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Abstract 
Traffic accidents are mainly caused by human error. In an aging society, the 
number of accidents attributed to elderly drivers is increasing. One notewor-
thy reason for this is operation misapplication. Studies have been conducted 
on the use of human-machine interfaces (HMIs) to inform the driver when 
he or she makes an error and encourage appropriate actions. However, the 
driver state during the erroneous action has not been investigated. The pur-
pose of this study is to clarify the difference in the driver’s state between 
normal and surprising situations in a misapplication scenario, utilizing mul-
timodal information such as biometric information and driver operation. We 
found significant changes in the interaction of components between the nor-
mal and the surprised driving state. The results could provide basic know-
ledge for the future development of a driver assistance system and driver state 
estimation using data acquired from multiple sensors in the vehicle. 
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1. Introduction 

A report released by the World Health Organization [1] in 2020 showed that 
there are around 1.35 million fatalities every year because of road traffic acci-
dents. The factor that contributes most to a large number of accidents is human 
error: speeding, driving under the influence of psychoactive substances, dis-
tracted driving, etc. The development of the technology related directly or indi-
rectly to vehicles has helped to reduce the physical stress imposed on drivers but 
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has also led to more distraction during the driving task. Klauer et al. [2], in a re-
port on the impact of driver inattention on near-crashes, showed that secondary 
tasks are the factors that contributed most to inattention-related accidents. The 
driver inattention defined in the report including secondary tasks, drowsiness, 
drive-related inattention to the roadway, and non-specific eye glance toward the 
roadway.  

Another emerging crash factor that is gaining attention is the driver’s internal 
state [3] [4] [5] [6]. The sources of the internal state can come from the outside 
environment or inside the driver’s mind. Startle response or surprise state are 
quite common in driving: a pedestrian sudden pass by, unintended acceleration 
or lough horn of a large truck, etc. Startle is a reaction to sudden, intense threat-
ening stimulus while surprise is inclined toward cognitive and emotional response. 
These terms are often used interchangeably. Research about the effects of them 
on operation performance has been done in aviation [7] [8] [9]. In some extreme 
cases, the surprise may impair the pilot’s troubleshooting capabilities. This is al-
so true for the car driver. Subtle surprise events appear more often when driving 
on urban roads. More extreme surprises such as near hit can develop fear or 
panic feeling. In a report, K. Lococo et al. [10] stated that startle or panic was 
common associated with pedal misapplication in North Carolina, United States. 
The report also mentioned that 57% of the crashes were in the parking lots or 
driveways. In Japan, the Institute for Traffic Accident Research and Data Analy-
sis (ITRADA) has published reports about driving operation errors and pedal 
misapplication [11] [12]. As for driving operation errors, drivers aged 24 or un-
der and 75 or over are the groups who cause the highest number of accidents 
[11]. Additionally, in [12] “flustered/panicking” is the most factor common for 
all operation errors. 

In order to prevent the source of operation errors, many studies have attempted 
to detect inattention [13] [14] [15], cognitive distraction [16] [17] or driver 
emotion [4] [18] [19] [20] [21]. As for the pedal misapplication due to the sur-
prise event, the previous studies focused on the foot behavior [22], foot place-
ment [23] or interruption of the other task [24]. There is limited knowledge of 
what happens with the internal states and what should be improved when coun-
termeasures fail to prevent the error. In this study, focusing on a specific unfo-
reseen event, human-machine interaction, and pedal operation, we proposed a 
multimodal model to detect the driver’s state in normal driving and surprise 
driving caused by an unexpected situation. By using data collected from the car-
diovascular system and driving responses, the proposed model could lead to a 
better understanding of the interaction between those components. The results 
of this study can be used in the future development of assistance systems for ve-
hicles. 

2. Literature Review 
2.1. Related Research 

Previous studies have investigated the relationship between surprising situations 
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and driving performance. When investigating pedal misapplications, Schmidt et 
al. [25] mentioned that other operation errors might cause unexpected accidents, 
including human error (going in the wrong direction) and using the wrong gear 
(either reverse or drive) when starting to drive. Upon analyzing a large number 
of data sets, Green [26] pointed out that, in unexpected and surprising events, 
the human perception-brake reaction time increases significantly compared to in 
fully aware situations (0.7 - 0.75 seconds in fully aware situations, 1.25 seconds 
in common ones and 1.50 seconds in surprise events). Fitch et al. [27] published 
research about braking performance and surprise events in 2010. The results also 
agreed with Green’s conclusion that surprised driver responses are slower than 
those of an aware driver, but these performances vary depending on other fac-
tors such as age, gender, vehicle, etc. B. Freund et al. [28] suggests that a de-
crease in cognitive capability may be an important contributor to the pedal error 
of an older driver. In the report of K. Lococo et al. [10], drivers between the ages 
of 70 and 74 are 1.8 times more likely to be involved in an accident due to pedal 
error than any other vehicle accident, and between the ages of 80 and 84 the 
number is four times more. 

