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Abstract 
Pain is a strong symptom of diseases. Being an involuntary unpleasant feel-
ing, it can be considered a reliable indicator of health issues. Pain has always 
been expressed verbally, but in some cases, traditional patient self-reporting is 
not efficient. On one side, there are patients who have neurological disorders 
and cannot express themselves accurately, as well as patients who suddenly 
lose consciousness due to an abrupt faintness. On another side, medical staff 
working in crowded hospitals need to focus on emergencies and would opt 
for the automation of the task of looking after hospitalized patients during 
their entire stay, in order to notice any pain-related emergency. These issues 
can be tackled with deep learning. Knowing that pain is generally followed by 
spontaneous facial behaviors, facial expressions can be used as a substitute to 
verbal reporting, to express pain. In this paper, a convolutional neural net-
work (CNN) model was built and trained to detect pain through patients’ fa-
cial expressions, using the UNBC-McMaster Shoulder Pain dataset. First, fac-
es were detected from images using the Haarcascade Frontal Face Detector 
provided by OpenCV, and preprocessed through gray scaling, histogram 
equalization, face detection, image cropping, mean filtering, and normaliza-
tion. Next, preprocessed images were fed into a CNN model which was built 
based on a modified version of the VGG16 architecture. The model was fi-
nally evaluated and fine-tuned in a continuous way based on its accuracy, 
which reached 92.5%.  
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1. Introduction 

Humans move their facial muscles, either spontaneously or purposefully, to con-
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vey a certain emotional state (e.g., sadness, happiness, fear, disgust, pain) in a 
nonverbal way. These facial moves are called facial expressions. Facial expres-
sions vary between different species and humans as well; they can be affected by 
a person’s age, gender, psychological state, personality, and social situations. 
Moreover, they can either be innate or acquired through the influence of some-
one else’s. Humans have the ability to discern hidden feelings and fake emotions 
in some cases, especially when these are expressed by someone with whom they 
have strong relationships. However, the automation of such tasks is very labo-
rious and challenging. 

Facial expressions can be regarded as an effective alternative to verbal com-
munication. For instance, paralyzed people can communicate through eye con-
tact and eye movements. Therefore, facial expressions are very important and 
worthy to be interpreted by machines, and one of the applications in which they 
are involved in the detection of pain. 

Pain is an unpleasant feeling which is triggered by an anomaly in the body. 
This anomaly can either be medical (e.g., an injury), or emotional (e.g., stress 
and depression which can cause terrible headaches). When nerves detect tissue 
damage or irritation, they send information through the spinal cord to the brain, 
thus causing humans to react to that anomaly. Pain is either expressed verbally 
or physically, through facial expressions. 

Pain can vary from being slightly annoying to debilitating. Regardless of its 
intensity, it gives a strong and reliable message that something within the body is 
malfunctioning and needs to be cured. Additionally, it can affect a person’s be-
havior, memory, concentration, and intellectual capacities. Hence, it should 
never be neglected and needs to be taken seriously and treated promptly. 

In this regard, many entities around the world work on improving pain relief 
with the help of researchers and professionals involved in the diagnosis and 
treatment of pain, because they believe that the relief of pain is a human right; 
the International Association for the Study of Pain (IASP) [1] is one of them, 
and it is very active in this sector, one of its main events is the biennial World 
Congress on Pain. 

The main motivation for this research is based on providing quality healthcare 
services, managing patients’ conditions and doing the right diagnoses at the 
right times is pivotal in life-saving. 

COVID-19 has been a paramount motivator for this study. With an unmana-
geable number of daily cases and the necessity of physical distancing, many coun-
tries found the perfect opportunity to switch to tech-enabled and AI-empowered 
solutions. From online businesses and Chabot-assisted services to robots as as-
sistants to automatic temperature checks in public areas to real-time identifica-
tion of undisciplined citizens, numerous innovative solutions have emerged to 
contain the spread of the virus. Having different impacts from each other, each 
solution proved its worth during these unprecedented times. 

