
Journal of Software Engineering and Applications, 2020, 13, 143-160
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2020.137010 Jul. 17, 2020 143 Journal of Software Engineering and Applications

Software Effort Prediction Using Ensemble
Learning Methods

Omar H. Alhazmi, Mohammed Zubair Khan

Department of Computer Science, College of Computer Science and Engineering Taibah University, Madinah, KSA

Abstract
Software Cost Estimation (SCE) is an essential requirement in producing
software these days. Genuine accurate estimation requires cost-and-efforts
factors in delivering software by utilizing algorithmic or Ensemble Learning
Methods (ELMs). Effort is estimated in terms of individual months and
length. Overestimation as well as underestimation of efforts can adversely af-
fect software development. Hence, it is the responsibility of software devel-
opment managers to estimate the cost using the best possible techniques. The
predominant cost for any product is the expense of figuring effort. Subse-
quently, effort estimation is exceptionally pivotal and there is a constant need
to improve its accuracy. Fortunately, several efforts estimation models are
available; however, it is difficult to determine which model is more accurate
on what dataset. Hence, we use ensemble learning bagging with base learner
Linear regression, SMOReg, MLP, random forest, REPTree, and M5Rule. We
also implemented the feature selection algorithm to examine the effect of
feature selection algorithm BestFit and Genetic Algorithm. The dataset is
based on 499 projects known as China. The results show that the Mean Mag-
nitude Relative error of Bagging M5 rule with Genetic Algorithm as Feature
Selection is 10%, which makes it better than other algorithms.

Keywords
Software Cost Estimation (SCE), Ensemble Learning, Bagging, Linear
Regression, SMOReg, REPTree, M5 Rule

1. Introduction

For software developers the quality of a software product is vital, and software
cost estimation efforts help developers to maintain good quality. Software cost
estimation in terms of the persons-months and time to complete the project is

How to cite this paper: Alhazmi, O.H. and
Khan, M.Z. (2020) Software Effort Predic-
tion Using Ensemble Learning Methods.
Journal of Software Engineering and Ap-
plications, 13, 143-160.
https://doi.org/10.4236/jsea.2020.137010

Received: June 4, 2020
Accepted: July 14, 2020
Published: July 17, 2020

Copyright © 2020 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2020.137010
https://www.scirp.org/
https://doi.org/10.4236/jsea.2020.137010
http://creativecommons.org/licenses/by/4.0/

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 144 Journal of Software Engineering and Applications

crucial. Though software cost estimation plays a vital role in the field of software
development, there have been minor developments in this area in the last few
decades. The most important reason for the failure of a project is poor cost esti-
mation. Even though there are many efforts models available, novel methods for
improving the accuracy of projects are still needed. So, the development of a
software efforts prediction model is motivation to estimate software efforts as
accurately as possible. Software cost estimation predictions are used to forecast
the cost of software. Machine Learning methods use the historical dataset for
predicting the actual cost for future software. The fundamental purpose for us-
ing Machine Learning systems is to become familiar with the inalienable exam-
ples of feature value and their relations with venture endeavours (project efforts)
and anticipate the efforts for new software projects.

The ML approaches have been utilized as a commendation for both master
judgment and algorithmic models in the past decade. These methodologies in-
corporate Artificial Neural Networks (ANN), Fuzzy rationale, bagging, boosting,
decision trees, Support Vector Machine (SVM) and so on. The upside of these
methodologies is that they show the mind-boggling connection between efforts
and free factor. It is utilized for those troublesome issues where an outcome
must be gained from authentic historical information. In the literature many
machine learning approaches have been found, though it is very difficult to say
which approach is better.

Software efforts estimation plays a very vital job in calculating the cost for de-
veloping the software project. The understanding and controlling of basic factors
that influence programming cost is an exceptionally fundamental job in software
project management. Software measurements are the software product measures
and qualities. Since software estimations are basic in software engineering, there
have been numerous investigations over the most recent four decades to give a
thorough view of software’s complex nature and to utilize it in software cost es-
timation and software examination. Despite the fact that the principal software
measurements (metrics) book were published in 1976 [1], the historical back-
drop of software measurements explorations dates to the 1960s, when the lines
of code (LOC) metric was utilized to quantify the profitability of the developer
and software complexity and quality. LOC was utilized as a principle key in ef-
forts prediction for some forecast models, for example, [2] [3].

In the mid-1970s, the enthusiasm for software design complexity expanded
when diagram hypothetical unpredictability was discussed by McCabe in [4]. He
built up a scientific strategy for program modularization. A few meanings of the
graph hypothesis were utilized so as to measure and control the quantity of ways
through a software program known as the Cyclomatic Complexity metric. At
that point this metric had been utilized for complexity estimations rather than
size metrics. In 1984, Basili and Perricone [5] found a connection between
McCabe’s Cyclomatic Complexity and module sizes. They found that enormous
modules have high intricacy.