2.2. Driver State Assessment 

To prevent unsafe situations, many studies have focused on detecting driving 
situations and the driver’s state. The approaches come from many fields, in-
cluding mechanical engineering, those relating to driving dynamics and driver 
performance; medical and bioengineering; computer science, using image rec-
ognition; etc. The methods used by the above approaches are mainly based on 
the assumption that the parameters inspected will show different trends or pat-
terns in normal and abnormal driving conditions. This assumption was applied 
to steering behavior as an index of workload by Boer [29]. As for bio-signals, 
Choi et al. [30] used a principle dynamic model to predict the activation level of 
two autonomic branches (sympathetic and parasympathetic) for emotional 
stress. Gao et al. [4] used a camera to obtain facial information and input the 
data into supervised learning for emotion detection. Meanwhile, Solovey et al. 
[31] combined both driving performance data and bio-signals and applied dif-
ferent machine learning methods for real-time detection. 

Using physiological information to detect human states has been attempted 
for many years. Various types of experiments have been conducted to ensure the 
safety of drivers [13] [14]. To detect the driver’s state, sensors (electrodes, light- 
based sensors) and cameras are widely used because they are easy to set up. 
Other objective methods include output performance, which will evaluate the 
result of the task. Subjective methods use questionnaires or rating scales in be-
tween tasks or after the experiment. In many studies, individual measures can be 
used alone or mixed features can be used to improve the result.  

The advantage of using sensors and cameras is that they can continuously 
monitor the behavior of the subject, which is essential in real-time applications. 
These measures assume that in normal driving conditions human responses stay 
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in stable patterns or distributions. Changes in physiological response are often 
acquired from the medical or human factor fields. Changes in performance 
come from preset experiments or long-term research. Commonly, physiological 
indexes are related to human sensing resources: vision, auditory, space, and 
movement. 

The main advantage of subjective methods is that they are simple and easy to 
deploy in an experiment. Some of the famous techniques that are widely used are 
NASA-Task Load Index (NASA-TLX) [32] and the instantaneous self-assessment 
workload scale (ISA) [33]. The disadvantage of these methods is that the answers 
heavily rely on the subject’s memory. Furthermore, self-report measures cannot 
be obtained continuously like the above-mentioned measures. However, they are 
easy to complete before or after an experiment. 

2.3. Graphical Models 

As mentioned in the previous section, studies on the relationship between phy-
siological data and driving behavior are mostly based on statistical analysis and 
assumptions. This study will adopt a different approach by applying a Gaussian 
graphical model (GGM) for the detection of drivers’ states and inspecting the 
potential relationships of the components in the human factors.  

Graphical models are popular in the fields of chemistry, genomics, neurology, 
psychology, and social interaction [34] [35] [36]. They provide a principled ap-
proach for dealing with uncertainty problems through the use of probability 
theory and an effective approach for handling complexity through the use of 
graph theory. A graphical model is a family of probability distribution defined in 
terms of a directed graph (Bayesian network) or an undirected graph (Markov 
network). The components of a graphical model are nodes and edges. Nodes are 
represented by random variables, which are the investigated features. Influences 
between one node and the others are represented as edges. Edges can be directed 
or undirected. Among graphical models, the Gaussian graphical model (GGM) 
is famous for its exploratory data analysis and can be used for both cross-sec- 
tional and time-series data. 

Let X be a set of p-dimensional Gaussian random vectors defined as: 

{ } ( )1, , ~ 0,ΣpX X X N= �                      (1) 

where all the variables are centered and normally distributed (or have been stan-
dardized to have a mean of 0) and have the variance-covariance matrix Σ . 

