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Abstract 
In the applications of COX regression models, we always encounter data sets 
that contain too many variables that only a few of them contribute to the mod-
el. Therefore, it will waste much more samples to estimate the “noneffective” 
variables in the inference. In this paper, we use a sequential procedure for 
constructing the fixed size confidence set for the “effective” parameters to the 
model based on an adaptive shrinkage estimate such that the “effective” coef-
ficients can be efficiently identified with the minimum sample size. Fixed de-
sign is considered for numerical simulation. The strong consistency, asymp-
totic distributions and convergence rates of estimates under the fixed design 
are obtained. In addition, the sequential procedure is shown to be asymptoti-
cally optimal in the sense of Chow and Robbins (1965). 
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1. Introduction 

The COX proportional hazards model is a popular choice for the analysis of cen-
sored survival data with covariates, illustrated in [1] [2] [3]. It has been widely 
used in many areas, such as biomedical research and engineering, for assessing 
covariate effects on the time to some events in the presence. However, in appli-
cations such as Biology, Engineering and Epidemiology there are data sets that 
usually have a large number of explanatory variables but only a few of them 
contributes to the model. They were called effective variables in [4]. Many me-
thods are focused on how to identify the effective variables such as LASSO and 
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LARS, see in [5] and [6], however, people also want to know how many samples 
can identify the effective variables and simultaneously make the parameter esti-
mates achieve a pre-specified accuracy. It is very important to those who care 
about the cost of samples such as Biology and Epidemiology. For linear regres-
sion model, Wang and Chang propose a sequential shrinkage estimate method 
to identify the effective variables and attain accuracy of parameter estimate in [4]. 
For COX regression models, similar methods have not been proposed, so there is 
still a lot of work to do for this problem. 

For handling the problem mentioned above, we propose a sequential proce-
dure for constructing the fixed size confidence set for effective parameters based 
on an adaptive shrinkage estimate (ASE) such that the effective coefficients can 
be efficiently identified with the minimum sample size. Suppose the conditional 
hazard rate of a survival time, T, given the regressor vector, X, is written as 

( ) ( ) ( )0| exp , 0h t x h x X tβ ′= ≥                    (1) 

In the paper, it will be studied under fixed design and the consistency and 
asymptotic properties of the proposed estimator will be obtained under this de-
sign. The rest of this paper is organized as follows. In Section 2, we will give the 
adaptive shrinkage estimate (ASE) based on the Maximum Partial Likelihood 
Estimate (MPLE) of COX regression models and their asymptotic properties. In 
section 3, sequential sampling strategy based on ASE and stopping rule as well as 
random size confident set is presented. In Section 4, an example with numerical 
simulation is given to illustrate the performance of the proposed method via se-
quential fixed size confidence estimation using synthesized data sets. 

2. Sequential Adaptive Shrinkage Estimate 
2.1. Asymptotic Properties of MPLE 

Let iT  and iC  be the potential failure time and censoring time of the i-th 
( )+∈i N  subject from a random sample with n individuals, respectively, and

( )T
1 2, , ,= �i i i inX X X X  be a p-dimensional vector of covariates which assumed 

to be time-independent throughout this paper for the i-th individual. Assume 
that iT  and iC  are conditionally independent given iX . In practice, the fail-
ure time iT  might not always be observed due to censoring because of the ter-
mination of study or early withdrawal from the study. What we can actually ob-
serve are { }min ,=i i iY T C , the smaller of the failure time and the censoring time, 
and { }δ = ≤i i iI T C , the indicator that failure has been observed. The data then 
consist of the triplets ( ), , , 1, 2, ,δ = �i i iY X i n . Suppose there is no tie among 
failure times. Let 1 2, , ,� nt t t  denote the N ordered times of observed failures 
and (j) be the label of the individual that fails at jt . Let jR  be the risk set at 
time jt , i.e. { }:= ≥j i jR i Y t . The partial likelihood of the model (1) is defined as 

( )( )
( )( )

T

T
1

exp

exp

β

β=
∈

∏
∑

j

N j

j ii R

X

X
                       (2) 
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and the log partial likelihood is then, 

( ) ( ) ( )T T

1
log expβ β β

= ∈

   = −   
    

∑ ∑
j

N

ij
j i R

L X X               (3) 

The maximum partial likelihood estimate of β , β� , is found by solving the 
score equation ( ) 0β =U , where 

( ) ( )
( )

( )
( )

T

T
1

exp

exp

ββ
β

β β
∈

= ∈

 ∂  = = − 
∂   

∑
∑

∑
j

j

N i ii R
j

j ii R

X XL
U X

X
         (4) 

2.2. Adaptive Shrinkage Estimate 

Let ( )κ κ= n  be a non-random function of n such that for some 0 1 2δ< <  and 
0γ > , 1 2 0κ →n  and 1 2 γδκ+ → ∞n , as →∞n . In this paper, we need the fol-

lowing assumptions: 
(A1) ix  satisfies sup < ∞i ix , and the residual term 

( ) ( )Tˆˆ expε β= Λi i iY X  

has ζε < ∞iE  for some 2ζ > , where Λ̂  is some cumulative baseline func-
tion. 

