
Journal of Software Engineering and Applications, 2021, 14, 257-265
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2021.146015 Jun. 21, 2021 257 Journal of Software Engineering and Applications

An Improved Approach for Generating Test
Cases during Model-Based Testing Using
Tree Traversal Algorithm

Oluwatolani Achimugu1*, Philip Achimugu2, Chinonyelum Nwufoh3,
Sseggujja Husssein4, Ridwan Kolapo3, Tolulope Olufemi3

1Department of Information and Communication Engineering, Air Force Institute of Technology, Kaduna, Nigeria
2Department of Computer Science, Air Force Institute of Technology, Kaduna, Nigeria
3Department of Computer Science, Lead City University, Ibadan, Nigeria
4Department of Computer Science, Islamic University in Uganda, Kampala, Uganda

Abstract
During the model-based software testing process, test cases are generated
from modeled requirements to conduct acceptance testing. However, existing
approaches generate erroneous test cases, lack full coverage criteria and pro-
totype tools. Therefore, the aim of this research is to develop an approach ca-
pable of reducing erroneous test case generation based on full coverage crite-
ria and a prototype tool. The method employed was to develop a parser to
extract information from the XMI file of a modeling diagram where a tree is
constructed and a traversal operation executed on the nodes and edges to
generate test cases. The results obtained from the proposed approach showed
that 97.35% of the generated test cases were precise and comprehensive
enough to conduct testing because 99.01% of all the nodes and edges were
fully covered during the traversal operations.

Keywords
Requirements, Model, Testing, Tree, Traversal

1. Introduction

Testing can simply be described as the process of ensuring the behavior of a sys-
tem meets the requirements or desires of users or stakeholders as specified in the
contract documents [1]. It is also meant to ensure requirements conformance.
These requirements are usually the expected runtime behaviour of a system un-

How to cite this paper: Achimugu, O.,
Achimugu, P., Nwufoh, C., Husssein, S., Ko-
lapo, R. and Olufemi, T. (2021) An Im-
proved Approach for Generating Test Cas-
es during Model-Based Testing Using Tree
Traversal Algorithm. Journal of Software
Engineering and Applications, 14, 257-265.
https://doi.org/10.4236/jsea.2021.146015

Received: April 15, 2021
Accepted: June 18, 2021
Published: June 21, 2021

Copyright © 2021 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2021.146015
https://www.scirp.org/
https://doi.org/10.4236/jsea.2021.146015
http://creativecommons.org/licenses/by/4.0/

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 258 Journal of Software Engineering and Applications

der development which can be functional or non-functional. Hence, the major
aim of a system testing effort is quality assurance [2].

The focus of this research is model-based testing with precise emphasis on
UML diagrams. Model-based testing deals with the process of generating test
cases from extracted information of the underlying model for the system under
test (SUT). Consequently, an approach for extracting information or artefacts
from the underlying models of a SUT to generate test cases is the focus of this
research work. Test case generations are the foundation of any model-based
testing activity [3] [4]. Therefore, no meaningful model-based testing activity
can take place with vaguely generated test cases. Model-based testing can be in-
itiated as soon as the requirements/design documents are ready. This is because,
these documents provide the expected input and output of the system under de-
velopment which together form what is known as test cases. Therefore, the im-
portance of testing in software development cannot be over emphasized. It helps
eradicate breaches of contract, trust, or agreement. This accounts for the reason
why clients are beginning to request for testing results before accepting or dep-
loying a system in its application domain.

Software testing as a discipline consists of many approaches. However, test
case generation is a major activity that cuts across the existing software testing
techniques because it provides the basis for conducting unit, system, integration
or acceptance testing.

In model-based testing approach, the generation of test cases is derived from
the underlying model used to represent user’s requirements [5] [6] [7] [8]. These
models are usually in the diagrammatic form either as a use case, sequence, ac-
tivity, class, collaboration, deployment, statechart, or component diagrams from
modeling languages like ArgoUML, Rational Rose, or Magic Draw among oth-
ers. The rest of the paper is structured as follows: Section 2 describes the related
work, section 3 presents the proposed approach and section 4 shows the experi-
mental setup, results and discussion while Section 5 concludes the paper and
suggests an area for future research.

