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Abstract 
Speech recognition systems have been applied to inspection and maintenance 
operations in industrial factories to recording and reporting routines at con-
struction sites, etc. where hand-writing is difficult. In these actual circums-
tances, some countermeasure methods for surrounding noise are indispensa-
ble. In this study, a new method to remove the noise for actual speech signal 
was proposed by using Bayesian estimation with the aid of bone-conducted 
speech and fuzzy theory. More specifically, by introducing Bayes’ theorem 
based on the observation of air-conducted speech contaminated by surround-
ing background noise, a new type of algorithm for noise removal was theoret-
ically derived. In the proposed noise suppression method, bone-conducted 
speech signal with the reduced high-frequency components was regarded as 
fuzzy observation data, and a stochastic model for the bone-conducted speech 
was derived by applying the probability measure of fuzzy events. The pro-
posed method was applied to speech signals measured in real environment 
with low SNR, and better results were obtained than an algorithm based on 
observation of only air-conducted speech. 
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1. Introduction 

Speech recognition systems have been applied to various fields, for example, to 
inspection and maintenance operations in industrial factories and at construc-
tion sites, etc. where hand-writing is difficult. For speech recognition in such 
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actual circumstances, some suppression methods for surrounding noises are in-
dispensable. 

Previously reported methods for noise reduction in speech recognition can be 
classified into two categories. One is based on a single microphone [1] [2], and 
the other uses a microphone array [3]. Since the latter requires a priori informa-
tion on the number of noise sources, and the number of microphones larger 
than that of the noise sources is needed in the case of multi-noise sources, this 
category demands large scale systems. Therefore, the former based on a single 
microphone is more advantageous than the latter [4] [5]. In such a noise sup-
pression task for speech signals based on a single microphone, many algorithms 
applying the Kalman filter have been proposed up to now [6] [7] [8] [9]. However, 
the Kalman filter is originally based on the assumption of Gaussian white noise 
[10]. The actual noises show complex fluctuation forms with non-Gaussian and 
non-white properties. 

From the above viewpoint, in our previously reported study, a noise suppres-
sion algorithm for the actual speech signals without requirement of the assump-
tion of Gaussian white noise has been proposed [11]. The method can be applied 
to actual complex situation where both the noise statistics and the fluctuation 
forms of speech signal are unknown. By applying the algorithm to real speech 
signals with several kinds of noises, its effectiveness has been experimentally 
confirmed in comparison with the Kalman filter. 

Furthermore, signal processing methods to remove the noise for actual speech 
signals have been proposed by jointly using the measured data of bone- and 
air-conducted speech signals [12] [13]. However, the algorithms of the previous 
methods were introduced a simple additive model of the original speech signal 
and surrounding noise for the air-conducted speech observation. Furthermore, 
the derived algorithms have applied to only the signals mixed with noises on 
computer, and not to signals in real environment under existence of noises. 

In this study, a new noise suppression method for speech signals is proposed 
by using Bayes theorem after employing a posterior distribution based on the 
air-conducted speech observation contaminated by surrounding noise. In the 
proposed algorithm, in order to improve the accuracy of estimation of speech 
signal, an expansion expression of conditional probability density function re-
flecting all linear and non-linear correlation information between original 
speech signal and air-conducted speech observation is adopted as the model of 
the speech observation. Then, a probability distribution with parameters esti-
mated from the bone-conducted speech is adopted as the prior distribution. 
Furthermore, the algorithm proposed in this study is applied to signals meas-
ured in real environment under existence of noises.  

Though the bone-conducted speech signal is a kind of solid propagation 
sound with less effect by the surrounding noise, the high frequency components 
of the signal are reduced through the propagation process [14]. After consider-
ing the bone-conducted speech signal with the reduction of higher components as 
fuzzy data, applying the probability measure of fuzzy events [15], a new simplified 
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noise suppression method is derived by reflecting the air- and bone-conducted 
speech signals.  

The effectiveness of the proposed method is confirmed by applying it to bone- 
and air-conducted speech measured in a real environment under the existence of 
surrounding noise. 