Fei, Zhi and Chao [6] proposed an enhancement for the Halstead complex

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 145 Journal of Software Engineering and Applications

nature measurements. They added weights to the Halstead metrics. They gave
various operators and operands various weights. Six object-oriented design met-
rics items were created and assessed by Chidamber and Kemerer in 1994 [7].
These items are called CK measurements. The CK measurements that came
about because of Chidamber and Kemerer are weighted methods per class
(WMC), depth of inheritance tree (DIT), number of children (NOC), coupling
between object classes (CBO), response for a class (RFC), and lack of cohesion in
methods (LCOM).

As per Smith, Hale and Parish [8], 4 task factors—force, concurrency, frag-
mentation and team size—have been considered for their effect on software ef-
forts developments. Every one of these elements improved the estimations of the
middle of the road COCOMO I model. These elements alongside un-balanced
capacity focuses help in developing a superior effort estimation model which
brings about improved predictive capacity when contrasted with COCOMO
model.

Tosun, Turhan and Bener [9] proposed another novel methodology for im-
proving the estimation precision with the assistance of another element weight
assignment algorithm which gives better outcomes when contrasted with past
research. Here a factual procedure called Principal Component Analysis (PCA)
was used to actualize the two weighted task heuristics. Pahariya, Ravi, Carr and
Vasu [10] proposed new computational knowledge sequential hybrid architec-
tures including programming and Group Method of Data Handling (GMDH).
This incorporates information mining strategies, for example, Multi-Layer Re-
gression (MLR), Radial Basis Function (RBF), etc. [10]. Different investigations of
ANN models for anticipating SCE are [10]-[17]. Andreou and Papatheocharous
[18] utilized Fuzzy Decision Trees (FDTs) for foreseeing required efforts and code
size in cost estimation as though solid proof about those fluffy changes of cost
drivers added to improving the forecast procedure. More researches on this
topic can be found in [19]-[25]. Reddy and Raju [26] improved fuzzy method-
ology for software efforts of the COCOMO utilizing the Gaussian membership
function, which performs superior to the trapezoidal capacity to display cost
drivers. In this paper, we describe COCOMO models, then explain the roles and
application of machine learning techniques like Linear Regression, Support
Vector Machine (SMOReg), Neural networks, MRules 5, REPTree and Random
Forest. Then we apply ensemble Learning based on these classifiers. However,
we compare the outcomes of these methods with results in given actual and es-
timated efforts.

As we have seen, software vaults or datasets are generally used to acquire in-
formation on which efforts estimation is finished. Yet software stores contain
data from heterogeneous ventures. Customary utilization of regression equations
to derive a single mathematical model results in poor performance [27]. Gallogo
[27] utilized Data clustering to tackle this issue. In this study, the models are
predicted and validated using statistics and ensemble Learning methods. Com-
parison with previous research is also done. The result shows that Bagging M5

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 146 Journal of Software Engineering and Applications

rule with Genetic algorithm for feature selection shows MMRE 10%. Here we try
to answer the following research questions.

RQ1. What is the impact of BESTFIT and GENETIC Algorithms for Feature
Selection for software efforts Prediction on two datasets when the performance
is measured using four metrics, MMRE (mean magnitude of relative error) and
prediction at levels 0.25, 0.50 and 0.75 respectively?

RQ2. What is the performance of ensemble Learning Techniques? We deter-
mine which ML systems give the best and worst outcomes relating to each data-
set explored in the investigation.

2. Background
2.1. Dataset

In this study we have taken the China dataset for software cost estimation from
the Promise Data repository [28]. The China Dataset is comprised of 19 features:
18 autonomous variables and 1 ward variable. It has 499 instances correspond-
ing to 499 projects. The clear insights of Chinese informational collection are in
the appendix in Table 1. A set of autonomous variables chooses the estimation
of the needy variable. The needy variable is efforts right now and the independ-
ent factors might be removed, as they may have little impact on predicting the

Table 1. China data set statistics.

