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Abstract 
In a context marked by the proliferation of smartphones and multimedia ap-
plications, the processing and transmission of images have become a real 
problem. Image compression is the first approach to address this problem, it 
nevertheless suffers from its inability to adapt to the dynamics of limited en-
vironments, consisting mainly of mobile equipment and wireless networks. In 
this work, we propose a stochastic model to gradually estimate an image upon 
information on its pixels that are transmitted progressively. We consider this 
transmission as a dynamical process, where the sender pushes the data in de-
creasing significance order. In order to adapt to network conditions and per-
formances, instead of truncating the pixels, we suggest a new method called 
Fast Reconstruction Method by Kalman Filtering (FRM-KF) consisting of 
recursive inference of the not yet received layers belonging to a sequence of 
bitplanes. After empirical analysis, we estimate parameters of our model 
which is a linear discrete Kalman Filter. We assume the initial law of infor-
mation to be the uniform distribution on the set [0, 255] corresponding to the 
range of gray levels. The performances of FRM-KF method have been eva-
luated in terms of the ratios in the quality of data image/size sent and in the 
quality of image/time required for treatment. A high quality was reached 
faster with relatively small data (less than 10% of image data is needed to ob-
tain up to the sixth-quality image). The time for treatment also decreases 
faster with number of received layers. However, we found that the time of 
image treatment might be large starting from a image resolution of 1024 * 
1024. Hence, we recommend FRM-KF method for resolutions less or equal to 
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512 * 512. A statistical comparative analysis reveals that FRM-KF is competi-
tive and suitable to be implemented on limited resource environments.  
 

Keywords 
Progressive Image Transmission, Bitplane Coding, Kalman Filtering, Fast 
Reconstruction 

 

1. Introduction 

Transmission of digital images has been widely studied, since the early years of 
the Internet [1]. It deals with compression and transmission of images data in 
such a way that the receiver can start decoding and displaying the received im-
ages even without receiving the whole file. Because of the large amounts of data 
needed in image technology, applications are highly constrained by the available 
resources, and the quality of service during the transmission. In video streaming, 
for instance, the latency of the transmission of individual image frames plays a 
fundamental role [2] [3] because of the isochronal character of the video. The 
images must be displayed at a given frequency, with a fault threshold above 
which the visual quality of the video is not acceptable. Many techniques have 
been proposed in the literature to tackle these problems, among which image 
compression and Progressive Image Transmission (PIT). 

The primary objective of PIT is to transmit a significant and interpretable core 
of the image and subsequently transmit complements layers in order to gradual-
ly improve the quality. This method requires a preparation of the image to be 
transmitted. PIT techniques can be grouped into three main areas: the spatial 
domain [4], the methods based on transform domain, and the pyramid-structured 
domain [4] [5]. As new areas of interest emerge, like live streaming over narrow 
networks, wireless sensor networks, digital image transmissions are still of a sig-
nificant challenge. As reviewed in [4], most of the recent improvements in image 
coding are based on wavelet transformation. The challenge is then to organize 
the transmission of the bitstream to adapt to the fluctuations of the network and 
the receiving device capabilities. 

In this work, we are interested in the progressive transmission and refinement 
of still images, as a process that adapts to low quality network service. A special 
focus is made on JPEG2000 format since it is the most used standard nowadays 
[6] [7]. However, the method presented here is general enough and can be ap-
plied to any image format that encodes the image file as a two-dimension data 
container (the resolution and the color depth), and where the resolution and the 
color depth can be picked independently to adapt to the end user device. The 
display of an image is considered as a progressive process in order to adapt to 
network conditions. The sender selects the image data, layer by layer, from most 
significant to the least one, depending on the quality of the desired image at the 
receiver. Upon reception of these data, the receiver decodes a blurred version of 
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the image and smooths it by statistically inferring the missing information. As 
more refinement data come from the network, this process is recursively re-
peated. Kalman filtering (KF) algorithm will be used to infer the refinement data 
[8] [9] [10]. 

The rest of the paper is organized as follows. In Section 2, we review the 
literature works about progressive image transmission. Section 3 deals with the 
theoretical foundations on the discrete Kalman Filtering, while Section 4 
presents the proposed method modeling image transmission as a filtering pro-
cedure. In Section 5, we apply the FRM-KF on a standard image gallery and dis-
cuss its performance. 

2. Short Background on PIT 

PIT techniques can be grouped into three main areas namely the spatial domain, 
the methods based on transformed domain and the pyramid structured domain. 