2. Related Works

This section deals with the analysis of existing works in the area of model-based
testing process. Accordingly; in [2] [3] [4], the authors utilized various models
namely sequence, state and object diagrams to demonstrate UML-based testing
process. Their approach was based on tree and graph at various points to
represent the extracted artefacts which were traversed to generate test cases but
full coverage was not achieved. In [9] [10], authors proposed techniques for ge-
nerating test cases from activity/sequence diagrams and class/sequence diagrams
respectively, but their techniques were not tested for scalability with complex
models and inadequate coverage criteria as well as prototype implementation
were issues raised in their researches. While [11] presented methods for gene-
rating test cases from behavioural diagrams such as sequence and activity but

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 259 Journal of Software Engineering and Applications

more coverage criteria were required to generate comprehensive test cases. An
approach that focuses on optimizing test cases obtained from UML activity and
state chart diagrams using Basic Genetic Algorithm (BGA) has been proposed
[12]. For generating test cases, both diagrams were converted into their corres-
ponding intermediate graphical forms namely, Activity Diagram Graph (ADG)
and State Chart Diagram Graph (SCDG). Both graphs were then combined to
form a single graph called, Activity State Chart Diagram Graph (ASCDG). Next,
the ASCDG was optimized using BGA to generate the test cases. Limitation of
this research has to do with inability to generate test data for large-scale and
complex systems and the need to generate test cases based on more coverage
criteria. A model-based test case generation approach using ATM and Library
systems have been presented [13]. It was observed that, the use of class diagram,
use cases and activity diagram has resulted in better coverage of test cases.
However, this approach was not implemented and the need to combine the ap-
proach with formal specifications Object-Z and OCL is required.

3. Proposed Approach

The approach for generating test cases is depicted in Figure 1. A modified algo-
rithm capable of extracting key information or artefacts from modeling dia-
grams is presented. The extracted information is transformed into a tree which
is traversed to automatically generate test cases. Trees are special types of graphs
which contain sets of Nodes denoted as V and edges E connecting these nodes
with no cycles. The first node is usually considered to be the root node while
subsequent nodes are known as sub-nodes. When using trees for generating test
cases, an input is required. This input is the user’s requirements expressed in any
of the modeling diagrams. Different modeling tools store their information in
various formats. For example, UML stores its information in MDL file while
ArgoUML stores its information in XMI file. Therefore, the first task in test case
generation is the development of a parser that is capable of extracting all relevant
information from the underlying file of a modeling diagram. After parsing

Figure 1. Proposed approach.

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 260 Journal of Software Engineering and Applications

information from the diagram, an output is generated. The tree is constructed
based on the information contained in the XMI file of a given diagram. Pseudo
codes 3.1, 3.2 and 3.3 show the logic used in implementing the parser, tree and
test case generators respectively. The tree consists of all requirements and their
attributes represented using nodes and edges. The depth of a tree is determined
based on the number of requirements contained in a diagram. If additional re-
quirements are realized or minimized, the tree can be re-generated to reflect new
changes. The tree is then traversed by reading the content of the file to generate
test cases.

In developing components of the proposed approach, the improvements made
are as follows:
• There is only one root node in any XMI file and all other nodes usually

branch from the first node.
• The first child of the root node usually contains some information like date

of creation of the XMI file amongst others.
• Every node in the XMI file must have at least one attribute and may have

other child nodes.
• Every node has an assigned value, depending on the depth of that node. The

root node has a value 1 and the node immediately after it, that is, its first
child, has a value 2.

• Multiple nodes that are child nodes to a particular node will have the same
value. Therefore, the deeper the node, the higher its value.

In simulating the token flow during model execution, the parser attempts to
scan through all the nodes, sub-nodes of the XMI file where the information re-
sides. Once the information is extracted, a dependency tree is generated and test
cases are generated based on full coverage criteria (message and transition path).