Serial Number Variable Min Max Mean Standard Deviation

1. ID 1 499 250 144

2. AFP 9 17518 487 1059

3. Input 0 9404 167 486

4. Output 0 2455 114 221

5. Enquiry 0 952 62 105

6. File 0 2955 91 210

7. Interface 0 1572 24 85

8. Added 0 13,580 360 830

9. Changed 0 5193 85 291

10. Deleted 0 2657 12 124

11. PDR_AFP 0.3 83.8 12 12

12. NPDR_AFP 0.4 101 13 14

13. NPDU_UFP 0.4 108 14 15

14. Resource 1 4 1 1

15 PDR_UFP 0.3 83.8 12 12

16. Dev. Type 0 0 0 0

17. Duration 1 84 9 7

18. N_effort 31 54620 4278 7071

19. Efforts 26 54260 3921 6481

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 147 Journal of Software Engineering and Applications

efforts, consequently making the model much less difficult and productive. It has
been seen from the China informational index that independent variables ID
and Dev.Type do not play any role in deciding the value of effort. Consequently,
variables ID and Dev are autonomous. Here we perform Cross-validation, a
standard evaluation method that is an orderly method for running repeated
percentage splits. It consists of partitioning a dataset into 10 pieces (“folds”); at
that point hold out each piece for testing and train on the 9 staying together.
This gives 10 assessment results, which are the average.

2.2. Feature Selection Method

There are different strategies utilized for diminishing information dimensional-
ity. We have utilized the Feature sub-selection procedure given in the WEKA
tool [29] to diminish the quantity of the independent variable. Applying
CfsSubsetEval with BestFit feature selection method reduces 19 features to 7
features. When Genetic Algorithm is used for feature selection, 19 features are
reduced to 9. The best combination of independent variables was searching
through all possible combinations of variables. The dependent variable is Efforts.
Software development efforts are defined as the work done by the product pro-
vider from detail until delivery estimated as far as hours.

2.3. Performance Measures

Mean Magnitude of relative error (MMRE) (or mean absolute relative error)
currently utilizes the most effective and standard measures for estimation exact-
ness, for example, MMRE and PRED at power levels 0.25, 0.50 and 0.75, respec-
tively.

In order to assess capability, we use a common criterion called Mean Magni-
tude of Relative Error (MMRE) [30] [31] [32] [33].

1

1MMRE k i i
i

i

E A
k A=

−
= ∑ (1)

here, Ei represents the estimated value for a data point, Ai represents the actual
value of each data point, and k is the total number of data points. Here, Pre-
dict(A) is calculated as follows:

()Predict mA
k

= (2)

Mean Relative Error (MRE) is denoted by (m) and includes the values when
data points have less than or equal to A error. It is common to consider (25%) as
the reference value [32].

2.3.1. Relative Absolute Error
Relative Absolute Error (RAE) calculates the accuracy of a predictive model.
RAE can be used in machine learning. Furthermore, RAE is expressed as the ra-
tio; it computes the mean error (residual) of errors produced by a trivial or naive
model. The model is considered non-trivial if the result is less than 1. This is the
model for a data set (k):

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 148 Journal of Software Engineering and Applications

1

1

n
ki ii

k n
ii

E D
R

D D
=

=

−
=

−
∑
∑

 (3)

where Ei’s is prediction, Di’s is actual values, and Rae is the measure of forecast
accuracy. D is the mean of Di’s; n is the size of the dataset (in data points) [32]
[33] [34].

2.3.2. Root Relative Squared Error
Root relative squared error (RRSE) takes the average errors, squares them and
normalizes the average. Then, in order to maintain the error to the same dimen-
sion, the square root is calculated. In the following equation, Ei of an individual
model i is shown:

()

()

2

1
2

1

n
ki ij

k n
jj

E D
R

D D
=

=

−
=

−

∑
∑

 (4)

where Ei’s is prediction, Di’s is actual values, Rae is the measure of forecast accu-
racy, D is the mean of Di’s, and n is the size of the dataset (in data points) [32]
[33] [34].

2.3.3. Relative Absolute Error
Relative Absolute Error (RAE) calculates the accuracy of a predictive model.
RAE can be used in machine learning. Furthermore, RAE is expressed as a ratio
that computes the mean error (residual) of errors produced by a trivial or naive
model. The model is considered non-trivial if the result is less than 1. This is the
model for a data set (k):

1

1

n
ki ii

k n
ii

E D
R

D D
=

=

−
=

−
∑
∑

 (5)

where Ei’s is prediction, Di’s is actual values, Rae is the measure of forecast accu-
racy. D is the mean of Di’s, and n is the size of the dataset in data points.

2.3.4. Root Relative Squared Error
Root relative squared error (RRSE) [32] [33] [34] takes the average errors,
squares them and normalizes the average. Then, in order to maintain the error
to the same dimension, the square root is calculated. In the following equation,
the Ei of an individual model i is shown:

()

()

2

1
2

1

n
ki ij

k n
jj

E D
R

D D
=

=

−
=

−

∑
∑

 (6)

where Ei’s is prediction, Di’s is actual values, and Rae is the measure of forecast
accuracy. D is the mean of Di’s; n is the size of dataset in data points.