2.1. Spatial Domain 

Spatial domain methods are based on the bit-plane decomposition (BPDM) [4] 
and the vector quantization method (VQM). 

The bit plane decomposition method is the most intuitive one when tackling 
the problem of progressive transmission. Indeed, the level of gray of each pixel 
in an image is coded over 8 bits having different significances. The collection of 
the ith significant bits of all pixels constitutes the ith bit plane to be transmitted at 
the ith step. On the receiver side, the binary image will be rebuilt after receiving a 
certain number of bit planes, and gradually refined with the arrival of the other 
planes. BPDM does not introduce any distortions but it suffers from a lack of 
flexibility and limited performance in terms of adaptation to variations in net-
work conditions. Improvements of BPDM in terms of reduction of storage space 
and therefore transmission time are available in the literature: quantification of 
pixels and selection of areas of interest with higher priorities [11]. 

During the vector quantization the pixels are grouped in blocks (code-blocks) 
which are transformed each into a vector. The obtained vectors are grouped into 
a lighter structure called code-book where they are codewords. Codewords are 
progressively transmitted and used to produce an approximative image on the 
receiver side. The main available improvement of the VQM is the Tree-sourced 
Vector Quantization method (TSVQM) which consists to transmit first the vec-
tor quantizations contributing more quickly to obtain a better image quality [12]. 
The VQM has some disadvantages: block effects during the display, transmission 
by codeword and overout of the transmitter side complexity, calculation over-
head for the creation, organization and codewords selection. 

2.2. Transform Domain 

The main goal of transform based methods (e.g. Discrete Cosines Transform 
(DCT)) is to achieve the concentration of energy in low-frequency areas which 
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are grouped into a small number of coefficients. The low frequency coefficients 
have a strong and decisive impact on the final and overall quality of the image. 
Before their transmission in the decreasing order of importance, those coeffi-
cients are hierarchized following a technical scanning pattern (e.g. the zigzag 
scan used in JPEG [13]) or the multistage quantization based on variances of 
coefficients. 

2.3. Pyramid Structured Domain 

The pyramidal shape is ideal for progressive transmission. To form a pyramid, 
an image is reduced in terms of resolution according to a predefined method 
such as Discrete Wavelet Decomposition (DWT) [4] [5] and the Quadrature 
Mirror Filter (QMF) [12]. The reduced image has few coefficients and the 
transmission process therefore consists of transmitting first the top of the pyra-
mid followed by the differences between the current layer and the next layer. 

2.4. Fast Progressive Image Transmission 

All the above techniques do not integrate a prediction on the data not yet re-
ceived. Such an inference allows a faster access to a transmitted image. A method 
trying to achieve that goal is the pixel interpolation permitting to estimate not 
yet received data using a model constructed based on available data. The 
SIDE-MATCH algorithm is an implementation of interpolation method [14]. 
Although the expected rapidity to converge to a relatively good image quality, 
inference methods suffer of a certain number of drawbacks, namely the difficulty 
of producing good quality images at the beginning of the process and their com-
plexity inducing large calculation times. 

3. The Discrete Kalman Filter 

Filtering is a procedure which aims at estimating the state of a given dynamic 
system with noisy observations. Usually, the outputs are given as a sequence: 
{ }n n T
Y

∈
. T ⊆   denotes a set of time values. It can be discrete or continuous, 

depending on data availability and observation rate. Each output nY  is related 
to an unknown or partially known state nX  through a stochastic model of the 
form  

( ) ,n n n nY H X V= +                         (1) 

where nV  is the noise occurring in the measurement procedure. nH  
represents and averaged relationship between nY  and nX . In other terms it is a 
trend of evolution of Y as a function of X The observation noise is usually as-
sumed to be a normal or Gaussian random variable [15]. The additional hypo-
thesis of independence of system { }n i T

V
∈

 is very common and useful for com-
putations. In Equation (1), the observation nY  is available while neither nX  
nor nV  is known. Filtering aims at giving the conditional law of the hidden 
signal nX  conditionally upon the subsequence { }i i n

Y
≤

 despite the presence of 
noise { }i i n

V
≤

. One can focus on ˆ
nX , the conditional expectation of the signal 
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nX  upon subsequence { }i i n
Y

≤
 noted as 0:nY  for simplicity [10] [16] [17]. As 

mentioned in [18] [19] [20], applications of filtering cover areas such as sensor-
less control, prognostics and health management (PHM), fault-tolerant control 
of ac drives, management of storage systems, signal processing, robotics, com-
puter vision, real-time industrial control systems, localization, navigation, mo-
bile trajectory tracking and other applications combining knowledge of a priori 
dynamics with sensors measurements. 