In any hospital and under any circumstances, for instance during COVID-19, 
we can have uncontrollable new daily cases, and medical staff can easily become 
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very busy and fail to manage all emergency cases at once in addition to looking 
after patients who need more attention and care. Additionally, patients and ca-
regivers are sometimes forced to abide by physical distancing rules to avoid con-
taminations. Furthermore, symptoms associated with the most critical emergen-
cies, such as apneas, are generally very expressive through facial expressions. All 
these issues have motivated the creation of an automatic pain detection system 
based on facial expressions. 

Being ahead of research topics of the decade, computer vision-empowered 
pain assessment is in full effervescence. Yet, it is still not widespread in medical 
centers due to its incompleteness and the necessity to be fused with other discip-
lines, such as psychology, which makes it a very intriguing and challenging topic 
that deserves intensive research. This has also been a great motivator to start this 
research project. 

The contribution of this study is to build a reliable pain assessment system 
based on patients’ facial expressions and become a game-changer in healthcare. 
This study can be broken down into three major contributions, which are: 
 Giving the opportunity to all patients, regardless of the language they speak 

as well as their psychological and physical conditions, to express their pain 
accurately and receive the right medical care at the right time. 

 Constantly looking after patients and notifying medical staff about emergen-
cies while keeping them focused on their main tasks. 

 Avoid hiring more medical staff whose sole task is to ceaselessly look after 
patients and notify doctors only in case of an emergency. 

The novelty of this study is the design of a deep learning classification model 
based on a tailored CNN architecture to be used as a pain assessment tool, in the 
following way: a camera would be recording patients when they are not under 
any supervision and sending input frames to the classification model which will 
process them in real-time and classify them into pain/no-pain images, and ulti-
mately, notify doctors if the pain is detected. 

2. Related Work 

The field of image processing is in constant development and research. Whether 
it is applied in medicine, security, satellite imagery analysis or seismic imaging, 
thousands of researchers are pioneering daily and coming across new methods 
and approaches to give the advantage of computer-aided imaging. Medical im-
aging is one such field that requires daily improvements and growth, due to its 
complexity, diversity of cases and importance of accuracy. Numerous studies on 
pain detection using facial expressions have been conducted on diverse data sets 
using different data analytics approaches. 

Sourav Dey Roy et al. [2] have conducted their research on the UNBC-McMaster 
Shoulder Pain Expression Archive Database [3] in the following way: First, they 
converted all image frames into grayscale images. After that, they performed 
shape alignment using the Generalized Procrustes Analysis (GPA). Next, they 
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applied texture warping, in which the texture of all images is warped with re-
spect to the base shape using an affine warping. Their methodology achieved an 
accuracy of 82.43% for the pain level estimation. 

Xiaojing Xu et al. [4] developed an ensemble learning model based on the 
UNBC-McMaster Shoulder Pain Expression Archive Database. They performed 
face detection using the cascade DPM face detector and used five metrics to pre-
dict the level of pain: the Prkachin and Solomon Pain Intensity (PSPI) score, the 
Visual Analog Scale (VAS) score, the Observers Pain Rating (OPR) score, the 
Affective Motivational Scale (AMS) score and the Sensory Scale (SEN) score. 

Lijun Yin et al. [5] developed their own 3D Dynamic Facial expression data-
base using the Di3D (Dimensional Imaging 3D) face capturing system including 
six universal expressions: Anger, disgust, fear, happiness, sadness and surprise. 
They applied a 2D Hidden Markov Model (2D-HMM) to learn the temporal 
dynamics and spatial relationships of facial regions. The accuracy of their model 
was 90.44%. 

Ghazal Bargshady et al. [6] used a hybrid method by combining the CNN and 
RNN architectures to classify VGGFace images into four classes: Strong Pain, 
Mild Pain, Weak Pain and No Pain. The VGG Face model was tested on 25 sub-
jects using a leave-one-out cross-validation, and it gave an average accuracy of 
75.2%. 

One of the methodologies proposed by Laduona Dai et al. [7] is an Action 
Units based method. First, Features/AUs were extracted using software called 
OpenFace 2.0. Then, an SVM model was trained based on the intensity values of 
those AUs with a binary output (pain/no-pain). The model was trained and 
tested using the UNBC-McMaster Shoulder Pain Expression Archive Database 
using 5-fold cross-validation and gave an accuracy of 85%, but all samples with 
facial movements were classified as “Pain movements”, mainly because all no-pain 
samples represent neutral faces with no movements. 