3. Machine Learning Techniques

Right now, we are utilizing machine learning methods to predict effort. We have

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 149 Journal of Software Engineering and Applications

used ensemble learning method bagging with base Learner Linear Regression,
Support Vector Machine, Neural Network (MLP), MRules 5, REPTree, and
Random Forest.

3.1. Linear Regression

Linear regression (LR) is widely used for predictive analysis. Basically, LR meas-
ures the degree to which variables are linearly related. The formula for linear re-
gression is:

0 1 1 2 2 n ny x x xβ β β β= + + + + (7)

Furthermore, multiple linear regression (MLR) is an empirical model that
utilizes data from past results. According to Liung and Fan MLR is an empirical
model that utilizes data from past results in order to measure current results
[33].

0 1 1 2 2 .i i i n i ny x x xβ β β β= + + + + +  (8)

where yi is the dependent variable, xi is the explanatory variable, β0 is the
y-intercept (constant), βp is slope coefficient for each explanatory variable, and
 is the model’s residuals (errors).

3.2. Multilayer Perception (MLP)

A multilayer perceptron (MLP) is used for regression; however, in MLP an in-
termediate layer (hidden layer) is used instead of using input as feed. MLP has
several layers of nodes; it should have at least three layers of nodes: an input, a
hidden layer and an output layer. MLP is a logistic model that can be in various
depth level based on the number of intermediate layers, as shown in these equa-
tions: () ()tanhi iy v v= and () 1 e iv

iy v −= + . Here, y(vi) is the output of the ith
node (neuron), and vi is the weighted sum of the input connections

3.3. Sequential Minimal Optimization Regression

Sequential minimal optimization (SMO) is useful when applied to solve quad-
ratic programming (QP) problem that comes out as a result of applying the
training of support-vector machines. When looking at a binary classification
problem with a dataset pairs (x1, y1), (x2, y2), ..., (xn, yn), where xi is an input vec-
tor and yi can be a label of either (−1) or (+1). A soft-margin support vector
machine is then trained by solving a quadratic programming problem, which is
expressed in form:

()1 1 1

1 ,
2

n n n
i i ji i j i j i jmax y y K x xα α α α
= = =

= −∑ ∑ ∑ (9)

where K(xi, xj) is the kernel function;α’s are Lagrange multipliers, (Platt 1998).
However, it must satisfy the two conditions 0 i Cα≤ ≤ (for 1,2, ,i n= ) and

1 0i
n

ii yα
=

=∑ (here C is a support-vector machine hyperparameter).

3.4. REPTree

REPTree is based on regression tree logic. It basically creates a number of trees;

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 150 Journal of Software Engineering and Applications

the process is done on different iterations. Then, REPTree selects the best one
from all generated trees. The selection will be considered representative. Then
the mean square error is applied on the trees’ prediction [35].

3.5. Decision Tree

Decision tree is a regression methodology. Basically, it provides an easily under-
standable modelling technique. Moreover, even if there are some imperfections
in the data, such as missing values, it can predict patterns to overcome such is-
sues. Decision tree is an approach that uses continuous recursive partitioning
until it reaches classification of a dataset data. It can be of two types, breadth
first (BF) or depth first (DF). In both a greedy algorithm is typically applied. One
drawback of decision trees is overfitting of data samples [35].

3.6. Bagging

Bagging is a method to stabilize the accuracy of machine learning. Bagging helps
reduce the issue of overfitting found in some regression methodologies such as
decision tree. Hence, it is a method that iteratively samples from a certain data
set according to a rectangular probability distribution with substitution [32] [35]
[36]. In Bagging, each sample has the exact same size as the original data. Here,
we should indicate that in sampling with replacement there is a chance that
some dataset instances may never get a chance to be selected while others can be
selected multiple times.

3.7. Random Decision Forest (RDF)

Random decision forest (RDF) was first introduced by Ho [35]. Random deci-
sion forest (RDF) corrects the problem of overfitting found in decision trees.
Moreover, RDF is a learning scheme for regression; in RDF multiple decision
trees are built. During the training of a model decision trees are built, and even-
tually an average prediction is reached. Moreover, the RDF training process for
random forests uses the bagging technique.

4. Experiment Design

In the literature we have found some limitations and from our experiment, we
discovered that most researchers ignore the steps in their Pre-processing. Before
pre-processing remove the missing and noisy data from the dataset. Besides
these limitations, attribute selection is another important limitation that directly
affects the memory use and also affects the results. So, to overcome these limita-
tions we follow these basic steps (see Figure 1).
○ Input as a dataset
○ Preprocess the data:
 by filtering out noisy and missing data,
 by conversion,
 by removing outlier.