By preparing the variables satisfied (1), the inverse of Σ , the precision matrix 
K, 1ΣK −= , is focused. The precision matrix can be standardized; the partial 
correlation coefficients of two variables can be encoded by: 

( )( ),, ij
i j i j

ii jj

K
cor X X X

K K−

−
=                     (2) 

where ijK  denotes an element of K and ( ),i jX −  denotes a set of variables with-
out i and j elements. 
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When creating a GGM as a network (a partial correlation network), each va-
riable Xi is represented as a node and a partial correlation between two variables 
is represented as an edge. Typically, positive partial correlations are visualized as 
blue or green edges, and negative partial correlations are red edges. When there 
is no relation (the partial correlation is zero), no edge is drawn.  

3. Method 
3.1. Participants 

As mentioned in Section 1, elderly citizens (aged 75 or over) are among the group 
that causes the highest number of accidents due to operation errors. All 35 sub-
jects (20 males and 15 females) who participated in the study, with ages from 65 
to 85 years old (mean age = 74.3), had valid driving licenses. The subjects were 
informed that they must give their consent before they participated in the study. 
The study protocol was approved by Nagoya University’s Institute of Innovation 
for Future Society Ethical Review Board. 

The participants were asked to drive while wearing bio-sensors to collect phy-
siological data. Due to the noise in the data (bad contact or loose electrodes) or 
data corruption, some of the data had to be marked as unusable. The recorder 
sometimes lost its time system, which led to us being unable to merge the timing 
between the physiological data and the driving data. Those data were marked as 
not merged with the driving simulation data. For those above reasons, only 8 
subjects’ data were used.  

3.2. Apparatus 

Due to the high risk of accidents in surprising situations, the experiments were 
conducted in an advanced simulation room in the NIC Building, Institute of In-
novation for Future Society, Nagoya University. The simulator was a 5-screen 4K 
projector with a stereoscopic-view driving simulator that incorporates numerous 
elements, including driving simulation, traffic simulation, and vehicle dynamics 
and performance, by building upon the UC-win/Road software (FORUM8 Co. 
Ltd.). The system was optimized to take into account human perceptions and 
traits by incorporating complex mathematical models, high-luminance and high- 
definition visual cues, realistic cockpit modules, and a highly responsive motion 
platform. The logging function of UC-win/Road recorded the driver’s operation 
and the vehicle’s dynamic values. 

The human-machine interface (HMI) system alerted the driver about the 
danger distance between the vehicle and the obstacle, which here was a building. 
The system consisted of a screen put on the instrumental dashboard in front of 
the driver, a speaker put under the driver seat, and a vibration motor put under 
the brake pedal. Upon receiving a warning signal about the distance, the HMI 
system would issue one of a combination of 4 types of warning—a message on 
the display, a high-pitched warning sound, a human warning voice, and a vibra-
tion—named pattern 0 (P0) to pattern 6 (P6).  
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To provide additional information besides driving information, monitoring 
cameras were placed inside the driver cockpit: one for monitoring the driver and 
one for monitoring the driver’s foot movement. The recording videos were syn-
chronized with the UC-win/Road time system. 

Physiological data were recorded by a portable recorder which has the same 
function with Livo TM4488 (Livo) (Toyota Technical Development Corpora-
tion, TTDC, Japan). Livo is a biomedical signal recording system that can record 
physiological activities such as electromyography (EMG) and electrocardiogram 
(ECG). ECG recordings used a lead II configuration at a sample rate of 1000 Hz. 
Depending on the subject’s medical history, isopropyl alcohol or non-alcohol 
cleaner was used to clean the skin and standard pre-gelled disposable electrodes 
(Ag/AgCl paste, Vitrode Bs-150) were applied. The recorder did not have an in-
ternal real-time clock, so the time system was synchronized with the UC-win/ 
Road time system through the wireless network. The bio-signal was recorded 
continuously without interruption, and the experiment events were marked by a 
button event operated by a monitoring operator seating behind the driver seat. 
The data acquisition system diagram is showed in Figure 1. 

3.3. Experimental Procedure 

The tasks were designed to evaluate various driver response features to the sur-
prising situation and alarm sources. The experimental detail is showed in Figure 
2.  

The first task was a trial drive which allowed the subjects to become familiar 
with the driving environment. In this task, the driver would drive through a 
straight road and pass a bus stop in the same lane, which required the driver to 
slow down and change lane. Right before passing the bus, there was a zebra 
crossing and a person tried to pass through, which required the subject to stop 
the vehicle. This setup helped the subjects to become used to the feeling of driv-
ing with the simulator system. Due to the nature of the instruction task and the 
subject’s nervousness, the data variation of the first task was large and excluded 
in the analysis of this research.  