A large class of these applications is covered by the discrete filtering that can 
be described by the general linear problem  

( ) ( )

1

1 1 1 1 1

0, , 0,

n n n n n

n n n n n

n n n n

X A X B
Y C X D

K W

ε
ω

ε ω

+

+ + + + +

 = + +
 = + +

    

                 (2) 

where nA , nB , nC  and nD  are matrices expressing the dynamics of the sig-
nal and the observation. The filtering problem (2) has an explicit solution in the 
Gaussian linear case known as the “discrete Kalman Filter” which is presented as 
follows. Let 

[ ]0 1| , , ,p
n n nX X Y Y −=                      (3) 

[ ]0| , ,e
n n nX X Y Y=                       (4) 

and ( )p p
n n nQ Var X X= − , 0

pQ  given by the law of 0X  and 0 0
p eX X= . The 

filtering equations are given as  

( ) ( )
( ) ( )

( )
( )

1

1 1 1 1 1 1 1

1T T

T
1

p p
n n n n n n n n n n

e p
n n n n n n n

p p
n n n n n n n

p p
n n n n n n n

x A I N C x A N y D B

x I N C x N y D

N Q C C Q C W

Q A I N C Q A K

+

+ + + + + + +

−

+

 = − + − +


= − + −


= +


= − +

           (5) 

Since ( )e e
n n nQ Var x x= − , one has ( ) Te p

n n n n n n nQ I N C Q N W N= − + . On the 
other hand, ( ) ( )0 0 0

p pQ Var x Var x= +  and if 0
px  is chosen as being constant (0 

for example), then its variance will be null and ( )0 0
pQ Var x= . The techniques 

developed in the linear filtering can sometimes be extended to the nonlinear case 
by the mean of linearization methods [21]. However, there are more general re-
sults that can be applied in nonlinear cases such as particle filtering. 

4. Presentation of the FRM-KF 
4.1. Model Statement 

We consider the progressive transmission of a JPEG2000 image, encoded in 
bitplane. We assume the transmission is done bitplane by bitplane, over a nar-
row network channel. Because of the poor network quality, the receiver cannot 
wait until all the data are transmitted before decoding and displaying the image. 
Moreover, the transmission can unpredictably stop at any time. Thus, the re-
ceiver has to use the data received so far to estimate as better as possible the 
whole image. A first approach consists in simply refreshing the estimated image 
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with newly received layers and in displaying the result when its quality reaches a 
given threshold. Instead, we learn from successive bitplanes or layers, considered 
as partial observations of the image, to infer the missing parts. Hence, the bit-
plane transmission can be viewed as a dynamic system with partial observations. 
Since image structures are variables, we can use a representative sample of coef-
ficients for statistical inference. 

Let S be such an image, and { }1n n M
L

≤ ≤
 the sequence of bitplanes extracted 

from S. Transmitting S consists in transmitting the layers 1 1, , ,M ML L L−  . We 
call nX  the part of S yet to be transmitted, after the sequence 1, ,M M nL L − + , 
has been transmitted: that is the “residual” { }1, ,M M nS L L − +−  . For conveni-
ence, we also say 0X S= , 0 0Y =  and 1n M nY L − += . 

Deterministically, we can then write  

1 1

0 0, 0
n n nX X Y

X S Y
+ += −

 = =
                         (6) 

However, following our purpose of inference, a stochastic description is 
needed here. Hence, from the receiver’s viewpoint, the following model that re-
calls the problem (2) can be considered:  

1n n nX Xα β ε+ = − −                        (7) 

1 1 1
1 n

n n nY X
εα β ω

α α α+ + +
−

= + + +                   (8) 

with ,α β ∈ , ( )20,n nε γ  , ( )20,n nω σ  , where 0 0γ > ,  

1
1 0

n
n aγ γ+
+ = , 0 0σ =  and 1 1 1

n
n

cb
b

σ σ+ = +
−

. 