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 151 Journal of Software Engineering and Applications

Figure 1. Experiment setup for software cost efforts prediction.

○ Apply Feature Selection Method (CfsSubsetEval: 1) Genetic Algorithm, 2)

BestFit)
○ Ensemble Learning Methods
○ Computing the results

5. Results

Figure 2(a) shows the predicted effort compared to the actual effort using the
China dataset using best fit algorithm and RF bagging. Results show a strong
correlation between predicted and actual. Figure 2(b) also shows the same but
by applying REPTree. Figure 2(c) shows the results when MRule 5 is applied.
Next, Figure 2(d) shows the result when using LR Bagging, Figure 2(e) when
using SMOReg and Figure 2(f) when applying MLP.

Figures 3(a)-(f) show the same prediction experiment when the same six
techniques are applied when genetic algorithms are applied.

The results are shown in Figure 4, and in Table 2 and Table 3. Our results of
effort estimation model predicted using bagging M5 rule with genetic Algorithm
Feature selection method was better than all the other 12 methods examined in
our study. This shows that bagging M5 rule has very good results for software
efforts. The MMRE is 10% while Pred (25), Pred (50) and Pred (75) have 97%,
98% and 99%, respectively. This shows that performance of Bagging M5 rule is
excellent, even when we compare our results in existing research. Table 2 also
shows that the performance of Ensemble learning is best among all. Table 3
shows that the correlation of actual and predicted values is also very high. The
charts in Figure 5 and Figure 6, for the real qualities and the qualities as pre-
dicted by the specific model, appear on the Y-axis and compare to the 499 Pro-
jects. The “‘blue” band displays the bend for the real values, though the “red”
band introduces the band for the predicted qualities. The closer the real and

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 152 Journal of Software Engineering and Applications

(a)

(b)

(c)

(d)

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 153 Journal of Software Engineering and Applications

(e)

(f)

Figure 2. Bestfit feature selection using (a) Bagging RF; (b) Bagging REPTree; (c)
M5Rule; (d) Bagging LR; (e) Bagging SMOReg; (f) Bagging MLP.

Table 2. Performance measures by bagging.

Feature
Selection Algorithm

ML Algorithm MMRE PRED 25 PRED 50 PRED 75

BEST FIT

Bagging LR 0.147558 0.88 0.946667 0.98

Bagging SMOReg 0.126655 0.911824 0.963928 0.983968

Bagging MLP 0.176172 0.8 0.906667 0.96

Bagging MRules5 0.10263 0.97333 0.98 0.99333

Bagging REPTree 0.153349 0.88 0.95333 0.98

Bagging RF 0.251015 0.78 0.88 0.93333

Genetic Algorithm

Bagging RF 0.318897 0.74 0.82 0.9

Bagging REPTree 0.152987 0.88 0.95333 0.98

Bagging M5 Rule 0.10006 0.97333 0.98 0.99333

Bagging LR 0.193831 0.8133 0.9133 0.946667

Bagging MLP 0.157302 0.8733 0.966667 0.966667

Bagging SMOReg 0.128885 0.906667 0.966667 0.973333

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 154 Journal of Software Engineering and Applications

(a)

(b)

(c)

(d)

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 155 Journal of Software Engineering and Applications

(e)

(f)

Figure 3. Genetic feature selection using (a) Bagging RF; (b) Bagging REPTree; (c)
M5Rule; (d) Bagging LR; (e) Bagging MLP; (f) SMOReg.

Figure 4. Comparing MMRE genetic vs. MMRE best fit.

Figure 5. Best fit feature selection comparison.

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 156 Journal of Software Engineering and Applications

Figure 6. Genetic algorithm feature selection.

Table 3. Comparative MMRE and PRED analysis.

Results Algorithms
MMRE-genetic

algorithm
MMRE-bestfit

PRED (25) GA/
Pred (25) BF

Our

Bagging RF 0.251015 0.147558 0.8133/0.78

Bagging REPTree 0.153349 0.126655 0.88/0.88

Bagging M5 Rule 0.10263 0.176172 0.9733/0.9733

Bagging LR 0.14755777 0.10263 0.8133/0.88

Bagging MLP 0.176172 0.153349 0.87/0.80

Bagging SMOReg 0.126655 0.251015 0.9066/0.9118

[8]
Augmented COCOMO 0.65 0.65 Pred (20) 0.3167

Parsimonious COCOMO 0.64 0.304

[27] Clustering 0.0103 0.0103 Pred (30) 0.356

[31]

Regressive 0.623 0.623 -

ANN 0.352 0.352 -

Case Based Reasoning 0.362 0.362 -

[20]