The second task was to drive through an intersection with traffic control and 
then drive into a parking lot in front of a food court.  

 

 
Figure 1. Data acquisition system. 
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Figure 2. Driving scenario and Tasks. 
 
The third task was the main focus of this experiment, which was to create a 

surprising scenario. At the parking lot, the subject was asked to move out; the 
gear shift was intentionally reversed by the operator, causing the vehicle to move 
toward the food court instead of moving backward. The second task and third 
task were carried out continuously without a break.  

The subjects were informed about the overall objective of the experiment but 
were not told when the surprise event would occur. The task sequence was car-
ried out in an orderly fashion by the operator. To prevent any negative influence 
on the driving state, the subjects were asked to take 5 minutes resting before 
starting the test. The subjects were asked to drive in their normal driving style. 
The normal driving state was considered to be all the data collected throughout 
the normal driving situations, including the second task (driving along the 
street) and part of the third task (before the surprise event). The surprise state 
was considered to be the data recorded in the latter part of the third task when 
the subject reacted to the unexpected movement. Because the subjects expected 
to move backward but instead moved forward toward the store in front of where 
they were parked. Some drivers could realize the situation, release the gas pedal 
and press the brake pedal in time; others could not realize or could not react fast 
enough and hit the wall in front of the vehicle. This setup was considered a sur-
prising event. 

Besides the human factors and driving performance, the effectiveness of the 
alert source in the last task (reverse gear) was taken into consideration to im-
prove the driver’s reaction. To keep the surprise feeling intact, each subject only 
experimented once with one of the six alert patterns. The subjects were not in-
formed about the alert pattern before it happened and were asked about their 
awareness of the alert after the test. For other details of the experimental setup, 
refer to [37]. 

3.4. Physiological Measures 

Among the features most commonly used to explore the human state, the cardi-
ovascular system and related features have been used for a long time. The res-
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ponses of the cardiovascular system are controlled by the autonomic nervous 
system (ANS). The sympathetic nervous system (SNS) and parasympathetic ner- 
vous system (PNS) both have influences on the heart rate. SNS increases the 
heart rate by increasing the firing rate of pacemaker cells, while the PNS de-
creases it through the influence of the vagal nerve and is known as rest and di-
gest. The increase in, decrease in, and trend of heart rate are mostly affected by 
physical activities. Recent studies [38] [39] show that the heart rate and heart 
rate variability (HRV) can be used to detect and predict different human states. 

The 3-lead ECG data went through a preprocessing procedure, including a 
noise filter and the extraction of the time elapsed between two successive R waves 
of the QRS complex on the electrocardiogram (RR interval). Then, the processed 
data were divided into windows (10 seconds, 30 seconds, 60 seconds). Since the 
window sizes were all under 5 minutes, they were considered to be an ultra-short 
analysis of HRV. According to recent research on ultra-short HRV analysis [40], 
the features which are used for investigation for an extremely short period of RR 
series are the mean RR, square root of the mean squared differences between 
successive RR intervals (RMSSD), low-frequency power (LF), high-frequency 
power (HF), and standard deviation of the Poincaré plot perpendicular to (SD1) 
and along (SD2). The meaningfulness of each feature depends on the nature of 
the statistic index they are based on. As for this result, to ensure the integrity of 
the study only mean RR, RMSSD, SD1, and SD2 were used as input data for the 
investigation. 

3.5. Driving Response Measures 

Researchers have used various driving performance measures and criteria for 
evaluating drivers’ performance and state. Engström et al. [41] have released a 
comprehensive report on driving performance assessment including the use of 
mean speed, lateral position variation, time headway, brake reaction time, steer-
ing wheel reversal rate, etc. 

In the scope of this study, the driving scenario mostly focused on the longitu-
dinal dynamics of the vehicle, the driver’s reaction to the driving scenes, and the 
safety evaluation of the outcome. For this reason, only the reaction time during 
the transition between the acceleration pedal and the brake pedal was consi-
dered.  