Redundancy was avoided by ensuring that, each node and edge is visited once
and properly marked as ‘visited’. This is further enhanced by deleting redundant
path during execution. For instance, if there exists a path from 1 to 2, i.e., 1→2,
and there also exist another path 1→3→4→2, then 1→2 is deleted. After this step,
the auxiliary edges are added to make all end nodes point to the start node. The
result path is the test case that satisfies full node and edge coverage criteria. This
step is meant to avoid erroneous results. A depth first traversal (DFT) operation
was implemented using a recursive algorithm with the aid of a stack data struc-
ture. Therefore, recursively applying the ordering rule causes traversals to occur
starting from the root of the tree. The Pseudo code for the parser, dependency
tree and test case generation processes are depicted in Pseudo code 3.1 - 3.3
respectively.

Pseudo code 3.1: Parser (Artefacts Extraction Process)
1. INPUT: XMI file;
2. Read the XMI file from the first node;
3. Read the current node;
4. IF the name of the current node is valid THEN;

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 261 Journal of Software Engineering and Applications

5. Increase the value of the depthCounter by 1;
6. Add the name of the node to ElementsList;
7. IF the current node has at least one child node THEN;
8. FOR each child node, extract information;
9. Set current child node as current node;
10. END DO;
11. END IF;
12. ELSE THEN;
13. END.
Pseudo code 3.2: Dependency Tree Generation
1. INPUT: Extracted artefacts;
2. StartElement (String uri, String localName, String tagName, Attributes attr);
3. DefaultMutableTreeNode current = new;
4. DefaultMutableTreeNode(tagName);
5. Base.add(current);base = current;
6. For (int i = 0; i < attr.getLength(); i++) {;
7. DefaultMutableTreeNode currentAtt = new;
8. DefaultMutableTreeNode(attr.getLocalName(i) + “=” + attr.getValue(i));
9. Base.add(currentAtt);
10. EndElement(String namespace uri, String localName, String qName);
11. Base = (DefaultMutableTreeNode) base.getParent();
12. Main(String[] args) {;
13. TreeViewer = new XMLTreeViewer();
14. TreeViewer.xmlSetUp();
T15. TreeViewer.createUI().
Pseudo code 3.3: Test Case Generation
1. INPUT: Dependency Tree;
2. Create String currentTestCase;
3. Set depthCounter = item 1 on ElementList;
4. Create String ArrayList names testCase;
5. FOR each element in ElementList, DO;
6. IF next element is a child of the current element THEN;
7. Add current element’s name to currentTestCase;
8. ELSE IF next element and current element are siblings (same level), THEN;
9. Add currentTestCase + current element’s name to testCase;
10. Add currentTestCase + next element’s name to testCase;
11. Skip the next element;
12. ELSE IF next element is a sibling to current element’s parent, THEN;
13. Add currentTestCase + current element’s name to testCase;
14. CurrentTestCase = testCase of current element’s parent;
15. END ELSE IF;
16. END FOR;
17. Locate testCase with the highest weight (testCase which is the one whose

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 262 Journal of Software Engineering and Applications

sum of children’s weight is greatest; usually the one with highest number of child
nodes);

18. Output result;
19. END.

4. Experimental Setup

Some diagrams were drawn in ArgoUML for a software application. These dia-
grams were saved in XMI file extensions and uploaded in the parser. The aim
here is to see whether the parser is able to correctly extract the total numbers of
artefacts as contained in the XMI file. Then, the total number of correctly ex-
tracted artefacts is compared to the total numbers of artefacts contained in the
XMI source file to ascertain percentage level of accuracy. Similarly, the extracted
artefacts are converted into a dependency tree. Finally, the tree is traversed to
generate test cases. The generated test cases were analyzed in terms of test cov-
erage criteria.

Results and Discussion

Evaluation of the proposed technique was conducted based on accuracy and
coverage criteria. Accuracy for this experiment is taken as the number of arte-
facts correctly retrieved or generated divided by the total number of existing
relevant artefacts while coverage criteria is given as the number of nodes and
edges visited during the traversal operation divided by the total number of ex-
isting nodes and edges. The formula for calculating accuracy is depicted in
Equation (1).

()
()

TP TN
Accuracy

TP TN FP FN
+

=
+ + +

 (1)

where:
• True Positive (TP): Correctly identified Node.
• False Positive (FP): Incorrectly identified Nodes.
• True Negative (TN): Correctly identified Edges.
• False Negative (FN): Incorrectly identified Edges.