Equation (7) describes the dynamics of the remaining information to be re-
ceived while Equation (8) gives the next layer to be received. Indeed, we make 
the hypothesis of an arithmitico-geometric progression of the part of the im-
age that remains to be sent ( nX ). On the same manner, we assume an affine 
relationship between the current layer to be sent ( nY ) and the current part of 
the image that remains to be sent ( nX ). The choice of an affine model is as 
simple as natural for a first modeling that will prove otherwise reasonable. No-
tice that 0 0Y =  and that by formulation of the problem, 0X  follows the uni-
form law [ ]( )0;255 . Indeed, except that they belong to [ ]0;255  , we do 
not have any prior information on coefficients, and completed information is 
given by  

0 , 0, , .n
n iiS X Y n M

=
= + ∀ =∑                    (9) 

Equation (7) underlines an exponential variation of estimation errors both 
with their variances. The filtering procedure will consist in determining the ma-
thematical expectation of nX  conditionally upon 0:nY , at the step 1, ,7n =  . 
The choice of the upper bound of n = 7 is motivated by the fact that we process 
images by channels. And for a real color image, we have red, green and blue 
channels each coded on 8 bits (numbered from 0 to 7). The estimation nS  of S 
is given by  

https://doi.org/10.4236/jsip.2021.123003


R. Saoungoumi-Sourpele et al. 
 

 

DOI: 10.4236/jsip.2021.123003 63 Journal of Signal and Information Processing 
 

[ ]0 0| , , .n
n n n iiS X Y Y Y

=
= +∑                  (10) 

Proposition 1. If 0 1α< <  then 

[ ] [ ]lim lim 0.
1n nn n

X Yβ
α→∞ →∞

+ = =
−

   

Moreover, if 0 1a≤ <  and 0 1b< < , then  

[ ] [ ]lim 0 and lim .
1n nn n

cVar X Var Y
b→∞ →∞

= =
−

 

Proof. Let [ ]n nU X=  . One has  

1n nU Uα β+ = −  

and 
1

1
1 0

1
1

n
n

n nU U U αα β α β
α

+
+

+
−

= − = −
−

 

Hence, [ ] [ ]0
1
1

n
n

nX X αα β
α

−
= +

−
   and if 1α <  then lim 0n

n
α

→∞
=  and 

[ ]lim
1nn

X β
α→∞

= −
−

 . On the other hand, [ ] [ ]1
n nY Xα β

α α
−

= +   and  

[ ] [ ]1lim lim 0n nn n
Y Xα β

α α→∞ →∞

−
= + =                 (11) 

For the second part of Proposition 1,  

[ ] [ ] [ ]2
1n n nVar X Var X Varα ε+ = +               (12) 

( ) [ ]
( ) 12 2

2 1 2 2
0 02 2

1

1

n

n n
a

Var X
a

α
α α γ

α

+−
+

−

−
= +

−
             (13) 

and 

[ ] ( ) [ ] [ ]2
1 1n n nVar Y Var X Varα ε+ = − +              (14) 

[ ]1nVar ω ++                            (15) 

( ) [ ] [ ]21 n nVar X Varα ε= − +              (16) 

2

1 1
n cb

b
σ + + − 

                       (17) 

Hence, if additionally 0 1a≤ <  et 0 1b< < , then  

[ ] [ ]lim lim 0n nn n
Var X Var ε

→∞ →∞
= =  and [ ]lim

1nn

cVar Y
b→∞

=
−

.  

Proposition 1 illustrates the fact that in the long run ( n →∞ ), the remaining 
information about the image is predictable and tends to 

1
β
α

−
−

. On the other 
hand, the layers to be received tend to zero in the long run. That is realistic since 
only a finite number of layers are sufficient. Following the same principle, the 
remaining information shall be null in the long run. Thus, we should have 

0β = . We adopt it later in the work. 
The use of the Kalman filter also gives us the benefit of its memoryless cha-


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racteristic: it only retains the previous state to infer the current one. So it is not 
necessary to keep track of all the previously computed states in memory for the 
prediction method.  

4.2. Calibration and Validation of the Model 

The dynamics of the conditional distribution law (characterized by its mean 
vector and its variance-covariance matrix) is stirred by the filtering equations. In 
order to determine coefficients α , β , a, b and c, we proceed by statistic re-
gressions on the sample [ ]0;255   corresponding to all possible values of a 
block of pixels. Regression aims at identifying the best set of parameters which 
minimize the sum square error (SSE) of the best fitting model. Precisely, we shall 
determine α  and β  which minimize the quantity  

( )
2

7 255
1 10 0

1SSE
256

i i
n nn i X Xα β+= =

 = − + 
 

∑ ∑  

( )27
10 n nn X Xα β+=

= − +∑                       (18) 