(A2) ( )lim β
→∞

= Σnn
I n , where ( )βnI  is the information matrix of β  and 

Σ  is a positive matrix. 
Then, Theorem 3.1 in [7] implies that ( ) ( )0

1 2 1η β β− − =�
nn O  almost surely 

as n tends to ∞  for some 0η > . Define  
γ

κ κ β
−

= �
nj nj  

with β�nj  being the j-th components of β�n . From (16) and asymptotic property of 
β�n  we have ( ) ( )0

1 2
00 0 0κ β β→ × ≠ +∞× =nj j jn I I  almost surely as →∞n . 

Where ( )⋅I  denotes the indicator function and we presume that 0 0×∞ = . Sim-
ilar to Wang and Chang, define ( )β̂ ε β= �

n n nI  as an adaptive shrinkage estimate 
(ASE) of 0β , where ( ) ( ) ( ) ( ){ }1 2, , ,ε ε ε ε= �n n n npI diag I I I  is a ×p p  diagon-
al matrix. So far, we get good statistical properties of the proposed ASE estimate 
under non-random sample size, but our goal is to determine a sample size under 
which the ASE attains the required accuracy. To this end, we will introduce the 
sequential sampling scheme based on the ASE below. It is known that construc-
tion of the confidence set for 0β  depends on the asymptotic distribution of β̂n  
and sample size under sequential analysis is a random variable. So we need to study 
asymptotic properties of ASE under random sample size. Fortunately, property of 
uniform continuity in probability, see in [8] and [9], is a sufficient condition 
such that the randomly stopped sequence has the same asymptotic distribution 
as the fixed sample size estimate. That is, ( )0

ˆ , 1, 2,β β− = �nn n , has the prop-
erty of uniform continuity in probability, which indicates the following Theorem 
holds. 

Theorem 1. Suppose that the (A1) and (A2) are satisfied, and let ( )N t  be a 
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positive integer-valued random variable such that ( )N t t  converges to 1 in 
probability as →∞t . Then 

( ) ( )( ) ( )1
0 0 0

ˆ 0,β β −− → ΣN tN t N I I  

in distribution as →∞t . 
From Theorem 1, we can construct a confidence set of 0β  and a stopping 

rule on sequential sampling procedure to determine final sample size. Let 
( ){ }, : 1, 2, ,= �i iy x i k  be the first k observations and denoted by kC . Define a 

stopping rule dN  as  
2

02inf : ,ν
  = ≡ ≥ ∀ ≥ 
  

d k
k

dN N k k n
a

                (5) 

For sequential estimation procedure, one new observation is collected at a 
time until the stopping criterion is satisfied. When the stopping rule holds, based 
on N samples a confidence set of 0β  is constructed as follow, 

( )
2

: ; 0 0,1ε
ν

 
= ∈ ≤ = → = ≤ ≤ 
 

j

p N
N N j

N

S dR Z R I z j p
N       (6) 

where ( ) ( )1 1 1 1

T

11
ˆ ˆβ β= − Σ −�

N N N N NS Z Z . Properties of the sequential procedure 
and the confidence set NR  are summarized below. 

Theorem 2. Assume that the (A1) and (A2) are satisfied, and let N be the  
stopping time defined in Equation (5). Then 1) 2 2

0
lim 1ν
→

=
d

d N a  almost surely; 

2) 2 2

0
lim 1ν
→

=
d

d N a ; 3) ( )2 2

0
lim 1ν
→

=
d

d E N a ; 4) ( )0 00
ˆlim

→
=

d
p N p  almost surely; 

5) ( )( )0 00
ˆlim

→
=

d
E p N p  where ν  is the maximum eigen-value of matrix 1

0 0
−ΣI I . 

3. Example and Simulation 

We evaluate the performance of the proposed method via sequential fixed size 
confidence estimation using synthesized data sets. As mentioned previously, by 
the definition of the stopping rule, when sampling is stopped, the final confi-
dence ellipsoid constructed will have the prescribed precision and coverage proba-
bility. Thus, we can compare the average stopping times of procedures based on 
MPLE and ASE. Since the proposed method ignores the non-effective variables, 
we expect the average stopping time to be significantly smaller than that of the 
procedure based on MPLE with no variable identification mechanism. If the 0p  
variables are known in advance, then the most efficient procedureis, of course, to 
use only these 0p  variables. Therefore, we also construct a sequential procedure 
under such a situation, and the results of the cases with known 0p  can serve as 
the baseline, in which the smallest sample size is achieved, asymptotically. 

