
Journal of Software Engineering and Applications, 2021, 14, 267-276
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.147016 Jul. 8, 2021 267 Journal of Software Engineering and Applications

How to Support Communication among
Stakeholders during Software Requirements
Prioritization

Philip Achimugu1, Oluwatolani Achimugu2, Mohammed Ahmed Taiye1, Sseggujja Husssein3,
Grace Tam-Nurseman4, Saheed Adekeye4

1Department of Computer Science, Air Force Institute of Technology Kaduna, Kaduna, Nigeria
2Department of Information and Communication Engineering, Air Force Institute of Technology Kaduna, Kaduna, Nigeria
3Department of Computer Science, Islamic University in Uganda, Kampala, Uganda
4Department of Computer Science, Lead City University, Ibadan, Nigeria

Abstract
Existing prioritization techniques do not support communication among
stakeholders and this makes it difficult for stakeholders to understand the
meaning and essence of requirements before prioritization commences. When
this happens, the ordered list of requirements can be misleading. The aim of
this research is to develop a method capable of supporting and computing
ranks of requirements based on the criteria defined for each requirement. The
proposed method is developed based on fuzzy logic. Results show that or-
dered requirements reproduced ranks with strong correlations when com-
pared to their linguistic values provided by the stakeholders. The contribu-
tion of this paper centers on an improved way of prioritizing requirements
with understanding.

Keywords
Requirements, Prioritization, Software, Fuzzy Logic, Stakeholders

1. Introduction

During requirements elicitation, there are more prospective requirements speci-
fied for implementation by relevant stakeholders with limited time and resources.
Therefore, an ordered list of requirements must be considered for implementa-
tion. This process is referred to as requirements prioritization. It is considered to
be a complex multi-criteria decision making process [1].

There are so many advantages of prioritizing requirements before architecture

How to cite this paper: Achimugu, P.,
Achimugu, O., Taiye, M.A., Husssein, S.,
Tam-Nurseman, G. and Adekeye, S. (2021)
How to Support Communication among
Stakeholders during Software Requirements
Prioritization. Journal of Software Engineer-
ing and Applications, 14, 267-276.
https://doi.org/10.4236/jsea.2021.147016

Received: March 8, 2021
Accepted: July 5, 2021
Published: July 8, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.147016
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.147016
http://creativecommons.org/licenses/by/4.0/

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 268 Journal of Software Engineering and Applications

design or coding. Prioritization aids the implementation of a software system
with preferential requirements of stakeholders [2] [3]. Also, the challenges asso-
ciated with software development such as limited resources, inadequate budget,
insufficiently skilled programmers among others make requirements prioritiza-
tion really important [4]. It can help in planning software releases since not all
the elicited requirements can be implemented in a single release due to some of
these challenges [5] [6]. It also enhances budget control and scheduling [1].
Therefore, determining which, among a pool of requirements to be implemented
first and the order of implementation is necessary to avoid breach of contract or
agreement during software development. Furthermore, software products that
are developed based on prioritized requirements can be expected to have a lower
probability of being rejected. To prioritize requirements, stakeholders will have
to compare them in order to determine their relative importance through a
weight scale which is eventually used to compute the prioritized requirements
[7]. These comparisons become complex with an increase in the number of re-
quirements [8].

Software system’s acceptability level is mostly determined by how well the de-
veloped system has met or satisfied user’s requirements. Hence, eliciting and
prioritizing the appropriate requirements and scheduling right releases with the
correct functionalities are critical success factors for building acceptable systems.
In other words, when vague requirements are implemented, the resulting system
will fall short of user’s expectations. Many software development projects have
enormous prospective requirements that may be practically impossible to deliver
within the expected time frame and budget [1] [9]. It, therefore, becomes highly
necessary to source appropriate measures for planning and rating requirements
in an efficient way.