SVR 0.165 0.165 0.8889

RBF 0.1907 0.1906 0.7222

Linear Regression 0.233 0.233 0.7222

[33]

ANN 0.900 0.900 0.22

Classification and
Regression Tree

0.770 0.770 0.26

Ordinary Least
Square Regression

0.720 0.720 0.33

Adjusted analogy-based
estimation using

Euclidean distance
0.3800 0.3800 0.57

Adjusted analogy-based
estimation using

Manhattan distance
0.360 0.360 0.52

Adjusted analogy-based
estimation using

Minkowski distance
0.430 0.430 0.61

https://doi.org/10.4236/jsea.2020.137010

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 157 Journal of Software Engineering and Applications

predicted bands, the lower the error and the better the model. The charts show
that the real and the predicted qualities are exceptionally near one another.

Answer to Research Questions
RQ1: Impact of feature selection algorithm on different ensemble learning al-

gorithms.
If we look at Table 2 and Table 3 when we use BestFit feature selection the

MMRE is minimum in all cases. If we check the PRED 0.25, 0.50 and 0.75 the
value is high; this shows that the performance of all algorithms is best, while by
using genetic algorithm for feature selection the value of MMRE is increased and
the values of PRED 0.25, 0.50 and 0.75 are decreased so the impact of feature se-
lection is very high in this study.

RQ2. What is the performance of ensemble Learning Techniques?
The performance of bagging M5Rule is best among all the algorithms, even

for feature selection cases; at the same time, they are highly correlated in the
comparative analysis available in Table 3.

6. Conclusion

In this study we perform comparative analysis among twelve ensemble methods
for predicting the efforts. We use the Promise data set repository for predictions.
The data set contains nineteen (19) features so we use two feature selection
methods named BestFit and Genetic Algorithm on six ensemble learning algo-
rithms. The results show that the Genetic Algorithm feature selection for the
bagging M5 rule is the best method for predicting efforts with MMRE value 10%,
and PRED (25), PRED (50) and PRED (75) have values 97%, 98% and 99%, re-
spectively. In the future researchers can use Ensemble Learning with different
feature selection methods for predicting efforts estimation. Hence, the ensemble
learning method shows ability for predicting efforts.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Gilb, T. (1976) Software Metrics. Chartwell-Bratt, Learning.

[2] Boehm, B.W. (1981) Software Engineering Economics. Prentice-Hall, Englewood
Cliffs.

[3] Putnam, L.H. (1978) A General Empirical Solution to the Macro Software Sizing
and Estimating Problem. IEEE Transactions on Software Engineering, 4, 345-361.
https://doi.org/10.1109/TSE.1978.231521

[4] McCabe, T.J. (1976) A Complexity Measure. IEEE Transactions on Software Engi-
neering, SE-2, 308-320. https://doi.org/10.1109/TSE.1976.233837

[5] Basili, V.R. and Perricone, B.T. (1984) Software Errors and Complexity: An Empir-
ical Investigation. Communications of the ACM, 27, 42-52.
https://doi.org/10.1145/69605.2085

https://doi.org/10.4236/jsea.2020.137010
https://doi.org/10.1109/TSE.1978.231521
https://doi.org/10.1109/TSE.1976.233837
https://doi.org/10.1145/69605.2085

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 158 Journal of Software Engineering and Applications

[6] Fei, Y.Y., Zhi, Z. and Chao, Z.S. (2004) Improvements about Halstead Model in
Software Science. Journal of Computer Applications, 130-132.

[7] Chidamber, S.R. and Kemerer, C.F. (1994) Metrics Suite for Object-Oriented De-
sign. IEEE Transactions on Software Engineering, 20, 476-493.
https://doi.org/10.1109/32.295895

[8] Smith, R.K., Hale, J.E. and Parrish, A.S. (2001) An Empirical Study Using Task As-
signment Patterns to Improve the Accuracy of Software Effort Estimation. IEEE
Transactions on Software Engineering, 27, 264-271.
https://doi.org/10.1109/32.910861

[9] Tosun, A., Turhan, B. and Bener, A.B. (2009) Feature Weighting Heuristics for
Analogy-Based Effort Estimation Models. Expert Systems with Applications, 36,
10325-10333. https://doi.org/10.1016/j.eswa.2009.01.079

[10] Pahariya, J.S., Ravi, V., Carr, M. and Vasu, M. (2010) Computational Intelligence
Hybrids Applied to Software Cost Estimation. International Journal of Computer
Information Systems and Industrial Management Applications, 2, 104-112.

