the oxidizing power of the MB at low pH (generally be-
tween 2 and 4) is attributed to the increase of the oxidizing potential of hydrox-
ide radicals (HO˚) and to a strong dissolution of iron in solution in MB [40]. 
The strongly acidic medium is favorable for the stabilization of the hydrogen 
peroxides which favors the generation of HO˚ as well as the formation of the metal 
oxides leading to mineralization of the MB according to the Equations (1, 2, 3, 4 
and 5). Beyond pH = 2 - 4, iron ions (Fe3+ and Fe2+) are likely precipitated as 
solid [Fe(OH)2] iron hydroxide and [FeO(OH)] solid. These precipitations re-
ducing the number of ferrous ions used to catalyze the Fenton reaction and thus 
induce low catalytic activity [41] [42] [43]. This same phenomenon has been ob-
served on our material which recorded degradation beyond pH 2, from 93.3% to 
88.5% at pH 3. At pH 4, we observe a drop in degradation (34.54%) characte-
rized by an increase in the precipitation of iron hydroxides. 
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3.4. Effects of the Masses 

The mass effect of the catalyst has a very important influence on the degradation 
of the MB. Indeed the masses of 5 mg, 10 mg and 15 mg were used in a solution 
of MB (40, 60, 80 and 120 mg/L) at pH 2, 0.2 ml/L H2O2 for a maximum contact 
time of 90 min (Figure 8). The results obtained indicated an increase in the per-
centage of degradation with the increase of the catalyst mass (Biochar/Fe3O4). 
That is a degradation ranging from 70% to 99% for masses 5 mg to 15 mg of the 
catalyst. This is explained by the increase of active sites on the surface of the cat-
alyst which is accompanied by the generation of a large amount of iron particles 
with production of OH˚ radicals. 

 

 
Figure 7. Degradation as a function of pH, 80 mg/L MB, 0.2 ml/L H2O2; 15 mg 
catalyst, 90 min, at 25˚C, stirring speed 250 rpm. 

 

 
Figure 8. Degradation as a function of mass at different concentrations; 90 min, 
pH = 2, 0.2 mL/L (H2O2) at 25˚C, stirring speed 250 rpm. 
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3.5. Concentration Effect of the Pollutant 

The degradation of MB was also studied according to its concentration. We stu-
died here the concentrations 40 mg/L, 60 mg/L and 80 mg/L and 120 mg/L. The 
results of Figure 9, shows a decrease in the degraded amount of MB when in-
creasing the concentration of the pollutant. The maximum elimination is observed 
at 90 min with a mass of 15 mg of the catalyst leading to a degradation of 99%; 
98.6%; 93.3% and 91.4% for MB concentrations 40 mg/L, 60 m/L, 80 mg/L and 
120 mg/L. This slight decrease in degradation as a function of concentration is 
probably due to an increase in the number of MB molecules in the solution for 
the same amount of hydroxyl radicals formed (responsible for the Fenton reaction). 
Nevertheless, more than 60% of elimination is observed for the highest concen-
tration of 120 mg/L after 90 min for a small mass of 5 mg of biochar/Fe3O4. 
What is encouraging because the concentrations found in textile wastewater is 
between 10 mg/L and 250 mg/L [14]. Regarding Figure 9, the highest degrada-
tion percentage was obtained with the highest mass.  

3.6. Effect of Stirring Time 

The influence of contact time has been studied for different catalyst masses (5 
mg, 10 mg and 15 mg) of 15 to 90 min (Figure 10). The results of Figure show 
an increase in degradation as a function of mass and stirring time and a decrease 
when increasing the concentration of MB. Indeed the reaction is slow during the 
first 15 minutes with degradation less than 20%, and becomes fast as from 30 min. 
It reaches the maximum at 90 min with a degradation percentage greater than 
75% depending on the masses and the concentration of the dye. This is due to 
the permanent production of the electrons by the biochar as well as the radicals 
HO˚ by the hydrogen peroxide (H2O2) in the medium as a function of the time, 
which increases the rate of the reaction of catalysis. The longer the stirring time, the 
more electrons and radicals HO˚ are produced and the greater the degradation. 

 

 
Figure 9. Degradation as a function of MB concentration at different catalyst 
masses, 90 min, pH = 2; 0.2 mL/L (H2O2) at 25˚C, stirring speed 250 rpm. 
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(a)                                                                (b) 

 
(c)                                                           (d) 

Figures 10. Degradation as a function of the reaction time at different masses for concentrations of (a) 40 mg/L; (b) 60 mg/L; 
(c) 80 mg/L; and (d) 120 mg/L BM, pH = 2; 0.2 ml/L H2O2 at 25˚C, stirring speed 250 rpm. 

3.7. Uv-Vis Spectra of Degradation of Methylene Blue as a  
Function of Time 

The recording of the Uv-vis spectrum in the region 200 - 800 nm, of 80 mg/L 
methylene blue (Figure 11), indicates a progressive decrease of the wavelength 
peaks 293 nm and 661 nm as a function of the contact time. The disappearance 
of the bands is obtained at a maximum time of 90 min in 15 mg/L of the catalyst, 
and 0.2 ml/L of H2O2. The decline in peaks around 293 nm is evidence of the de-
struction of the aromatic ring and heteropolyaromatic linkages of MB. Similarly, 
the decrease in the intensity of the band around 661 nm is due to the destruction 
of the thiazine group responsible for the blue coloring of MB [42]. Thus the de-
gradation of methylene blue by homogeneous Fenton using magnetic biochar is 
evidenced.  

3.8. Stability and Reusability of the Catalyst 

The stability and reusability of the material is an important factor in catalysis. 
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Thus we repeated four times the degradation of methylene blue by the same cat-
alyst. After use, the catalyst was recovered by simple magnetic filtration, washed 
with distilled water and reused for three cycles (Figure 12). This reuse of bio-
char/Fe3O4 (15 mg) was carried out in a solution of 80 mg/L (MB), pH = 2, 0.2 
ml/L H2O2 and at 90 min of stirring. We see the same degradation of methylene 
blue with no loss of the catalyst activity during the first two cycles and a slight 
loss of activity in the third cycle and four. This gives us information on the sta-
bility of our material (biochar/Fe3O4) for two cycles. 
 

 
Figure 11. Uv-screw spectral variation of 80 mg/L of MB in the 
degradation process as a function of contact time, in the presence of 
15 mg/L of Biochar/Fe3O4, 0.2 ml/L H2O2, at 25˚C and pH = 2. 

 

 
Figure 12. Four cycles of MB degradation by biochar/Fe3O4. 
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4. Conclusion 

Biochar/Fe3O4 was prepared by a simple method (Co-precipitation) using a bio-
char based on banana peel and iron chlorides as precursors. The analysis made 
on these materials showed a better dispersion of the magnetite particles on the 
surface of the biochar with a yield of 3.54% iron. Biochar/Fe3O4 was found to be 
very useful for the degradation of methylene blue in aqueous media by hetero-
geneous Fenton. The use of H2O2 (0.2 ml/L) as an oxidizing agent greatly favored 
the process, from a degradation of less than 5% (without H2O2) to more than 90% 
(in the presence of H2O2) during 90 min of stirring, 15 mg of the catalyst and at 
pH 2. The recovery of the catalyst by magnetization allowed the reusability with-
out prior treatment in the Fenton process. 
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