The main idea behind the efficient extraction and generation processes lies in
the optimization of the proposed pseudo codes which was aimed at reducing
false classifications that culminates in erroneous extractions and generations re-
spectively. As seen from the results, the proposed approach was accurately able to
extract complete information from the XMI file (Table 1) which tallied with the
number of elements in the source file. Furthermore, the percentage of coverage
criteria was calculated and from the results displayed in Table 2, all the nodes
and edges were fully visited during the traversal operation giving rise to 99.01%
coverage. The coverage criteria results show that, test cases were correctly gener-
ated with respect to the number of visited nodes and edges. From the results dis-
played in Table 1 and Table 2, it is easy to conclude that, the extracted artefacts

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 263 Journal of Software Engineering and Applications

Table 1. Results of the proposed approach.

XMI file of
Diagrams

Total
Number of

Relevant
Artefacts

Number of
Correctly
Extracted
Artefacts

Number of
Correctly
Generated
Test cases

TP FP TN FN
Accuracy

(%)

Activity 30 30 28 20 0 10 0 100.0

Component 28 28 26 18 0 7 0 100.0

Class 32 32 29 29 0 2 1 96.88

Sequence 39 39 37 34 0 4 1 97.43

State chart 46 41 45 38 1 6 1 95.65

Use case 34 34 29 25 0 7 2 94.12

Overall 97.35

Table 2. Coverage criteria.

XMIs of software
applications

Number of Nodes
Visited

Number of Edges
Visited

Coverage Criteria
(%)

Activity 20 10 100.0

Component 18 10 100.0

Class 25 7 100.0

Sequence 34 5 100.0

State chart 37 9 100.0

Use case 25 7 94.12

Overall 99.01

are entirely in agreement with the contents of the XMI file. The generated test
cases were based on full-coverage criteria as defined for the proposed approach
with reduced computation time and generation of best test path as seen in Fig-
ure 2. In other words, test cases were generated based on all the elements and
descriptive links or attributes of the various XMI file. It is worthy to note that,
the test cases generated by the proposed approach were comprehensive and has
the capacity of enhancing acceptance test.

5. Conclusion and Future Work

In software development, models are used to visualize user’s requirements which
begin from planning to implementation stages of the system development life
cycle phases. The modeling diagrams are also used to provide a glimpse of sys-
tem functionalities to clients or users. They offer an overview of what is expected
to be coded by the developer or programmer; enhances the documentation of
system behaviour, operating procedures, and helps in clarifying the requirements
to undergo the test. Model-based testing has caught the attention of most testing
engineers because testing is performed based on the specified requirements that
are articulated via a modeling diagram. A parser was developed to read XMI files

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 264 Journal of Software Engineering and Applications

Figure 2. Prototype tool implementation.

or extract the information contained in the file to generate test cases. This tech-
nique basically utilizes an Application Programming Interface (API) to form an
in-memory tree representation of the XMI tags that provides all the elements,
transitions, entities, relationships, and sequences of events that are traversed in
the process. The parser was implemented with Java programming language. The
parsed XMI files serve as input for generating test cases. Furthermore, adequate
test coverage criteria were utilized during test case generation. As a result, the
entire test paths involved from top to bottom of the nodes of the tree are visited
exactly once. The reliability of the generated test cases depends on the com-
pleteness of the information extracted from the nodes and edges which was
achieved in this research. The nodes store information such as events between
two or more objects or entities, the sending object and receiving object as well as
the descriptions of attributes. In the future, it will be necessary to test the pro-
posed approach for scalability with models of ultra-large-scale systems.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

https://doi.org/10.4236/jsea.2021.146015

O. Achimugu et al.

DOI: 10.4236/jsea.2021.146015 265 Journal of Software Engineering and Applications

References
[1] Li, X., He, T. and Xiong, J. (2013) Extenics-Based Test Case Generation for UML

Activity Diagram. Procedia Computer Science, 17, 1186-1193.
https://doi.org/10.1016/j.procs.2013.05.151

[2] Jagtap, S., Gawade, V., Pawar, R., Shendge, S. and Avhad, P. (2016) Generate Test
Cases From UML Use Case and State Chart Diagrams. International Research
Journal of Engineering and Technology, 3, 873-881.