2. Related Works

Many requirements prioritization techniques exist in the literature. All of these
techniques utilize a ranking process to prioritize candidate requirements. The
ranking process is usually executed by assigning relative weights across require-
ments based on pre-defined criteria. From the literature; analytic hierarchy
process (AHP) is the most prominently used technique. However, this technique
suffers bad scalability. This is due to the fact that, AHP executes ranking by con-
sidering the criteria that are defined through an assessment of the relative priori-
ties between pairs of requirements. This becomes impracticable as the number of
requirements increases. It also does not support requirements evolution or rank
reversals but provide efficient or reliable results [10] [11]. Also, most techniques
suffer from rank reversals. This term refers to the inability of a technique to up-
date rank status of ordered requirements whenever a requirement is added or
deleted from the list. Prominent techniques that suffer from this limitation are
case base ranking [1]; interactive genetic algorithm prioritization technique [9];
Binary search tree [10]; cost value approach [6] and evolve [12]. Furthermore,
existing techniques are prone to computational errors [13] probably due to lack

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 269 Journal of Software Engineering and Applications

of robust algorithms. Karlsson et al. [10] conducted some researches where cer-
tain prioritization techniques were empirically evaluated. From their output,
they reported that, most of the prioritization techniques apart from AHP and
bubble sorts produce unreliable or misleading results while AHP and bubble
sorts were also time consuming. The authors concluded that; techniques like hi-
erarchy AHP, spanning tree, binary search tree, priority groups produce unreli-
able results and are difficult to implement. Babar et al. [11] were also of the
opinion that, techniques like requirement triage, value intelligent prioritization
and fuzzy logic based techniques are also error prone due to their reliance on
experts and are time consuming too. Other requirements prioritization tech-
niques such as planning game, wieger’s method and requirements triage also
possesses the ability to accurately prioritize requirements but cannot update
ranks whenever requirements evolve [10] [11]. Most prioritization techniques do
not support communication among stakeholders. One of the most recent works
in requirements prioritization research reported communication among stake-
holders as part of the limitations of their technique [1]. This can lead to genera-
tion of vague results. Communication has to do with the ability of all relevant
stakeholders to fully understand the meaning and essence of each requirement
before prioritization commences.

A study has been conducted to determine the requirements prioritization
techniques used in software industry and identify aspects or evaluation criteria
to choose the best technique according to the environment [14]. According to
this study, techniques like cost value ranking, value oriented prioritization, cu-
mulative voting, and MoSCoW were the most desirable and eminent techniques
used to determine requirements ranks. The key aspect or evaluation criteria for
the choice of these techniques were customer preference, business value, reliabil-
ity of results, ease of use and time consumption rate, consistency, cost, benefit,
penalty, technical risk and judgments on participants’ experiences. Two syste-
matic literature reviews revealed that, communication among stakeholders, sca-
lability, complexity, uncertainty, time consumption, starvation and dependency
issues among requirements, limited researches on the non-functional require-
ments, lower automation approach and conflict between stakeholders are critical
problems associated with existing requirements prioritization techniques [15] [16].

3. Proposed Method

The value of requirements is computed based on their weight frequencies and a
mean score is obtained to determine the final rank. The process flow of the pro-
posed method is depicted in Figure 1.

To start the process, the following procedures are observed to elicit require-
ments used to construct pair-wise comparison for each stakeholder:

1) Generating requirements: The elicitor or architect articulates the descrip-
tion of the project’s problem to the stakeholders both in written and verbal form.
They now lead the stakeholders to express their thoughts in brief phrases or
statements. Each person quietly documents requirements.

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 270 Journal of Software Engineering and Applications

Figure 1. Process flow.

2) Recording requirements: Stakeholders engage in a round-robin feedback

meeting to precisely elicit requirements (without deliberations at this point). The
architect or elicitor then collates these requirements from all the stakeholders.

3) Discussing requirements: The documented requirements are then deliber-
ated upon to determine clarity and relevance. For each requirement, the archi-
tect or developer asks for comments, questions or criticisms. This will allow stake-
holders to express themselves in order to determine precise requirements.

4) Rating requirements: These requirements are parameterized as Rij, where
1,2,3, ,i n=  (n = total number of requirements) and rating confidence xij

where 1,2,3, ,j m=  (m = total number of stakeholders).
Based on these definitions and operations, the proposed steps of prioritizing

software requirements are enumerated below:
Step 1: Requirements are weighted with Table 1 to determine their weights

from the stakeholders and a decision matrix is constructed using Equation (3.1).
kk

ijA a =  


 (3.1)

kA , represent the computed decision matrix of the form: , ,ij ij ij ija La Ma Ua= ;
k stands for the numbers of relevant stakeholders while ija is the fuzzified local
weights of all the criteria allotted by relevant stakeholders.

Step 2: It is important to note that, the weights allotted by the stakeholders
are subjective and based on their knowledge or understanding of the require-
ments in the set. It is therefore necessary to employ the average score technique
to synthesize the fuzzy performance values of k stakeholders using Equation (3.2).