Three types of alerts were inspected in this study: no alert situation (no alert 
source, called pattern 0, P0), alert with display and voice (called pattern 3, P3), 
and alert with display and integrated alarm (called pattern 6, P6). To ensure the 
surprise condition of the experiment, each subject only received one type of alert 
one time. In total, two subjects had P0, three subjects had P3, and three subjects 
had P6. The experiment period for the driving state and surprise state for each 
subject was about 2 to 3 minutes for each state. Since we did not know which 
type is more effective for the driver’s state, this feature was encoded as a one-hot 
feature. The alert type was considered as normal input. During normal driving, 
the alert input was encoded as no alert. During the surprise events, the alert in-
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puts were encoded respectively to their alert patterns. 
As mentioned above, the reaction time (RT) was a feature that was investi-

gated in this study. Due to the discrete nature of the pedal applied, the reaction 
time could only be calculated in a specific period. In the driving task, some driv-
ers used the brake pedal more often, and others just released the gas pedal to 
slow down and only fully stop in case of stopping. Thus, for a short time (10 and 
30-second window) some of the extracted data had no reaction operation. Con-
sequently, the representative RT feature was extracted and used only in a 60- 
second window analysis. 

Distinguishing between two driving states is one of the main concerns of this 
study; for normal driving without any negative influence and the surprise state 
when driving, details are described in the previous section. The labeling of the 
drivers’ state was confirmed by carrying out a questionnaire after the experi-
ment. The subjects were instructed to provide accurate answers about whether 
they were aware of the alert pattern and whether they were surprised by the situ-
ation. Besides the questionnaire, the drivers’ reactions were also double-checked 
by the video recorded inside the driving cabin. 

3.6. Detection Method Based on a Graphical Model 

In this study, GGM and a Logistic Regression Classifier were combined in se-
quence to form a detection model. Before adding them to the model, all inputs 
(features) had to be standardized. In the learning phase, the driving data were 
used to estimate Driving GGM, and the surprise data were used to estimate Sur-
prise GGM. The labeled inputs were grouped, and we used QuickGraphicLasso 
from “skggm: Gaussian graphical models using the scikit-learn API” [42] to es-
timate the respective GGM models.  

The original aim of the model was to combine HRV indexes, reaction time, 
and alert patterns to classify the driver’s state and use the structures acquired 
from GGM to explain the relationship between these inputs with structural 
changes in the models. For this reason, only 60-second windows with the reac-
tion time data were used. The model inputs include meanRR, RMSSD, SD1, SD2, 
alert type, and reaction time. As the number of input data was small, the whole 
data set was used for the learning phase.  

The trial data { }1, , pZ Z Z= � —the sampled data contained p features x m, 
where m is the length of time—is assumed to belong to one of the GGM models 
discussed above. The score function is the log-likelihood value of the covariance 
of the Gaussian trial data with the covariance of the estimate graph model. In the 
proposed model, assuming that the graph models are correctly estimated, the 
log-likelihood value is used to represent how “likely” it is that the test data be-
long to one of the graph models. The training trial data are extracted by a seg-
mentation data set, as shown in Figure 3. Since the data set was small, synthetic 
test trial data were created to test the performance of the detection method. The 
test trial data were randomly selected from the data set by the group labels 
“Drive data” and “Surprise data”. The test trial data were then labeled according 
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to their group.  
Later, the score values obtained by the precomputed GGMs were used as the 

input of the Logistic Regression Classifier. The Logistic Regression Classifier 
(weights of the classifier, iw  with ( )0,2i∈  was trained by the train trial data. 
The detailed structure of the graphical detection method is shown in Figure 4.  

4. Results 
4.1. Canonical Machine Learning Methods 

As mentioned in Section 3.3, the data, including the simulation data and RR in-
terval, were segmented into time windows of 10 seconds, 30 seconds, and 60 
seconds to create three data sets. Details of the data collection and process are 
shown in Figure 3. The data set extracted with the 60-second time window was 
excluded in this section and only used with the proposed model due to there be-
ing such a small sample of data. The collected data set was then divided into a 
training set and a test set to evaluate the performance of the conventional ma-
chine learning models. Since the amount of the data was relatively small, the ra-
tio 80:20 was used. Cross-validation was also used in the training session to pre-
vent overfitting. Three canonical classification models were trailed in this study 
due to their popularity in small data sets: support vector machine (SVM), ran-
dom forest (RF), and multilayer perceptron (MLP). The preprocessing, learning, 
prediction, and cross-validation were carried out using the APIs of scikit-learn 
[43] in Python. Due to the limitation of the collected data, the number of sur-
prise state data was significantly lower than the number of drive data. The im-
balance of the data will have affected the performance of the model. For that 
reason, the synthetic minority over-sampling technique (SMOTE) [44] was used 
to balance the number of two classes. 
 