[11] Idri, A., Abran, A. and Mbarki, S. (2004) Validating and Understanding Software
Cost Estimation Models Based on Neural Networks, Software Process and Product
Measurement. International Conference on Information and Communication
Technologies: From Theory to Applications, Damascus, Syria, 23 April 2004, 1-6.

[12] Gharehchopogh, F.S. (2011) Neural Network Application in Software Cost Estima-
tion. International Symposium on Innovations in Intelligent Systems and Applica-
tions (INISTA 2011), Istanbul, 15-18 June 2011, 69-73.
https://doi.org/10.1109/INISTA.2011.5946160

[13] Idri, A., Zakrani, A. and Zahi, A. (2010) Design of Radial Basis Function Neural
Networks for Software Effort Estimation. IJCSI International Journal of Computer
Science Issues, 7, 11-17.

[14] Attarzadeh, I. and Ow, I.S.H. (2010) Proposing a New Software Cost Estimation
Model Based on Artificial Neural Networks. 2nd International Conference on
Computer Engineering and Technology, Chengdu, 16-18 April 2010, 487-491.
https://doi.org/10.1109/ICCET.2010.5485840

[15] Weckman, G.R., Paschold, H.W., Dowler, J.D., Whiting, H.S. and Young, W.A.
(2010) Using Neural Networks with Limited Data to Estimate Manufacturing Cost.
Journal of Industrial and Systems Engineering, 3, 257-274.

[16] Gunaydin, H.M. and Dogan, S.Z. (2004) A Neural Network Approach for Early
Cost Estimation of Structural Systems of Buildings. International Journal of Project
Management, 22, 595-602. https://doi.org/10.1016/j.ijproman.2004.04.002

[17] Idri, A., Khoshgoftaar, T.M. and Abran, A. (2002) Can Neural Networks be Easily
Interpreted in Software Cost Estimation. 2002 Word Congress on Computational
Intelligence, Honolulu, 12-17 May 2002, 1-8.

[18] Andreou, A.S. and Papatheocharous, E. (2008) Software Cost Estimation Using
Fuzzy Decision Trees. 23rd IEEE/ACM International Conference on Automated
Software Engineering, L’Aquila, 15-16 September 2008, 371-374.
https://doi.org/10.1109/ASE.2008.51

[19] Tadayon, N. (2005) Neural Network Approach for Software Cost Estimation. Pro-
ceedings of the International Conference on Information Technology: Coding and
Computing, Las Vegas, 4-6 April 2005, 1-4.
https://doi.org/10.1109/ITCC.2005.210

[20] Yu, W. and Lee, Y. (2004) Mining of Conceptual Cost Estimation Knowledge with a
Neuro Fuzzy System. Proceedings of ISARC 2004, Session SA 03-05, Jeju, 21-25

https://doi.org/10.4236/jsea.2020.137010
https://doi.org/10.1109/32.295895
https://doi.org/10.1109/32.910861
https://doi.org/10.1016/j.eswa.2009.01.079
https://doi.org/10.1109/INISTA.2011.5946160
https://doi.org/10.1109/ICCET.2010.5485840
https://doi.org/10.1016/j.ijproman.2004.04.002
https://doi.org/10.1109/ASE.2008.51
https://doi.org/10.1109/ITCC.2005.210

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 159 Journal of Software Engineering and Applications

September 2004, 118-124. https://doi.org/10.22260/ISARC2004/0023

[21] Khan, I.R., Alam, A. and Anwar, H. (2009) Efficient Software Cost Estimation Us-
ing Neuro-Fuzzy Technique. National Conference on Recent Developments in
Computing and Its Applications, Delhi, 376-381.

[22] Cheng, M.Y., Tsai, H.C. and Sudjono, E. (2009) Evolutionary Fuzzy Hybrid Neural
Network for Conceptual Cost Estimates in Construction Projects. Information and
Computational Technology, 26th International Symposium on Automation and
Robotics in Construction (ISARC 2009), Austin, 24-27 June 2009, 512-519.
https://doi.org/10.22260/ISARC2009/0040

[23] Huang, S.J., Lin, C.Y. and Chiu, N.H. (2006) Fuzzy Decision Tree Approach for
Embedding Risk Assessment Information in to Software Cost Estimation Model.
Journal of Information Science and Engineering, No. 22, 297-313.

[24] Attarzadeh, I. and Hockow, S. (2010) Improving the Accuracy of Software Cost Es-
timation Model Based on a New Fuzzy Logic Model. World Applied Sciences Jour-
nal, 8, 177-184.