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 271 Journal of Software Engineering and Applications

Table 1. Weight scale.

Variables Rank TFNs Crisp Value

VERY HIGH (VH) 5 (0.9, 1.0, 1.0) [0.97]

HIGH (H) 4 (0.7, 0.9, 1.0) [0.87]

MEDIUM (M) 3 (0.5, 0.7, 0.9) [0.70]

LOW (L) 2 (0.3, 0.5, 0.7) [0.50]

SUPER LOW (SL) 1 (0.1, 0.3, 0.5) [0.30]

1

1 , 1, , ; 1, ,
k

j ij
i

a i n j m
k

ω
=

 = = =  
∑   (3.2)

where , ,j j j jL M Uω ω ω ω= indicates the synthesized relative fuzzy weights of
the jth requirement.

Step 3: The fuzzy numbers are defuzzified with Equation (3.3).

j

j j j
w

j

L M Uω ω ω
ω

Ξ = (3.3)

where, jw is the synthesized weight of the jth, requirement.
Step 4: The defuzzification of the weights obtained from Step 3 are normal-

ized using Equation (3.4).

1

, 1, , ; 1, ,
1

j
j n

j
j

W
i n j mϖ

ϖ
=

= = =
=∑

  (3.4)

Step 5: After normalization, Equation (3.5) is used to determine the global
ranks of requirements, which is the aggregation of weights across all the project
stakeholders.

()
3

j j j
ij

L M U
Gw

ϖ ω ω
= (3.5)

Step 6: The final scores which determines the final ranks of requirements are
computed using Equation (3.6). It gives rise to the ordered list of requirements.

ij
ij

a
Fw

k
= ∑ (3.6)

where, ija is the sum of global weights while k stands for the number of stake-
holders.

4. Empirical Evaluation

To illustrate the concepts of the proposed method, a fictional datasets consisting
of 9 stakeholder’s ratings across 10 requirements is used as shown in Table 2.
The following explanations clarifies the computational processes involved in ob-
taining relative weights of requirements:

1) The stakeholders are asked to weight requirements using the linguistic val-
ues depicted in Table 2;

2) Thereafter, the linguistic values are converted to its corresponding triangu-

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 272 Journal of Software Engineering and Applications

lar fuzzy numbers as shown in Table 3;
3) Since the relative weights of stakeholders are subjective, the triangular fuzzy

weights are synthesized. This gives rise to the results displayed in Table 4;
4) The triangular fuzzy numbers are defuzzified into a crisp value for accurate

calculation. The defuzzified weights are shown in Table 5;
5) The defuzzified weights are then normalized to ensure that, summation of

the decision matrix is equal to 1 (Table 6);
6) The global weights are calculated as shown in Table 7 while the final scores

are depicted in Table 8.
To reduce subjective biasness and deal with qualitative influential criteria for

rating requirements in subjective environments, fuzzy sets theory and linguistic
values quantified with triangular fuzzy numbers were used to determine the
relative weights of requirements. These results will provide stakeholders and
software developers with useful insight for decision making regarding which re-
quirements are meant to be implemented in first, second, third or subsequent
releases. The empirical results also help software developers in implementing or
producing software with preferential requirements of stakeholders within time
and budget.

Table 2. Linguistic variables for weights of requirements.

 S1 S2 S3 S4 S5 S6 S7 S8 S9

R1 VH H VH F F H F L H

R2 H F F H VH L H H F

R3 H VH H VH EH F H H F

R4 F H VH EH H H F L F

R5 VH VH EH EH VH VH H F F

R6 VH H H F F L F L H

R7 H VH VH F H H F L H

R8 VH H H VH H H H L H

R9 VH VH H EH VH VH H H VH

R10 EH EH VH H VH EH F VH H

Table 3. Corresponding TFNs for relative weights of requirements.

 S1 S2 S3 S4 S5 S6 S7 S8 S9

R1 (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9)

R2 (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7)

R3 (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7)

R4 (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7)

R5 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7)

R6 (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9)

R7 (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.3, 0.5, 0.7) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.3, 0.5, 0.7) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9)

R8 (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.1, 0.3, 0.5) (0.5, 0.7, 0.9)

R9 (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0)

R10 (0.9, 1.0, 1.0) (0.9, 1.0, 1.0) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9) (0.7, 0.9, 1.0) (0.9, 1.0, 1.0) (0.3, 0.5, 0.7) (0.7, 0.9, 1.0) (0.5, 0.7, 0.9)

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 273 Journal of Software Engineering and Applications

Table 4. Synthesized fuzzy weights.