 
Figure 3. Data collection, training, and evaluating the proposed method. 
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Figure 4. Schematic of the proposed detection method. 

 
Overall, the accuracy of RF was the best among the canonical methods (0.98 - 

0.99 in the training set, 0.71 in the test set). The accuracy of SVM and MLP was 
barely better than that of a random guess (0.64 - 0.65 in the training set, 0.48 - 
0.50 in the test set). Other indexes reflecting the effectiveness of the models are 
shown in Table 1. 

4.2. Graphical Model Method 

The performance of the proposed graphical model was shown to be favorable in 
the case of the 60-second data set with RT information. The performance in the 
case of the 60-second data set without RT was still better than that of SVM and 
MLP. Furthermore, the two GGMs provide additional information about how 
driving performance interacts with the physiological indexes and alert type in 
each state. 

5. Discussion 

The basic statistic of the cardiovascular shows in Table 2. It can be seen that the 
mean of heart rate in the surprise was lower than the mean of heart rate in nor-
mal driving. This result seems somewhat unexpected as typically one would as-
sume that the heart rate should increase to response to a surprise event. It is true 
that most of the case the cardiac activities increase right after the stressful event 
then gradually decrease back to normal. Hence the mean heart rate of the sur-
prise data might be lower than the mean heart rate of the normal driving. A pre-
vious study [45] also mentioned that cardiac acceleration or deceleration was 
due to individual differences. In another study [46] about the psychological res-
ponses to facial expression in which the image appears as a kind of sudden event, 
the heart rate decrease and startle reflexes increase indicated that the rising of 
attention response and preparation for fight-or-flight response of the SNS sys-
tem.  

Among the inspected machine learning methods, RF shows the highest accu-
racy in both the training set and test set. The gap between the training and test 
accuracy might be the result of overfitting. The cross-validation and averaging of 
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the model could reduce this phenomenon. The high precision shows that the RF 
model used in this study is good at detecting the surprise state. However, the low 
recall reflects that the RF model is bad at detecting the driving state and tends to 
mistake the driving state for the surprise state. This might be the effect of the 
synthetic data creation by SMOTE to balance the data. Although not reported in 
this study, we have tested those machine learning methods without SMOTE, the 
accuracies were better but the performance indexes (precision, recall, and F1- 
score) were worst. The limited sample size has significant effects on the perfor-
mance of the machine learning methods, especially with MLP which we found 
out during the training model that it did not converge. It can be seen that the 
performance indexes of SVM and MLP decrease correlated with the decrease of 
sample size. Surprise in driving involves not only the cognitive function but also 
the sensorimotor function (bodily movement, steering, and leg movement). Us-
ing only physiological measures will not be as effective in detecting driver states 
under varying external conditions as the addition of other information on driver 
behavior and the driving context. Similar results have been found by Solovey et 
al. [31] and McDonald et al. [47], and the performance of machine learning me-
thods is lower when using only physiological features as inputs. 

 
Table 1. Performance of support vector machine (SVM), random forest (RF), multilayer 
perceptron (MLP), and the proposed model. 

Model 
Window size 

(secs) 
Number of 

Samples 
Accuracy on 

train set 
Accuracy 
on test set 

Precision Recall F1-score 

SVM 10 278 0.65 0.48 0.58 0.54 0.56 

 30 95 0.65 0.50 0.50 0.43 0.46 

RF 10 278 0.99 0.71 0.85 0.63 0.72 

 30 95 0.98 0.71 0.88 0.50 0.64 

MLP 10 278 0.64 0.48 0.58 0.52 0.55 

 30 95 0.64 0.50 0.50 0.36 0.42 

GGM-L 10 278 0.73 0.57 0.77 0.21 0.32 

 30 95 0.67 0.59 1.00 0.18 0.31 

 601 48 0.80 0.66 0.77 0.47 0.58 

 602 48 0.94 0.94 0.94 0.97 0.96 

1Without reaction time information; 2with reaction time information. 
 

Table 2. Mean and standard deviation (SD) of the physiological variables and reaction 
time in each state. 