Mohammad Tavakolian et al. [8] used a binary representation of facial ex-
pressions, using the UNBC-McMaster Shoulder Pain Expression Archive Data-
base. Their goal was to do a multinomial classification to classify patients’ faces 
into many pain levels. They used a CNN model to extract features from ran-
domly captured frames from each video segment and encoded them to binary, 
using a deep neural network. They used the Hamming distance for their classifi-
cation and achieved an accuracy of 98.54%. 

Zakia Hammal et al. [9] performed a multinomial classification on the UNBC- 
McMaster Shoulder Pain Expression Archive Database to classify frames into 
four pain levels, which were defined on the basis of the PSPI score. Then, they 
trained 4 separated SVM models on each class, which reached the respective ac-
curacies: 97%, 96%, 96% and 98%. 

Pau Rodriguez et al. [10] used Long Short-Term Memory (LSTM) networks 
on the UNBC-McMaster Shoulder Pain Expression Archive Database to do a 
binary classification. First, they used a CNN model to learn facial features from 
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the VGG-Face dataset. Then, they linked it to an LSTM model to perform the 
classification. The highest accuracy they have achieved was 90.3%.  

Zhanli Chen et al. [11] came up with a different approach from the ones cited 
previously, which they implemented based on the UNBC-McMaster Shoulder 
Pain Expression Archive Database. Instead of relying on pain intensity scores to 
classify images and video sequences, they detected individual pain-related AUs 
by themselves and combined them using two different structures (compact and 
clustered). After that, they used two different frameworks, namely the Multiple 
Instance Learning (MIL) and Multiple Clustered Instance Learning (MCIL) to 
train their models based on low-dimensional features. Their classifier achieved 
an accuracy of 87%. 

Reza Kharghanian et al. [12] used an unsupervised learning approach to clas-
sify unlabeled images. First, they extracted features of shape and appearance 
separately from faces, using a Convolutional Deep Belief Network (CDBN). 
Those extracted features were then used to train an SVM model with a linear 
kernel that has two output classes (pain/no-pain). Their model was tested on the 
UNBC-McMaster Shoulder Pain Expression Archive Database, and it achieved 
an accuracy of 87.2%. 

3. Proposed CNN Modified Architecture 

CNNs have been used previously to solve the automatic pain assessment prob-
lem, using the UNBC-McMaster Shoulder Pain dataset, some of which got in-
spired by the famous VGG16 architecture [13], shown in Figure 1.  

Based on existing architectures and after many trials and hyperparameter 
tunings, the modified architecture shown in Figure 2 has been selected for this 
study.  

This proposed architecture was inspired by the VGG16 architecture and mod-
ified to fit the pain detection problem, by replacing the number of neurons in 
the second fully connected layer (FC2) with 1000 (against 4096 in VGG16) and 
the number of outputs with 2 for the two classes, pain and no-pain. 

In this proposed architecture (Figure 2), images are initially preprocessed and 
resized to 224 × 224 pixels. After that, they are fed into the CNN model which 
processes them as follows: 
 Images go through two convolutional layers, with 64 (3 × 3) filters, a stride of 

1 and a padding of 1, followed by a max-pooling layer with a filter size of 2 × 
2 and a padding of 2. 

 

 
Figure 1. VGG16 Architecture (Source [13]). 
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Figure 2. Proposed modified VGG16 architecture. 
 

 The resulting tensors go through two additional convolutional layers, with 
128 (3 × 3) filters, a stride of 1 and a padding of 1, followed by a max-pooling 
layer with a filter size of 2 × 2 and a padding of 2. 

 The resulting tensors go through three more convolutional layers, with 256 
(3 × 3) filters, a stride of 1 and a padding of 1, followed by a max-pooling 
layer with a filter size of 2 × 2 and a padding of 2. 

 The resulting tensors go through three further convolutional layers, with 512 
(3 × 3) filters, a stride of 1 and a padding of 1, followed by a max-pooling 
layer with a filter size of 2 × 2 and a padding of 2. 