 S1 S2 S3 S4 S5 S6 S7 S8 S9

R1 0.289 0.233 0.289 0.167 0.167 0.233 0.167 0.100 0.233

R2 0.233 0.167 0.167 0.233 0.289 0.10 0.233 0.233 0.167

R3 0.233 0.289 0.233 0.289 0.322 0.167 0.233 0.233 0.167

R4 0.167 0.233 0.289 0.322 0.233 0.233 0.167 0.100 0.167

R5 0.289 0.289 0.322 0.322 0.289 0.289 0.233 0.167 0.167

R6 0.289 0.233 0.233 0.167 0.167 0.10 0.167 0.100 0.233

R7 0.233 0.289 0.289 0.167 0.233 0.233 0.167 0.100 0.233

R8 0.289 0.233 0.233 0.289 0.233 0.233 0.233 0.100 0.233

R9 0.289 0.289 0.233 0.322 0.289 0.289 0.233 0.233 0.289

R10 0.322 0.322 0.289 0.233 0.289 0.322 0.167 0.289 0.233

Table 5. Defuzzified aggregated triangular fuzzy numbers.

 S1 S2 S3 S4 S5 S6 S7 S8 S9

R1 (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (1.0, 1.7, 2.4) (1.0, 1.7, 2.4) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4) (0.3, 1.0, 1.7) (1.7, 2.4, 3.1)

R2 (1.7, 2.4, 3.1) (1.0, 1.7, 2.4) (1.0, 1.7, 2.4) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (0.3, 1.0, 1.7) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4)

R3 (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (3.1, 3.5, 3.5) (1.0, 1.7, 2.4) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4)

R4 (1.0, 1.7, 2.4) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (3.1, 3.5, 3.5) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4) (0.3, 1.0, 1.7) (1.0, 1.7, 2.4)

R5 (2.4, 3.1, 3.5) (2.4, 3.1, 3.5) (3.1, 3.5, 3.5) (3.1, 3.5, 3.5) (2.4, 3.1, 3.5) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4) (1.0, 1.7, 2.4)

R6 (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4) (1.0, 1.7, 2.4) (0.3, 1.0, 1.7) (1.0, 1.7, 2.4) (0.3, 1.0, 1.7) (1.7, 2.4, 3.1)

R7 (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (2.4, 3.1, 3.5) (1.0, 1.7, 2.4) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (1.0, 1.7, 2.4) (0.3, 1.0, 1.7) (1.7, 2.4, 3.1)

R8 (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (0.3, 1.0, 1.7) (1.7, 2.4, 3.1)

R9 (2.4, 3.1, 3.5) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (3.1, 3.5, 3.5) (2.4, 3.1, 3.5) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5)

R10 (3.1, 3.5, 3.5) (3.1, 3.5, 3.5) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1) (2.4, 3.1, 3.5) (3.1, 3.5, 3.5) (1.0, 1.7, 2.4) (2.4, 3.1, 3.5) (1.7, 2.4, 3.1)

Table 6. Normalized relative weights.

 S1 S2 S3 S4 S5 S6 S7 S8 S9

R1
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.20, 0.33,

0.47)
(0.20, 0.33,

0.47)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)
(0.10, 0.33,

0.57)
(0.24, 0.33,

0.43)

R2
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)
(0.20, 0.33,

0.47)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.10, 0.33,

0.57)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)

R3
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.31, 0.35,

0.35)
(0.20, 0.33,

0.47)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)

R4
(0.20, 0.33,

0.47)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.31, 0.35,

0.35)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)
(0.10, 0.33,

0.57)
(0.20, 0.33,

0.47)

R5
(0.27, 0.34,

0.39)
(0.27, 0.34,

0.39)
(0.31, 0.35,

0.35)
(0.31, 0.35,

0.35)
(0.27, 0.34,

0.39)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)
(0.20, 0.33,

0.47)

R6
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)
(0.20, 0.33,

0.47)
(0.10, 0.33,

0.57)
(0.20, 0.33,

0.47)
(0.10, 0.33,

0.57)
(0.24, 0.33,

0.43)

R7
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.27, 0.34,

0.39)
(0.20, 0.33,

0.47)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.20, 0.33,

0.47)
(0.10, 0.33,

0.57)
(0.24, 0.33,

0.43)