[3] Shanthi, A.V.K. and Kumar, D.G.M. (2011) Automated Test Cases Generation for
Object Oriented Software. Indian Journal of Computer Science and Engineering, 2,
543-546.

[4] Sawant, V. and Shah, K. (2011) Construction of Test Cases from UML Models. In:
Shah, K., Lakshmi Gorty, V.R. and Phirke, A., Eds., Technology Systems and Man-
agement, Springer, Berlin, Heidelberg, 61-68.
https://doi.org/10.1007/978-3-642-20209-4_9

[5] Pachauri, A. (2013) Automated Test Data Generation for Branch Testing Using
Genetic Algorithm: An Improved Approach Using Branch Ordering, Memory and
Elitism. Journal of Systems and Software, 86, 1191-1208.
https://doi.org/10.1016/j.jss.2012.11.045

[6] Anand, S., Burke, E., Chen, T.Y., Clark, J., Cohen, M.B., Grieskamp, W. and Zhu, H.
(2013) An Orchestrated Survey on Automated Software Test Case Generation. The
Journal of Systems and Software, 86, 1978-2001.
https://doi.org/10.1016/j.jss.2013.02.061

[7] Kaur, G. and Bawa, S. (2013) A Survey of Requirement Prioritization Methods. In-
ternational Journal of Engineering, Research and Technology, 2, 958-962.

[8] Kaur, A. and Vig, V. (2018) Automatic Test Case Generation through Collaboration
Diagram: A Case Study. International Journal of Systems Assurance Engineering
and Management, 9, 362-376. https://doi.org/10.1007/s13198-017-0675-8

[9] Septian, I., Alianto, R.S., and Gaol, F.L. (2017) Automated Test Case Generation
from UML Activity Diagram and Sequence Diagram Using Depth First Search Al-
gorithm. Procedia Computer Science, 116, 629-637.
https://doi.org/10.1016/j.procs.2017.10.029

[10] Shah, S.A.A., Shahzad, R.K., Bukhari, S.S.A. and Humayun, M. (2016) Automated
Test Case Generation Using UML Class & Sequence Diagram. British Journal of
Applied Science and Technology, 15, 1-12.
https://doi.org/10.9734/BJAST/2016/24860

[11] Swain, R., Panthi, V., Behera, P.K. and Mohapatra, D.P. (2012) Automatic Test Case
Generation from UML State Chart Diagram. International Journal of Computer
Applications, 42, 26-36. https://doi.org/10.5120/5705-7756

[12] Sahoo, R.K., Derbali, M., Jerbi, H., Van Thang, D., Kumar, P. and Sahoo, S. (2021) Test
Case Generation from UML-Diagrams Using Genetic Algorithm. CMC-Computers
Materials & Continua, 67, 2321-2336.
https://doi.org/10.32604/cmc.2021.013014

[13] Arora, P.K. and Bhatia, R. (2018) Agent-Based Regression Test Case Generation
using Class Diagram, Use Cases and Activity Diagram. Procedia Computer Science,
125, 747-753. https://doi.org/10.1016/j.procs.2017.12.096

https://doi.org/10.4236/jsea.2021.146015
https://doi.org/10.1016/j.procs.2013.05.151
https://doi.org/10.1007/978-3-642-20209-4_9
https://doi.org/10.1016/j.jss.2012.11.045
https://doi.org/10.1016/j.jss.2013.02.061
https://doi.org/10.1007/s13198-017-0675-8
https://doi.org/10.1016/j.procs.2017.10.029
https://doi.org/10.9734/BJAST/2016/24860
https://doi.org/10.5120/5705-7756
https://doi.org/10.32604/cmc.2021.013014
https://doi.org/10.1016/j.procs.2017.12.096

	An Improved Approach for Generating Test Cases during Model-Based Testing Using Tree Traversal Algorithm
	Abstract
	Keywords
	1. Introduction
	2. Related Works
	3. Proposed Approach
	4. Experimental Setup
	Results and Discussion

	5. Conclusion and Future Work
	Conflicts of Interest
	References