 The resulting tensors go through three final convolutional layers, with 512 (3 
× 3) filters, a stride of 1 and a padding of 1. 

 The resulting feature maps are flattened and converted to a fully connected 
layer of 7 × 7 × 512 = 25,088 neurons, which is connected to a second fully 
connected layer of 1000 neurons, which is finally connected to the output layer 
of two neurons, corresponding to the two classes (i.e., pain and no-pain). 

The model’s architecture is illustrated as follows: 
 

Layer (type) Output Shape Param # 

conv2d_1 (Conv2D) (None, 224, 224, 64) 1792 

conv2d_2 (Conv2D) (None, 224, 224, 64) 36,928 

max_pooling2d_1 (MaxPooling) (None, 112, 112, 64) 0 

conv2d_3 (Conv2D) (None, 112, 112, 128) 73,856 

conv2d_4 (Conv2D) (None, 112, 112, 128) 147,584 

max_pooling2d_2 (MaxPooling) (None, 56, 56, 128) 0 

conv2d_5 (Conv2D) (None, 56, 56, 256) 295,168 

conv2d_6 (Conv2D) (None, 56, 56, 256) 590,080 

conv2d_7 (Conv2D) (None, 56, 56, 256) 590,080 

max_pooling2d_3 (MaxPooling) (None, 28, 28, 256) 0 
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Continued 

conv2d_8 (Conv2D) (None, 28, 28, 512) 1,180,160 

conv2d_9 (Conv2D) (None, 28, 28, 512) 2,359,808 

conv2d_10 (Conv2D) (None, 28, 28, 512) 2,359,808 

max_pooling2d_4 (MaxPooling) (None, 14, 14, 512) 0 

conv2d_11 (Conv2D) (None, 14, 14, 512) 2,359,808 

conv2d_12 (Conv2D) (None, 14, 14, 512) 2,359,808 

conv2d_13 (Conv2D) (None, 14, 14, 512) 2,359,808 

max_pooling2d_5 (MaxPooling) (None, 7, 7, 512) 0 

flatten_1 (Flatten) (None, 25,088) 0 

dense_1 (Dense) (None, 1000) 4,097,000 

dense_2 (Dense) (None, 2) 1001 

Total params: 121,577,233 

Trainable params: 121,577,233 

Non-trainable params: 0 

 
The model’s hyperparameters have been fixed at the following values: 

 Activation function: ReLU + Softmax in the last fully connected layer. 
 Loss function: Cross-entropy loss. 
 Optimizer: Adam.  
 Use of batch normalization: Batch normalization allows the model to be 

trained on separate mini-batches. As a consequence, weights are updated 
between batches, so the number of epochs required to train the model is mi-
nimized. 

 Use of dropout regularization: In our case, since the number of examples is 
limited, the dropout regularization will be used to reduce overfitting. Dro-
pout drops random nodes during training; thus, a single model can be seen 
as a number of different simulated architectures, with less computing power 
required to train actual models. 

4. Dataset 

The data used to fulfill this study is the UNBC-McMaster Shoulder Pain Expres-
sion Archive Database [3]. It has been collected by researchers from McMaster 
University and the University of Northern British Columbia and shared for re-
search purposes in collaboration with Carnegie Mellon University and the Uni-
versity of Pittsburgh [14]. 

A total of 100 patients who were suffering from shoulder pain caused by arth-
ritis, bursitis, tendonitis, subluxation, rotator cuff injuries, impingement syn-
dromes, bone spur, capsulitis and dislocation, underwent the following range- 
of-motion tests on both affected and unaffected limbs: 
 Abduction: In abduction movements, the arm is lifted forward and up in the 

sagittal plane (i.e., the plane which divides the body into right and left parts). 
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 Flexion: In flexion, the humerus (or upper arm) moves forward from the rest 
of the body. 

 Internal (resp. external) rotation of each arm separately: Involves bending the 
arm 90 degrees at the elbow, abducting it by 90 degrees and finally turning it 
internally (resp. externally). 