The synthesized data sets for the model with fixed designs are generated as 
follows: the regressor ix  are generated independently from a standard multiva-
riate normal distribution with mean 0 and identity covariance matrix before-
hand, and the error term ie  is independently drawn from the standard normal 
distribution for each 1≥i . The system error is assumed to follow the standard 
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normal distribution. The response generated by model (1) with the arbitrary 
( ) 2

0 =h t t  without loss of the generality and the true parameter  

( )0 1.2, 2.0,0,0,0,0,0,0,0,0β = −  with 8 non-effective variables. Different preci-
sions of confidence ellipsoid { }0.3,0.4,0.5,0.6∈d  are chosed with coverage 
probability equal to 95% 0.05α =  in the simulation. We choose 1γ = , 0.45δ =  
and 0.75θ =  in analyzing simulated data. When applying the ASE method, the 
regularization parameter ε  needs to be determined by some model selection cri-
teria, as the AIC, BIC together with a GCV method. For convenience, we only 
use BIC to illustrate our method, 

( ) ( ) ( )T T

1
BIC 2 log exp logβ β

= ∈

   
  = − − + ×       
∑ ∑

j

N

ij
j j R

X X n df n , 

where df is the number of the non-zero components in β . 
Table 1 state results of sequential sampling method for COX regression. In 

the table, we list final sample size N (stopping time), 2 2κ ν= d N a  and empir-
ical coverage probability CP of the 95% confidence set NR . For all of the three 
cases: MPLE, 

0
MPLE p , ASE, the value κ  of is very close to 1, and the empiri-

cal coverage probability CP approaches the Normal 95% as d decreases, as stated 
in Theorem 2. However, the sample size N of MPLE are much larger than those 
of the other two cases, and ASE has sample size very close to those of 

0
MPLE p . 

In conclusion, the proposed ASE is more efficient than MPLE.  
Table 2 reports powers of identity effective variables and effective variables 

and estimates of the regression coefficients for COX regression. We can see that 
numbers of incorrectly identified zero variables ( ∗

icN ) using ASE is almost close 
to 0, and the number of correctly identified zero variables ( ∗

cN ) are all very close 
to the true number of effective variables (2 and 8). These results suggest that 0p̂  
is a good estimator of 0p  under the sequential sampling method based on ASE. 
The MPLE procedure does not identify the effective variables, so ∗

cN  and ∗
icN  

are not available. In addition, all of parameter estimates of effective variables are 
very close to the true values. 

 
Table 1. Results of sequential sampling method based on ASE, MPLE with all variables and 

0
MPLE p  with only 0p  non-zero 

variables for COX regression model. 

 
( )0 1.2, 2.0,0,0,0,0,0,0,0,0β = −  

0
MPLE p  ASE MPLE 

Design d N *κ  CP N κ  CP N κ  CP 

fixed 

0.6 95.740 (14.75)** 1.028 0.95 107.62 (17.40) 1.044 0.93 305.8 (23.194) 1.01 0.94 

0.5 130.44 (19.75) 1.017 0.98 141.52 (19.13) 1.034 0.93 419.84 (29.586) 1.006 1 

0.4 198.18 (25.587) 1.008 0.93 199.394 (25.311) 1.021 0.928 632.936 (37.868) 1.003 0.93 

0.3 359.68 (38.211) 1.004 0.95 333.676 (37.087) 1.017 0.94 1100.05 (44.707) 1.002 0.97 

( )* 2 2κ ν= d N a ; +CP  is the empirical coverage probability of 95% confidence ellipsoid region NR ; **Empirical standard deviations are in parentheses. 
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Table 2. Power of variable identification and estimation of nonzero components under sequential sampling method based on ASE 
and MPLE with COX regression model. 

 
1 21.2, 2.0β β= − =  

ASE MPLE 

Design d ∗
icN  

∗
cN  1β  2β  

∗
icN  

∗
cN  1β  2β  

fixed 

0.6 0 7.876 −1.263 (0.155) 2.10 (0.210) - - −1.220 (0.09) 2.051 (0.01) 

0.5 0 7.916 −1.243 (0.129) 2.072 (0.173) - - −1.214 (0.007) 2.041 (0.096) 

0.4 0 7.932 −1.232 (0.105) 2.053 (0.142) - - −1.214 (0.064) 2.011 (0.082) 

0.3 0 7.956 −1.220 (0.076) 2.037 (0.107) - - −1.202 (0.042) 2.005 (0.057) 

icN ∗  and cN ∗  are the average number of zero components in β  correctly identified and nonzero components incorrectly estimated as zero values, re-
spectively. 

4. Conclusion 

Based on an ASE estimate of the parameter in COX regression model, a sequen-
tial sampling procedure is constructed to estimate the minimum sample size to 
identify the effective variables and simultaneously make estimate of parameters 
with required accuracy. We prove that the proposed sequential procedure is asymp-
totically optimal in the sense of Chow and Robbins [10]. Simulation studies show 
that the proposed method can save a large sample size compared to the tradi-
tional sequential sampling method. However, this paper supposes the dimension 
of variables is fixed, not varying as sample size. Our future work is to investigate 
the properties of sequential sampling method with varying number of variables 
as sample size.  
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