[25] Huang, X., Ho, D., Ren, J. and Capretz, L.F. (2007) Improving the COCOMO Mod-
el using a Neuro-Fuzzy Approach. Applied Soft Computing, No. 7, 29-40.
https://doi.org/10.1016/j.asoc.2005.06.007

[26] Reddy, C.S. and Raju, K. (2009) An Improved Fuzzy Approach for COCOMO’s Ef-
fort Estimation Using Gaussian Membership Function. Journal of Software, 4,
452-459. https://doi.org/10.4304/jsw.4.5.452-459

[27] Gallego, J.J.C., Rodriguez, D., Sicilia, M.A., Rubio, M.G. and Crespo, A.G. (2007)
Software Project Effort Estimation Based on Multiple Parametric Models Generated
through Data Clustering. Journal of Computer Science and Technology, 22,
371-378. https://doi.org/10.1007/s11390-007-9043-5

[28] Boetticher, G., Menzies, T. and Ostrand, T. (2007) PROMISE Repository of Empir-
ical Software Engineering Data. West Virginia University, Department of Computer
Science, Morgantown. http://promise.site.uottawa.ca/SERepository/

[29] Weka. http://www.cs.waikato.ac.nz/ml/weka

[30] Kultur, Y., Turhan, B. and Bener, A.B. (2008) ENNA: Software Effort Estimation
Using Ensemble of Neural Networks with Associative Memory. Proceedings of the
16th ACM SIGSOFT International Symposium on the Foundations of Software En-
gineering, November 2008, 330-338. https://doi.org/10.1145/1453101.1453148

[31] Shepperd, M. and MacDonell, S. (2012) Evaluating Prediction Systems in Software
Project Estimation. Information and Software Technology, 54, 820-827.
https://doi.org/10.1016/j.infsof.2011.12.008

[32] Malhotra, R. and Jain, A. (2011) Software Effort Prediction Using Statistical and
Machine Learning Methods. International Journal of Advanced Computer Science
and Applications, 2, 145-152. https://doi.org/10.14569/IJACSA.2011.020122

[33] Chiu, N.H. and Huang, S.J. (2007) The Adjusted Analogy-Based Software Effort Es-
timation Based on Similarity Distances. The Journal of Systems and Software, 80,
628-640. https://doi.org/10.1016/j.jss.2006.06.006

[34] Ahmed, B.M. (2018) Predicting Software Effort Estimation Using Machine Learning
Techniques. 2018 8th International Conference on Computer Science and Infor-
mation Technology, Amman, 11-12 July 2018, 249-256.
https://doi.org/10.1109/CSIT.2018.8486222

[35] Zubair, K.M. (2020) Particle Swarm Optimisation Based Feature Selection for Soft-
ware Effort Prediction Using Supervised Machine Learning and Ensemble Methods:

https://doi.org/10.4236/jsea.2020.137010
https://doi.org/10.22260/ISARC2004/0023
https://doi.org/10.22260/ISARC2009/0040
https://doi.org/10.1016/j.asoc.2005.06.007
https://doi.org/10.4304/jsw.4.5.452-459
https://doi.org/10.1007/s11390-007-9043-5
http://promise.site.uottawa.ca/SERepository/
http://www.cs.waikato.ac.nz/ml/weka
https://doi.org/10.1145/1453101.1453148
https://doi.org/10.1016/j.infsof.2011.12.008
https://doi.org/10.14569/IJACSA.2011.020122
https://doi.org/10.1016/j.jss.2006.06.006
https://doi.org/10.1109/CSIT.2018.8486222

O. H. Alhazmi, M. Z. Khan

DOI: 10.4236/jsea.2020.137010 160 Journal of Software Engineering and Applications

A Comparative Study. Invertis Journal of Science & Technology, 13, 33-50.
https://doi.org/10.5958/2454-762X.2020.00004.9

[36] Leung, H. and Fan, Z. (2002) Software Cost Estimation. In: Handbook of Software
Engineering and Knowledge Engineering, World Scientific Publishing, Singapore,
307-324.

https://doi.org/10.4236/jsea.2020.137010
https://doi.org/10.5958/2454-762X.2020.00004.9

	Software Effort Prediction Using Ensemble Learning Methods
	Abstract
	Keywords
	1. Introduction
	2. Background
	2.1. Dataset
	2.2. Feature Selection Method
	2.3. Performance Measures
	2.3.1. Relative Absolute Error
	2.3.2. Root Relative Squared Error
	2.3.3. Relative Absolute Error
	2.3.4. Root Relative Squared Error

	3. Machine Learning Techniques
	3.1. Linear Regression
	3.2. Multilayer Perception (MLP)
	3.3. Sequential Minimal Optimization Regression
	3.4. REPTree
	3.5. Decision Tree
	3.6. Bagging
	3.7. Random Decision Forest (RDF)

	4. Experiment Design
	5. Results
	6. Conclusion
	Conflicts of Interest
	References