R8
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.10, 0.33,

0.57)
(0.24, 0.33,

0.43)

R9
(0.27, 0.34,

0.39)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.31, 0.35,

0.35)
(0.27, 0.34,

0.39)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)

R10
(0.31, 0.35,

0.35)
(0.31, 0.35,

0.35)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)
(0.27, 0.34,

0.39)
(0.31, 0.35,

0.35)
(0.20, 0.33,

0.47)
(0.27, 0.34,

0.39)
(0.24, 0.33,

0.43)

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 274 Journal of Software Engineering and Applications

Table 7. Global weights.

 S1 S2 S3 S4 S5 S6 S7 S8 S9

R1 0.74 0.71 0.74 0.69 0.69 0.71 0.69 0.62 0.71

R2 0.71 0.69 0.69 0.71 0.74 0.62 0.71 0.71 0.69

R3 0.71 0.74 0.71 0.74 0.78 0.69 0.71 0.71 0.69

R4 0.69 0.71 0.74 0.78 0.71 0.71 0.69 0.62 0.69

R5 0.74 0.74 0.78 0.78 0.74 0.74 0.71 0.69 0.69

R6 0.74 0.71 0.71 0.69 0.69 0.62 0.69 0.62 0.71

R7 0.71 0.74 0.74 0.69 0.71 0.71 0.69 0.62 0.71

R8 0.74 0.71 0.71 0.74 0.71 0.71 0.71 0.62 0.71

R9 0.74 0.74 0.71 0.78 0.74 0.74 0.71 0.71 0.74

R10 0.78 0.78 0.74 0.71 0.74 0.78 0.69 0.74 0.71

Table 8. Final weights.

 ijFw Rank

R1 0.279 6

R2 0.278 7

R3 0.283 3

R4 0.278 7

R5 0.286 2

R6 0.277 8

R7 0.280 5

R8 0.280 5

R9 0.286 2

R10 0.287 1

Therefore, the strengths of this method are reduced disagreements or dis-

crepancies among ranked requirements and dealing with uncertainties associ-
ated with decision making processes. The proposed method is also reliable as
seen by comparing the final output in Table 8 with the linguistic values in Table
2. There is a strong correlation between the prioritized requirements generated
by the proposed method and the linguistic values provided by stakeholders.

5. Conclusion and Future Work

To avoid breach of agreement or contract in software development projects,
stakeholders can converge to prioritize specified requirements. This is due to the
fact that not all the specified requirements are always implementable in a single
release. Software requirements prioritization is exercised by relative compari-
sons, where preference weights are assigned against requirements to reflect their
values as perceived by stakeholders. It is therefore considered to be a multi-criteria
decision making process. The rationale for undertaking this research arose from
the fact that existing prioritization techniques are challenged by their inability of
addressing communication among stakeholders during prioritization. In the

https://doi.org/10.4236/jsea.2021.147016

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 275 Journal of Software Engineering and Applications

proposed method, relative weights of requirements are determined by a linguis-
tic scale and prioritization takes place by analyzing the coefficient values of re-
quirements. The outputs generated by the proposed method have an acceptable
level of accuracy. Thus, prioritization helps stakeholders plan for software re-
lease phases with respect to available budget, time and skilled programmers.
Validation of the proposed method was based on an illustrative example. Finally,
the proposed method is able to classify ranked requirements with the computa-
tion of maximum, minimum, mean and aggregated scores to display prioritized
requirements. Future work borders on implementation of a prototype tool and
validation in a real environment.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Perini, A., Susi, A. and Avesani, P. (2013) A Machine Learning Approach to Soft-

ware Requirements Prioritization. IEEE Transactions on Software Engineering, 39,
445-461. https://doi.org/10.1109/TSE.2012.52

[2] Ahl, V. (2005) An Experimental Comparison of Five Prioritization Methods-Inves-
tigating Ease of Use, Accuracy and Scalability. Master’s Thesis, School of Engineer-
ing, Blekinge Institute of Technology, Sweden.