Variable 
Normal driving state Surprise state 

Unit 
Mean SD Mean SD 

RR interval 911.3 64.5 934.7 55.2 ms 

Heart Rate 66.3 4.5 64.6 3.8 bpm 

Reaction Time 1792.4 286.3 463.8 129 ms 
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The result of the proposed model can be explained by the evaluation method: 
the score value of the graphical model is the log-likelihood of the given test data 
for the parameter values of the estimated model. This means that it calculates the 
probability of a set of data to decide whether it fits with the model or not. Gen-
erally, if this value is high the test data has a high probability of belonging to that 
graphical model. The technique of creating test data is similar to the bootstrap 
technique, which means that the data which were used in the learning phase will 
be used in the evaluation phase but in random order. Despite the fact of small 
sample data, our proposed model yield the best performance in detecting driver 
state compared to the other machine learning methods. In reality, the number of 
usable data points for human behavior in driving is limited. The performance of 
the model with a small data set is an advantage. Overcome limitation of sample 
data will be considered in our future work. 

One of the most important points when approaching graphical models is in-
ference. The two graphical models (GGM for driving state and GGM for surprise 
state) included in the learning phase have similar features. Because the condi-
tions for each model are controlled and different, we acquired two models with 
different structures. The changes in structure will help us to gain a better under-
standing of the interaction between the models’ features. Figure 5 shows the re-
sults of the two models estimated from the data. Clear changes in the structure 
of those two models can be seen. In the case of the drive state, reaction time has 
almost no relationship with the other features.  

The partial correlation with P0 (no alert) is small, which is understandable 
because there is no alert source to affect other human factors. The change in the 
model structure from the driving state to the surprise state is noticeable. While 
the partial correlation between the pair “RT - mean RR” and “RT - P3” is posi-
tive, the partial correlation of the pair “RT - P6” is negative. There is little 
change in the partial correlation between the nodes SD1, SD2, and RMSSD and 
the other nodes. These results can be interpreted as meaning that the reaction 
time and the inner system have less influence in normal driving, though in a 
surprising situation they affect each other closely. Furthermore, the three fea-
tures SD1, SD2, and RMSSD have no interaction with the other features, and 
they can be omitted in similar studies in the future. The interesting point here is 
that the alert type also affects the reaction time but in an opposite way. P3 and 
P6 use a similar alert source—auditory (voice in P3 and alarm in P6) and visual 
(display in both patterns)—but P3 tends to have a positive influence on RT while 
P6 tends to have a negative effect. This can be interpreted as the alarm (in P6) 
reducing the reaction time, which means that it increases the driving perfor-
mance. Meanwhile, the voice (in P3) tends to prolong the reaction time. It can 
be inferred that the human sensing system and brain respond in different ways 
to the alert sources: when a human hears a sound, if it is a human voice the per-
ception process needs time to interpret the information and make a decision. 
Consequently, the human/dialogue sound appears to be effective in the case of 
giving instructions, such as in take-overs [48]. On the other hand, the response  
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(a)                                      (b) 

Figure 5. Graphical structures for (a) driving state and (b) surprise state. 
 
to the alarm takes less time; the human brain can automatically acknowledge the 
serious problem and take action in a shorter period [49] [50]. Although not re-
ported in this study, the questionnaire result also showed that the alarm sound 
was more effective than the other warning sources. As for the display, the size is 
important due to the visual problems of old people. 

There are still some limitations in this study. The first one is the number of 
samples. The actual number of subjects involved was higher, but only eight ECG 
data were used for this study. The second limitation is the assumption in the 
GGM model—the multivariate normality of the data set—which means that the 
features need to carry out standard scaling. 

6. Conclusion 

This study investigated different classification methods for a specific case: nor-
mal driving and surprise driving. The accuracy and effectiveness of three com-
mon classification methods have been investigated, along with the effect of dif-
ferent window sizes on the outcome of the prediction. The graphical-based de-
tection model shows a good potential in both the prediction performance and 
exploratory attribute. Although there are some limitations regarding the amount 
of data gathered, the results showed a conclusion that was consistent with those 
of previous studies. The favorable outcome shows that this approach can be ap-
plied not only to this problem but also to other human behavior studies that in-
spect the internal interaction of system components. In the future, our focus will 
be on extending the number of samples collected and integrating other features 
to gain a better understanding of the interactions not only in surprising situa-
tions but also in other critical driving scenarios. 
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