All those tests were performed under active and passive conditions. In active 
tests, patients had to perform movements by themselves to the best of their abil-
ity (i.e., until pain would prevent them from doing further movements), whereas 
in passive tests, a physiotherapist would move patients’ limbs until the maxi-
mum range would be reached or they would be stopped by patients themselves 
who would not bear the pain anymore. For each test, a video sequence was rec-
orded with frequent changes in pose, as we can see in Figure 3.  

The pitch, yaw and roll in frames taken from all sequences range between −40 
and 30. According to Lucey et al. [14], head movements coincide with painful 
facial expressions. 

A total of 200 video sequences containing spontaneous facial expressions re-
lated to genuine pain were recorded for the 100 patients. Those sequences were 
rated by observers and pain was self-reported by patients using four different 
types of assessments, to make sure that the rating is as accurate as possible: 

1) The Sensory Scale (SEN): Used to reflect the pain intensity. It starts at 
“extremely weak” and finishes at “extremely intense”. 

2) The Affective-Motivational Scale (AFF): Used to reflect the unpleasant-
ness incurred by the pain. It starts at “bearable” and finishes at “excruciating”. 

3) The Visual Analogue Scale (VAS): Gives more flexibility to the patient to 
rate pain in the most accurate way possible by providing a 10 cm scale anchored 
at each end with the words “No Pain” and “Worst Pain”, on which patients can 
select the most accurate intensity, even if it ranges between two specific intensi-
ties (e.g., between “moderately strong” and “very strong”). 

4) Observers Pain Intensity (OPI): Trained observers rated patients’ pains 
using a 6-point scale ranging from 0 (no pain) to 5 (strong pain). A number of 
those ratings were rated by a second rater to assess their reliability, and the 
Pearson correlation between both ratings was 80%. In addition, the correlation  
 

 

Figure 3. Pitch, yaw, and roll of frames in the UNBC-McMaster dataset (Source [14]). 
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between the OPI and patient self-reported VAS was 74%, which is higher than 
the high concurrent validity threshold (70%) [14]. Thus, sequence-level ratings 
can be considered trustworthy. A total of 48,398 frames were captured from each 
sequence and coded into Action Units (AUs) by certified Facial Action Unit 
System (FACS) coders. 

4.1. Pain Assessment 

We need to introduce three basic components for pain assessment, namely ac-
tion units (AUs) and Facial Action Coding system (FACS), and the Prkachin 
and Solomon Pain Intensity (PSPI) score [16].  

Action Units are the fundamental actions involving one or multiple muscles 
in response to a certain feeling, such as cheek raising, lip stretching and head left 
turning. AUs are encoded using the FACS. 

Facial Action Coding System (FACS) is a system used to taxonomize facial 
actions or movements. It is used by psychologists and animators to categorize a 
person’s emotions based on facial actions. The FACS assigns to every AU a 
unique code. For instance, AU number 6 corresponds to cheek rising, AU num-
ber 20 corresponds to lip stretching and AU number 51 to head left turning. A 
typical example of AUs is depicted in Figure 4. 

Prkachin and Solomon [16] found that the most representative AUs for pain 
are brow lowering (AU4), orbital tightening (AU6 and AU7), levator contraction 
(AU9 and AU10) and eye closure (AU43). Based on that, they defined the fol-
lowing pain formula: 
 

 

Figure 4. Example of action units [15]. 
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( ) ( ) ( )Pain AU 4 AU6 or AU7 AU9 or AU10 AU43= + + +         (1) 

where AU(4) and AU(43) are always present in pain, one of AU6 and AU7 and 
one of AU9 and AU10 must be present too. The highest intensity would be se-
lected if both are present. 

Each AU is scored on a 6-point scale based on its intensity ranging between “a 
= 0” for absent intensity and “f = 5” for maximum intensity, except for AU43 
which has a binary intensity: 0 (absent) or 1 (present) [16]. For instance, AU6d 
refers to cheek rising with an intensity of 3. 

The Prkachin and Solomon Pain Intensity score (PSPI score) [16] was intro-
duced as the only metric for pain intensity based on facial expressions. 

From Formula (1), the PSPI score formula is: 

( ) ( )PSPI score AU4 max AU6,AU7 max AU9,AU10 AU43= + + +     (2) 

Consequently, if a frame is coded as: 

FACS AU4a AU6d AU7d AU12d AU43= + + + +           (3) 

Then, its PSPI score is derived as: 

( )PSPI score 1 max 4,4 1 6= + + =                 (4) 

Based on the calculated PSPI score, we define two pain classes as shown in 
Table 1.  