Since we adopted 0β = , it remains to find α  in such a way that (18) is mi-
nimal. After α  and β  have been identified, one can obtain consecutively a, b 
and c by minimizing the following SSEs:  

( ) ( )1

227 7
2 11 0 0SSE

n n

n
n n X Xi n na S aSγ γ

++= = =
= − = −∑ ∑ ∑       (19) 

and 

( ) ( )1

227 7
3 11 0 0SSE .

n n

n
n n Y Yi n nb c S bS cσ σ

++= = =
= − − = − −∑ ∑ ∑    (20) 

In (18), (19) and (20), we have for ,Z X Y= ,  

( )
255 255 22

0 0

1 1and .
256 255n

i i
n n Z n n

i i
Z Z S Z Z

= =

= = −∑ ∑  

Following the aforementioned regressions, we obtained Table 1. 
Note that all the parameters satisfy the hypotheses of Proposition 1 and there-

fore guarantee the exponential convergence of the filter.  

5. Experimental Evaluation of FRM-KF 

This section aims at applying the filtering procedure we described above to a 
sample of 210 images coming from the University of Southern California-Signal  
 
Table 1. Estimates of parameters. 

Parameters Values 

α 0.4942136 

β 0 

a 0.2499698 

b 0.7850239 

c 5764.0507 
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and Image Processing Institute USC-SIPI1 database. We used a computer 
workstation with the following characteristics: RAM: 4 GB, Processor: 4xIntel (c) 
CoreTM i3-3227U CPU @1.90 GHz of 32 bits on a Ubuntu operating system 
18.04 (Linux kernel: 4.15.0-74-generic). 

According to Section 3 we have nA α= , nB β= , 1
nC α

α
−

= , nD β
α

= , 

2
n nK γ= , 

2
2

2
n

n nW
γ

σ
α

= + , 
2 2

0
255 255;
12 6

pQ
 

∈ 
 

. Let us recall here that for a Uni-

form law [ ]( ),a b  the variance is given by 
( )2

12
b a−

. Figure 1 illustrates the  

evolution of the visual rendering of images following the quality layers reception 
and the filtering procedure. 

Compared to the results in [5], the visual rendering they obtained at their fifth 
step is obtained here at the 3rd step (Figure 1(d)), corresponding to a good visual 
quality for human perception. The Peak Signal to Noise Ratio (PSNR) was 
measured for the successive estimated images based on received layers. We 
compared our PSNRs to those of reference methods: the Set Partitioning In 
Hierarchical Tree (SPIHT) method, the method of Tzu-Chuen and the method 
of Tung [5]. 

A regression analysis showed for all considered methods that there is an affine 
relation between the number of received layers and the measured PSNR (at least 
93% for the adjusted R-squared) with high significant2 slope and intercept.  
 

 
Figure 1. Visual rendering of the model on Lenna (256 × 256). (from (b)-(h)). In (a), 
there is the original Lenna (256 × 256) compressed images using the OpenJPEG library 
(version 2.3.0-October 2017), with 6 levels of resolution and 8 levels of quality (80%, 70%, 
60%, 50%, 40%, 30%, 20% and 1%, corresponding to the original image being of high 
quality). 

 

 

1http://sipi.usc.edu/database/    
2Significance codes under R software in terms of P-value: 0 “***” 0.001 “**” 0.01 “*” 0.05 “•” 0.1 “ ” 
1. 
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Table 2 gives the regression coefficients of each method for 256 * 256 and 512 * 
512 resolutions of Lenna image studied in [5]. 

Table 3 gives the difference of regression coefficients of each considered me-
thod with respect to FRM-KF. The intercept shows that Tzu-Chueng Lu method 
has the better initial PSNR while the FRM-KF has the worst probably because its 
initial estimation is drawn uniformly randomly. Fortunately, the FRM-KF has 
the best slope which is about 1.63 times better than the second higher slope dis-
played by the SPIHT method. Hence, with a few number of images (from 3) 
FRM-KF presents the best performance compared to other methods. 

The database coming from the USC-SIPI contains 73 images having a 256 * 
256 resolution, 83 images having a 512 * 512 resolution, 53 images having a 1024 
* 1024 resolution and only 1 image having a 2050 * 2050 resolution. For our sta-
tistical analyses we then focused on 256 * 256, 512 * 512 and 1024 * 1024 resolu-
tions. Again we found an affine relation between the PSNR and the number of 
received layers. The P-value was less than 2 × 10−16 and the adjusted R2 (model 
fitting factor) was between 88.77% and 96.96%. In order to give a general beha-
vior of the FRM-KF method, the computed values of the slope and the intercept 
are given in Table 4. 
 