2. Theoretical Consideration 
2.1. Stochastic Model for Air- and Bone-Conducted Speech Signals  

by Introducing Fuzzy Theory 

In the actual environment with a surrounding noise, let kx , ky  and kz  be the 
original speech signal, the observations of air- and bone-conducted speech sig-
nals at a discrete time k. The observation ky  is contaminated by a surrounding 
noise kv . In our previous studies, a simple additive model was considered for 
the air-conducted speech observation ky  [12] [13]. In this study, in order to 
improve the accuracy of estimation of speech signal kx , an expansion expres-
sion of conditional probability density function ( )|k kP y x  [11] reflecting all 
linear and non-linear correlation information between kx  and ky  is adopted 
as the model of air-conducted speech observation. 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( )1 2

0 0

| ,k k k k k

k rs r k s kr s

P y x P x y P x

P y A x y∞ ∞

= =

=

= ∑ ∑ θ θ
           (1) 

with 
( ) ( ) ( ) ( )1 2

rs r k s kA x y≡ θ θ ,                     (2) 

where  denotes the averaging operation on variables. 
As the probability density functions kx  and ky  showing non-Gaussian dis-

tribution, the following statistical orthonormal expansion series expressions are 
adopted. 
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where ( )iH  is a Hermite polynomial with ith order. Functions ( ) ( )1
r kxθ  and 

( ) ( )2
s kyθ  are orthonormal polynomials having weighting functions ( )kP x  

and ( )kP y , respectively. These orthonormal polynomials can be decomposed 
into linearly independent series as 

( ) ( ) ( )1 1
0

1
!

r k x
r k ri ii

x

x
x H

i=

 −
=  

 
∑

µ
θ λ

σ
,              (6) 

( ) ( ) ( )2 2
0

1
!

s k y
s k si ii

y

y
y H

i=

 −
=   

 
∑

µ
θ λ

σ
.              (7) 

The coefficients ( )1
riλ  and ( )2

siλ  are calculated beforehand by using Schmidt’s 
orthogonalization algorithm [16]. The expansion coefficients rsA  with order 
r R≤ , s S≤  can be obtained from the correlation relationship between origi-
nal speech signal kx  and noisy observation of air-conducted speech ky . Since 
the original speech signal is unknown in the presence of noise, these coefficients 
have to be estimated on the basis of the observation ky . Let’s regard the expan-
sion coefficients rsA  as unknown parameter vector a : 

( )11 1 12 2 1, , , , , , , , ,R R S RSa a a a a a≡a � � � � , 

rs rsa A≡ , ( )1,2, , ; 1, 2, ,r R s S= =� � ,               (8) 

the following simple dynamical model is introduced for the simultaneous esti-
mation of the parameters with the specific signal kx : 

1k k+ =a a ,                          (9) 

Next, in order to express the relationship between the original speech signal 
and bone-conducted speech, after regarding the bone-conducted speech as fuzzy 
data, the conditional probability distribution function ( )|k kP x z  can be ob-
tained by applying the probability measure of fuzzy events [15] to (1), as follows. 

( ) ( ) ( )
( ) ( ) ( ) ( ) ( ) ( )( )

| ,

, d d ,
k k

k k k k k

y k k k k y k k k k k k

P x z P x z P z

m y P x y y m y P y y N x z D z

=

= ≡∫ ∫
 (10) 

where ( )
ky km y  is a membership function of the bone-conducted speech kz , 

and a Gaussian type function: 

( ) ( ){ }2exp
ky k k km y y y= − −α , ( )k ky a bz≡ + ,            (11) 

where a and b are constants and ( )0>α  is a parameter, is adopted. Accor-
dingly, by considering ( ),k kP x y  in Equation (1) and ( )kP y  in Equation (4), 
and the membership function in Equation (11), the numerator of Equation (10) 
can be expressed as follows: 
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with 

( ) ( )2 2
1 2 1 2y yK ≡ +ασ σ , ( ) ( )2 2

2 2 2 1y k y yK y≡ + +ασ µ ασ , 

2 2 2
2

3 1 2 2

2
2 1

y k y

y

y
K K K

 +
≡ −  + 
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.                 (13) 

After considering the equality on Hermite polynomial: 

2
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ik y k
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y y K
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− −
=  
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where ijd  are expansion coefficients reflecting bone-conducted speech signal, 
and using the orthonormal condition: 

( ) 2 2
2 1

1 1

; ,1 2 d !
1 2 1 2
k k

k j j k jj
y K y K

N y K K H H y j
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 
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= ⋅  

 
∫ δ ,     (15) 

the integral in Equation (12) can be calculated. Thus, the following expression is 
derived 

( ) ( ) ( ) ( ) ( )
3

1
,0 0 02

1

e 1,
!2

K
R S

k k k i si k rs k r ki r s
y

N x z P x C F z a x
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∞
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σ
, (16) 

( ) ( ){ }min , 2
0 0

1 !
!

a i t
si k st ij tjt jF z d d j

t= =
≡ ∑ ∑ λ .              (17) 

Furthermore, through the similar calculation process, the denominator of 
Equation (10) can be derived as follows: 

( ) ( )
3

2
1

e

2

K

k k

y

D z G z
K

=
σ

, ( ) 00

1
!k i iiG z C d

i
∞

=
≡ ∑ .        (18) 

Therefore, by substituting Equations (16) and (18) into Equation (10), the 
conditional probability distribution function ( )|k kP x z  can be expressed ex-
plicitly. 