4.2. Exploratory Data Analysis 

As mentioned in the previous section, the UNBC-McMaster dataset has 100 
subjects (patients) who underwent different kinds of tests in different sequences, 
from which a sample of frames has been captured. The average size of each 
frame is 320 × 240 pixels. Figure 5 shows the number of frames captured for 
each patient (subject). 

Based on Figure 5, we can observe that subjects 14, 16 and 19 have the highest 
number of recorded frames, as opposed to subjects 23, 7 and 12, which have the 
lowest number of frames. This means that if the training set comprises frames of 
subject 16 and 23 for example, the model would perform better in the classifica-
tion of frames of subject 16 than those of subject 23, because it was trained on  
 
Table 1. Pain classes from the UNBC-McMaster dataset [3]. 

 
Pain Classes 

No Pain Pain 

PSPI score O 1 and above 

Facial 
Expression 

example 
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Figure 5. Distribution of frames for each patient (subject). 
 
more examples of subject 16. Hence, subject 16’s facial features became familiar 
to the model. The number of frames belonging to each class (pain/no-pain) is 
shown in Figure 6.  

We can note from Figure 6 that the dataset has imbalanced classes. There is a 
clear dominance of “No Pain” frames over “Pain” ones. If the model is trained 
on more “No Pain” examples, it would be biased towards detecting “No Pain” 
faces, which means that it has more chances to misclassify a “Pain” example as 
“No Pain”, because it got accustomed to “No Pain” examples. In order to have a 
fair prediction model, to some extent, we will train our model on as many pain 
examples as no pain ones. 
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Figure 6. Distribution (classification) of frames between two pain classes. 

4.3. Data Processing 

Real-world data is often subject to errors, noise and outliers. Before it can be vi-
sualized or processed, it needs to be preprocessed and cleaned. Preprocessing is a 
crucial phase in data analysis. It allows us to do a data quality assessment and 
resolve all issues which might affect the performance of our model. For numeri-
cal and categorical data, the following data dimensions are assessed: 
 Completeness, to check if there are missing values. 
 Conformity, to verify that all values are stored in a common format. 
 Consistency, to check if there are any conflicting values. 
 Accuracy, to check if there are incorrect, out of bound or out of date values. 
 Duplicates, to check if an entry or a feature is repeated. 
 Integrity, to check if there are unreferenced entries. 

The process is quite different with images. Images usually have to undergo a 
couple of transformations such as filtering, cropping, resizing, color grading, ro-
tating and mirroring, mainly to be simplified for faster processing, to be format-
ted or to be adapted to a certain machine learning algorithm. The following pre-
processing steps have been used in this study using the OpenCV library [17] as 
depicted in Figure 7. 
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Figure 7. Preprocessing steps applied to one image from the dataset [3]. 
 
 Gray scaling, to keep one channel in each image and simplify the convolution 

operations. Colors are not impactful in this problem. However, they can be of 
the essence in other problems (e.g., the classification of fruits into different 
quality classes based on many factors, including their color). 

 Histogram equalization, to unify and improve the contrast of every image for 
better edge detection. Consequently, images would neither be too bright nor 
too dark. 

 Face detection, using the predefined Haarcascade Frontal Face Detector [18]. 
 Image cropping, to keep the frontal face of the patient only. 
 Mean filtering, to eliminate unrepresentative pixels. In this step, every pixel is 

replaced with the average value of its neighbors, including its own value. 
 Normalization/Standardization, to keep pixel intensities within the range [−1, 

1] and have small standardized values. 
 Resizing, to adapt sizes to the CNN architecture. 

4.4. Data Modeling 

The CNN model was built based on the architecture described in Section 3, 
trained on equally-distributed images for each class, using batches of 10 images, 
and evaluated using the cross entropy loss and the accuracy of each batch in each 
epoch, as shown in Figure 8 and Figure 9. 