Table 2. PSNR as function of the number of received layers. 

 256 * 256 resolution 

Method Slope Intercept 

SPIHT 3.95*** 8.72** 

Tung 3.85*** 9.97** 

Tzu-Chueng 2.19*** 15.95*** 

FRM-KF 6.44*** 5.44* 

 512 * 512 resolution 

SPIHT 3.43*** 10.66*** 

Tung 3.32*** 11.90*** 

Tzu-Chueng 2.47*** 14.44*** 

FRM-KF 6.45*** 5.42* 

 
Table 3. Difference of regression coefficients of each method with respect to FRM-KF. 

 256 * 256 resolution 

Method Slope Intercept 

SPIHT −2.12• 2.26 

Tung −2.09* 3.20 

Tzu-Chueng −4.49** 11.14** 

 512 * 512 resolution 

SPIHT −2.64* 4.23 

Tung −2.64* 5.20 

Tzu-Chueng −4.24** 9.73* 
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Table 4. Regression coefficients of the PSNR as linear function of received layers using 
FRM-KF method. 

 Slope Intercept 

256 * 256 resolution 6.6557*** 3.6186*** 

512 * 512 resolution 6.66706 *** 3.51488*** 

1024 * 1024 resolution 6.3676 *** −1.9659** 

 
We evaluated the time needed to decode the images. The first phase consisting 

to generate white noise, to decode the first quality layer of the original image, 
and to combine the both took about 2.24 × 10−1 ± 2.868 × 10−2, 8.87 × 10−1 ± 
5.612 × 10−2 and 3.505 ± 1.587 × 10−1 (in terms of average ± standard deviation) 
seconds respectively for 256 * 256, 512 * 512 and 1024 * 1024 resolution images. 
The necessary times to decode each other quality layer and to combine it with 
previous result, were given by 3.149 × 10−2 ± 4.012 × 10−3, 1.223 × 10−1 ± 1.024 × 
10−2, 4.95 × 10−1 ± 4.009 × 10−2 seconds respectively for 256 * 256, 512 * 512 and 
1024 * 1024 resolution images. The images used on current mobile devices have 
a resolution of at least 512 * 512. With regard to the time corresponding to the 
processing of the 1024 * 1024 resolution image, we recommend the FRM-KF 
method to resolutions less or equal to 512 * 512. 

Focusing on the amount of data transmitted during a streaming of images for 
each quality layer, we notice that less than 10% of image data is needed to obtain 
up to the sixth-quality image. So, the process is suitable in terms of processing 
and memory resources for small devices with low computing capabilities. 

6. Conclusions 

This work addressed the problem of image transmission in limited environment. 
We were interested in the progressive transmission and refinement of still im-
ages, as a process that adapts to low quality network service. In order to achieve 
our objectives, we proposed a stochastic model which presents the missing parts 
of the image as noise effects. In a stochastic context, the problem of estimating 
dynamically a signal conditionally upon available observations is known as fil-
tering. Thus, we tried successfully to calibrate a Kalman filter model using statis-
tical regression and some general considerations. The output model we got was 
precisely a discrete Kalman filter. 

Applying the filtering procedure on a dataset of 209 images we got satisfactory 
results. Indeed, we evaluated the evolution of Peak Signal to Noise Ratio (PSNR) 
with respect to the number of received layers. An affine relation was found in-
dependently on the PIT method we considered (Set Partitioning In Hierarchical 
Tree, Tzu-Chuen, Tung and FRM-KF methods). The FRM-KF approach we 
proposed appeared to be one which improves the PSNR faster. 

The performance of FRM-KF method has been further evaluated in terms of 
the ratios in the quality of data image/size sent and in the quality of image/time 
required for treatment. A high quality was reached faster with relatively small 
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data (less than 10% of image data is needed to obtain up to the sixth-quality im-
age). The time for treatment also decreases faster with number of received layers. 
However, we found that the time of image treatment might be large starting 
from a image resolution of 1024 * 1024. Hence, we recommend FRM-KF me-
thod for resolutions less or equal to 512 * 512. 

In future works, we are expected to extend our method in multimedia com-
munication environments, subject to disturbances, in order to ensure robustness 
to breakdowns and interference. We should also consider adapting our approach 
to video streaming in order to ensure a greater continuity of video streaming 
service content. 
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