2.2. Derivation of Noise Suppression Algorithm Based on  
Bayesian Estimation 

To derive an estimation algorithm for the speech signal kx , the Bayes’ theorem 
for the conditional probability distribution [17] is first considered. Since the pa-
rameter a  is also unknown, the conditional joint probability distribution of 

kx  and ka  is expressed as 

( ) ( ) ( )1 1, | , , | |k k k k k k k k kP x Y P x y Y P y Y− −=a a ,          (19) 

where { }( )1 2, , ,k kY y y y≡ �  is a set of air-conducted speech data up to time k. 
By expanding the conditional joint probability distribution ( )1, , |k k k kP x y Y −a  
in a statistical orthogonal expansion series on the basis of the well-known Gaus-
sian distribution and calculating the conditional expectation, the estimates of 

kx  and ,rs ka  for mean can be derived as follows: 
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Furthermore, the estimate of ,rs ka  for variance is derived as follows: 
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with 
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,
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Using Equation (1) and the orthonormal property of ( ) ( )2
s kyθ , variables *

ky  
and kΩ  in Equations (20) (21) and (23) can be calculated as follows: 
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with 
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( )2* 2
20 y k yf y= − +µ σ , ( )*

21 2 y y kf y= −σ µ , 2
22 2 yf = σ .     (27) 

Furthermore, by considering Equations (10) (16) (18) and orthonormal prop-
erty of ( ) ( )1

r kxθ , variables *
kx , 

kxΓ  in Equation (22) and the conditional ex-
pectation in Equations (25) (26) can be calculated as follows: 
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with 

10 xh = µ , 11 xh = σ , 
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, 

( )2* 2
20 x k xp x= − +µ σ , ( )*

21 2 x x kp x= −σ µ , 2
22 2 xp = σ .      (31) 

Since Equations (28) (29) and (30) can be evaluated by measuring 
bone-conducted speech kz , no time transition models of kx  are necessary. 
Therefore, computation time of the proposed algorithm can be reduced than the 
previous one [12]. Furthermore, by considering Equation (9), two parameters 

*
,rs ka  and 

,rs kaΓ  in Equation (22) are given by the estimates of ,rs ka  at the dis-
crete time 1k − , as follows: 

*
, , 1ˆrs k rs ka a −= , 

, , 1rs k rs ka aP
−

Γ = .                   (32) 

Finally, considering Equations (1) (9) and (10), the expansion coefficients 

l nB m  in the estimation algorithm in Equations (20) (21) and (23) are given by 
the measurement of bone-conducted speech kz , estimates of parameter ,rs ka  
at the discrete time 1k − , through the similar calculation process to Equations 
(25)-(30). Therefore, recursive estimation of the speech signal kx  can be 
achieved. 

3. Application to Speech Signal in Real Environment 

In order to confirm the actual usefulness of the proposed noise suppression al-
gorithm, it was applied to speech signals in real noise environment. Though, in 
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the previous studies [12] [13], the noisy air-conducted speeches were created on 
a computer by mixing the original air-conducted speech signal measured in a 
noise-free environment, the algorithm proposed in this study was applied to 
signals measured in real environment under existence of actual noises. For a fe-
male and a male speech signals digitized with sampling frequency of 10 kHz and 
quantization of 16 bits, we estimated the speech signal based on the observation 
corrupted by additive noise.  

More specifically, air-conducted speeches were measured in real environment 
under existence of a white noise generated from a noise generator and an actual 
machine noise. The bone-conducted speech was simultaneously measured by 
use of an acceleration sensor with the air-conducted speech. By setting roughly 
the amplitude of the noises at two levels, the proposed algorithm was applied to 
extremely difficult situations with low SNR (noise-free air-conducted speech 
signal to noise ratio defined by ( )2 2

10SNR 10log k kx v= ∑ ∑ ) being approx-
imately −3 dB and −5 dB. 