From Figure 8, we can notice a random variation in the accuracies, as the 
model was being trained on each batch for the first time (first epochs). After 
about 550 iterations, the learning accuracies started ranging between 80% and 
100%, with two falls to 70%, which exhibits success in the model’s hyperpara-
meter tuning. 

Similarly, losses started from around 0.7 in the first epochs, as we can see in 
Figure 9. After about 700 iterations, they started ranging between 0 and 0.3, with 
occasional rises between 0.4 and 0.6. 
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Figure 8. Training accuracies for each batch per epoch. 
 

 

Figure 9. Training losses for each batch per epoch. 
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5. Performance Analysis 

After the training, the model was evaluated on a sample of 400 images based on 
its accuracy, sensitivity and specificity. 

TP TN
TP

Accura
TN F

c
FP N

y +
+ + +

=                  (5) 

TPSensitivity
TP FN

=
+

                     (6) 

TNSpecificity
TN FP

=
+

                     (7) 

where:  
TP (True Positives) is the number of pain images that were correctly classi-

fied.  
TN (True Negatives) is the number of no-pain images which were correctly 

classified.  
FP (False Positives) is the number of pain images that were misclassified. 
FN (False Negatives) is the number of no-pain images which were misclassi-

fied.  
Table 2 shows the confusion matrix of the model on the testing set. 
Using the above Equations (5) - (7) we calculated the performance scores for 

our testing dataset.  

200 170
200 170

Accuracy 92.5%
0 30

+
= =

+ + +
 

200Sensitivity
200 30

86.96%= =
+

 

170Specificity 100%
170 0

= =
+

 

In Table 3, we present a comparative study with various accuracy results from 
different research papers. 

Our proposed model achieved an accuracy of 92.5%. In comparison with tech-
niques developed by other researchers, as shown in Table 3, we can say that our 
pain detection method generates great results on average on the UNBC McMaster 
Shoulder Pain Expression Archive database, as it overperformed other complex 
architectures. 
 
Table 2. Confusion matrix. 

 
Actual Classes 

Pain No Pain 

Predicted Classes 
Pain TP = 200 FP = 0 

No Pain FN = 30 TN = 170 
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Table 3. Comparative study with other researchers’ results. 

Author Accuracy 

Sourav Dey Roy et al. [2] 82.43% 

Lijun Yin et al. [5] 90.4% 

Ghazal Bargshady et al. [6] 75.2% 

Pau Rodriguez et al. [10] 90.2% 

Zhanli Chen et al. [11] 87% 

Reza Kharghanian et al. [12] 87.2% 

Our Method 92.5% 

6. Conclusions and Future Work 

In this paper, we have presented a modified CNN model for the automatic pain 
detection problem. It was built and trained to detect pain through patients’ facial 
expressions, using the UNBC McMaster Shoulder Pain Expression Archive da-
tabase. Our proposed model can alert medical staffs in a timely manner regard-
ing patients’ conditions based on their facial expressions. The model achieved an 
accuracy of 92.5% which stands in competition with other researchers’ results. 
As we can see, the model is very specific, with an average specificity of 100% 
based on the testing sample. This means that the model has a perfect perfor-
mance when no pain is expressed, which in its turn means that the pain detec-
tion system is most likely never going to cause false alarms to the medical staff.  

As for the sensitivity, the model detects pain in 86.96% of pain situations, 
which is still excellent, since we know that weak and mild pains do not always 
infer an emergency. Thus, the error is permitted by the model in some cases, 
where pain is not expressed with strong intensity. In future improvements, more 
emphasis will be put on testing different architectures to extract more features 
from the facial frames. Additionally, we will consider using Conditional Genera-
tive Adversarial Networks (CGANs) to generate synthetic facial images, in order 
to strengthen the training set. 

7. Strengths & Limitations 

Despite the fact that our dataset had very limited examples (frames from 25 pa-
tients only), it could still generalize well and gave excellent and reliable results 
on newly seen faces, using the least complex architecture possible for such a 
complex classification problem. However, we would get a much better perform-
ing model if we could combine our dataset with other more diversified datasets 
and give a try to different architectures, which are more adapted and tailored to 
the pain detection problem than a simple general architecture, which has proven 
its success with many computer vision problems.  
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