[3] Thakurta, R. (2012) A Framework for Prioritization of Quality Requirements for
Inclusion in a Software Project. Software Quality Journal, 21, 573-597.
https://doi.org/10.1007/s11219-012-9188-5

[4] Karlsson, L., Thelin, T., Regnell, B., Berander, P. and Wohlin, C. (2007) Pair-Wise
Comparisons versus Planning Game Partitioning-Experiments on Requirements Pri-
oritisation Techniques. Empirical Software Engineering, 12, 3-33.
https://doi.org/10.1007/s10664-006-7240-4

[5] Berander, P., Khan, K.A. and Lehtola, L. (2006) Towards a Research Framework on
Requirements Prioritization. Proceedings of Sixth Conference on Software Engineer-
ing Research and Practice in Sweden (SERPS’06).

[6] Karlsson, J. and Ryan, K. (1997) A Cost-Value Approach for Prioritizing Require-
ments. IEEE Software, 14, 67-74. https://doi.org/10.1109/52.605933

[7] Kobayashi, M. and Maekawa, M. (2001) Need-Based Requirements Change Manage-
ment. Proceedings ECBS: Eighth Annual IEEE International Conference and Work-
shop on the Engineering of Computer Based Systems, 171-178.

[8] Kassel, N.W. and Malloy, B.A. (2003) An Approach to Automate Requirements
Elicitation and Specification. Proceedings of the 7th IASTED International Confer-
ence on Software Engineering and Applications, Marina Del Rey, 3-5 November
2003.

[9] Tonella, P., Susi, A. and Palma, F. (2013) Interactive Requirements Prioritization
Using a Genetic Algorithm, Information and Software Technology. Information and
Software Technology, 55, 173-187. https://doi.org/10.1016/j.infsof.2012.07.003

[10] Karlsson, J., Wohlin, C. and Regnell, B. (1998) An Evaluation of Methods for Pri-
oritizing Software Requirements. Information and Software Technology, 39, 939-947.
https://doi.org/10.1016/S0950-5849(97)00053-0

https://doi.org/10.4236/jsea.2021.147016
https://doi.org/10.1109/TSE.2012.52
https://doi.org/10.1007/s11219-012-9188-5
https://doi.org/10.1007/s10664-006-7240-4
https://doi.org/10.1109/52.605933
https://doi.org/10.1016/j.infsof.2012.07.003
https://doi.org/10.1016/S0950-5849(97)00053-0

P. Achimugu et al.

DOI: 10.4236/jsea.2021.147016 276 Journal of Software Engineering and Applications

[11] Babar, M., Ramzan, M. and Ghayyur, S. (2011) Challenges and Future Trends in
Software Requirements Prioritization. International Conference on Computer Net-
works and Information Technology, 2011, 319-324.
https://doi.org/10.1109/ICCNIT.2011.6020888

[12] Greer, D. and Ruhe, G. (2004) Software Release Planning: An Evolutionary and Iter-
ative Approach. Information and Software Technology, 46, 243-253.
https://doi.org/10.1016/j.infsof.2003.07.002

[13] Ramzan, M., Jaffar, A. and Shahid, A. (2011) Value Based Intelligent Requirement
Prioritization (VIRP): Expert Driven Fuzzy Logic Based Prioritization Technique.
International Journal of Innovative Computing, 7, 1017-1038.

[14] Saher, N., Baharom, F. and Romli, R. (2020) Guideline for the Selection of Re-
quirement Prioritization Techniques in Agile Software Development: An Empirical
Research. International Journal of Recent Technology and Engineering (IJRTE), 8,
3381-3388. https://doi.org/10.35940/ijrte.E6634.018520

[15] Borhan, N.H., Zulzalil, H. and Sa’adah Hassan, N.M.A. (2019) Requirements Priori-
tization Techniques Focusing on Agile Software Development: A Systematic Litera-
ture. International Journal of Scientific and Technology Research, 8, 2118-2125.

[16] Achimugu, P., Selamat, A., Ibrahim, R. and Mahrin, M.N.R. (2014) A Systematic
Literature Review of Software Requirements Prioritization Research. Information
and Software Technology, 56, 568-585. https://doi.org/10.1016/j.infsof.2014.02.001

https://doi.org/10.4236/jsea.2021.147016
https://doi.org/10.1109/ICCNIT.2011.6020888
https://doi.org/10.1016/j.infsof.2003.07.002
https://doi.org/10.35940/ijrte.E6634.018520
https://doi.org/10.1016/j.infsof.2014.02.001

	How to Support Communication among Stakeholders during Software Requirements Prioritization
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Proposed Method
	4. Empirical Evaluation
	5. Conclusion and Future Work
	Conflicts of Interest
	References