Using the observed bone-conducted speech and noisy observation on air-con 
ducted speech, constants a and b are first calculated by introducing the linear 
regression model in Equation (11) and applying the least squared method to this 
model. Secondly, the parameter α  of the membership function is obtained by 
calculating the standard deviation σ  of ky  around ky , as 2=α σ  after as-
suming Gaussian distribution for the deviation. 

The observed signals on air-conducted female speech contaminated by the 
white noise and machine noise are shown in Figure 1 and Figure 2. Further-
more, for the male speech signal, noisy air-conducted speech observations are 
shown in Figure 3 and Figure 4 respectively. 

The estimated results by using the algorithm based on Equations (20)-(24) are 
shown in Figure 5 and Figure 6 for the female speech signal and in Figure 7 
and Figure 8 for the male speech signal. For comparison, the estimated results of 
the female and male speech signals by using the estimation algorithm based on 
only the observation of air-conducted speech are shown in Figures 9-12.  

By comparing Figures 5-8 with Figures 9-12, it is obvious that the proposed 
method can suppress the effects of white noise and real machine noise better 
than the method based on observation of only air-conducted speech. 

The air-conducted female and male speech signals spoken by the same speak-
ers in the different situation without any noises are shown in Figure 13 and 
Figure 14 as references. By comparing these speech signals measured in 
noise-free circumstance with the estimated results by the proposed method and 
the results by using the algorithm based on the observation of only air-conducted 
signal, the effectiveness of the proposed method is obvious. Furthermore, the 
computation time of the proposed method was reduced by 55.2% of the algo-
rithm based on the only air-conducted observation, because it is unnecessary for 
the proposed method to calculate recursively the estimate of variance of kx  
based on the air-conducted speech ky . 
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Figure 1. Observed female speech signal contaminated by white 
noise with SNR 3 dB≅ − . 

 

 

Figure 2. Observed female speech signal contaminated by ma-
chine noise with SNR 5 dB≅ − . 

 

 

Figure 3. Observed male speech signal contaminated by white 
noise with SNR 3 dB≅ − . 
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Figure 4. Observed male speech signal contaminated by 
machine noise with SNR 5 dB≅ − . 

 

 

Figure 5. Estimated female speech signal by use of the 
proposed method based on observation contaminated by 
white noise with SNR 3 dB≅ − . 

 

 

Figure 6. Estimated female speech signal by use of the 
proposed method based on observation contaminated by 
machine noise with SNR 5 dB≅ − . 
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Figure 7. Estimated male speech signal by use of the pro-
posed method based on observation contaminated by 
white noise with SNR 3 dB≅ − . 

 

 

Figure 8. Estimated male speech signal by use of the pro-
posed method based on observation contaminated by 
machine noise with SNR 5 dB≅ − . 

 

 

Figure 9. Estimated female speech signal by use of the 
method based on only air-conducted observation conta-
minated by white noise with SNR 3 dB≅ − . 
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Figure 10. Estimated female speech signal by use of the 
method based on only air-conducted observation con-
taminated by machine noise with SNR 5 dB≅ − . 

 

 

Figure 11. Estimated male speech signal by use of the 
method based on only air-conducted observation con-
taminated by white noise with SNR 3 dB≅ − . 

 

 

Figure 12. Estimated male speech signal by use of the 
method based on only air-conducted observation con-
taminated by machine noise with SNR 5 dB≅ − . 
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Figure 13. Air-conducted female speech signal in the 
different situation without any noises. 

 

 

Figure 14. Air-conducted male speech signal in the 
different situation without any noises. 

4. Conclusions 

In this paper, after considering the bone-conducted speech signal with the re-
duction of higher components as fuzzy data, applying the probability measure of 
fuzzy events, a new noise suppression method is derived on the basis of Bayes’ 
theorem as the fundamental principle of estimation. Furthermore, the proposed 
algorithm has been applied to real speech signals contaminated by noises meas-
ured in actual environment with low SNR. As a result, it has been revealed by 
experiments that better estimation results may be obtained by the proposed al-
gorithm as compared with the method based on only air-conducted observa-
tions. 

The proposed approach is quite different from the traditional standard tech-
niques. However, we are still in an early stage of development, and a number of 
practical problems are yet to be investigated in the future. These include: 1) ap-
plication to a diverse range of speech signals in actual noise environment, 2) ex-
tension to cases with multi-noise sources, and 3) finding an optimal number of 
expansion terms for the expansion-based probability expressions adopted. 
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