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Abstract 
Software Cost Estimation (SCE) is an essential requirement in producing 
software these days. Genuine accurate estimation requires cost-and-efforts 
factors in delivering software by utilizing algorithmic or Ensemble Learning 
Methods (ELMs). Effort is estimated in terms of individual months and 
length. Overestimation as well as underestimation of efforts can adversely af-
fect software development. Hence, it is the responsibility of software devel-
opment managers to estimate the cost using the best possible techniques. The 
predominant cost for any product is the expense of figuring effort. Subse-
quently, effort estimation is exceptionally pivotal and there is a constant need 
to improve its accuracy. Fortunately, several efforts estimation models are 
available; however, it is difficult to determine which model is more accurate 
on what dataset. Hence, we use ensemble learning bagging with base learner 
Linear regression, SMOReg, MLP, random forest, REPTree, and M5Rule. We 
also implemented the feature selection algorithm to examine the effect of 
feature selection algorithm BestFit and Genetic Algorithm. The dataset is 
based on 499 projects known as China. The results show that the Mean Mag-
nitude Relative error of Bagging M5 rule with Genetic Algorithm as Feature 
Selection is 10%, which makes it better than other algorithms. 
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1. Introduction 

For software developers the quality of a software product is vital, and software 
cost estimation efforts help developers to maintain good quality. Software cost 
estimation in terms of the persons-months and time to complete the project is 
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crucial. Though software cost estimation plays a vital role in the field of software 
development, there have been minor developments in this area in the last few 
decades. The most important reason for the failure of a project is poor cost esti-
mation. Even though there are many efforts models available, novel methods for 
improving the accuracy of projects are still needed. So, the development of a 
software efforts prediction model is motivation to estimate software efforts as 
accurately as possible. Software cost estimation predictions are used to forecast 
the cost of software. Machine Learning methods use the historical dataset for 
predicting the actual cost for future software. The fundamental purpose for us-
ing Machine Learning systems is to become familiar with the inalienable exam-
ples of feature value and their relations with venture endeavours (project efforts) 
and anticipate the efforts for new software projects. 

The ML approaches have been utilized as a commendation for both master 
judgment and algorithmic models in the past decade. These methodologies in-
corporate Artificial Neural Networks (ANN), Fuzzy rationale, bagging, boosting, 
decision trees, Support Vector Machine (SVM) and so on. The upside of these 
methodologies is that they show the mind-boggling connection between efforts 
and free factor. It is utilized for those troublesome issues where an outcome 
must be gained from authentic historical information. In the literature many 
machine learning approaches have been found, though it is very difficult to say 
which approach is better.  

Software efforts estimation plays a very vital job in calculating the cost for de-
veloping the software project. The understanding and controlling of basic factors 
that influence programming cost is an exceptionally fundamental job in software 
project management. Software measurements are the software product measures 
and qualities. Since software estimations are basic in software engineering, there 
have been numerous investigations over the most recent four decades to give a 
thorough view of software’s complex nature and to utilize it in software cost es-
timation and software examination. Despite the fact that the principal software 
measurements (metrics) book were published in 1976 [1], the historical back-
drop of software measurements explorations dates to the 1960s, when the lines 
of code (LOC) metric was utilized to quantify the profitability of the developer 
and software complexity and quality. LOC was utilized as a principle key in ef-
forts prediction for some forecast models, for example, [2] [3]. 

In the mid-1970s, the enthusiasm for software design complexity expanded 
when diagram hypothetical unpredictability was discussed by McCabe in [4]. He 
built up a scientific strategy for program modularization. A few meanings of the 
graph hypothesis were utilized so as to measure and control the quantity of ways 
through a software program known as the Cyclomatic Complexity metric. At 
that point this metric had been utilized for complexity estimations rather than 
size metrics. In 1984, Basili and Perricone [5] found a connection between 
McCabe’s Cyclomatic Complexity and module sizes. They found that enormous 
modules have high intricacy. 

Fei, Zhi and Chao [6] proposed an enhancement for the Halstead complex 
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nature measurements. They added weights to the Halstead metrics. They gave 
various operators and operands various weights. Six object-oriented design met-
rics items were created and assessed by Chidamber and Kemerer in 1994 [7]. 
These items are called CK measurements. The CK measurements that came 
about because of Chidamber and Kemerer are weighted methods per class 
(WMC), depth of inheritance tree (DIT), number of children (NOC), coupling 
between object classes (CBO), response for a class (RFC), and lack of cohesion in 
methods (LCOM). 

As per Smith, Hale and Parish [8], 4 task factors—force, concurrency, frag-
mentation and team size—have been considered for their effect on software ef-
forts developments. Every one of these elements improved the estimations of the 
middle of the road COCOMO I model. These elements alongside un-balanced 
capacity focuses help in developing a superior effort estimation model which 
brings about improved predictive capacity when contrasted with COCOMO 
model. 

Tosun, Turhan and Bener [9] proposed another novel methodology for im-
proving the estimation precision with the assistance of another element weight 
assignment algorithm which gives better outcomes when contrasted with past 
research. Here a factual procedure called Principal Component Analysis (PCA) 
was used to actualize the two weighted task heuristics. Pahariya, Ravi, Carr and 
Vasu [10] proposed new computational knowledge sequential hybrid architec-
tures including programming and Group Method of Data Handling (GMDH). 
This incorporates information mining strategies, for example, Multi-Layer Re-
gression (MLR), Radial Basis Function (RBF), etc. [10]. Different investigations of 
ANN models for anticipating SCE are [10]-[17]. Andreou and Papatheocharous 
[18] utilized Fuzzy Decision Trees (FDTs) for foreseeing required efforts and code 
size in cost estimation as though solid proof about those fluffy changes of cost 
drivers added to improving the forecast procedure. More researches on this 
topic can be found in [19]-[25]. Reddy and Raju [26] improved fuzzy method-
ology for software efforts of the COCOMO utilizing the Gaussian membership 
function, which performs superior to the trapezoidal capacity to display cost 
drivers. In this paper, we describe COCOMO models, then explain the roles and 
application of machine learning techniques like Linear Regression, Support 
Vector Machine (SMOReg), Neural networks, MRules 5, REPTree and Random 
Forest. Then we apply ensemble Learning based on these classifiers. However, 
we compare the outcomes of these methods with results in given actual and es-
timated efforts. 

As we have seen, software vaults or datasets are generally used to acquire in-
formation on which efforts estimation is finished. Yet software stores contain 
data from heterogeneous ventures. Customary utilization of regression equations 
to derive a single mathematical model results in poor performance [27]. Gallogo 
[27] utilized Data clustering to tackle this issue. In this study, the models are 
predicted and validated using statistics and ensemble Learning methods. Com-
parison with previous research is also done. The result shows that Bagging M5 
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rule with Genetic algorithm for feature selection shows MMRE 10%. Here we try 
to answer the following research questions.  

RQ1. What is the impact of BESTFIT and GENETIC Algorithms for Feature 
Selection for software efforts Prediction on two datasets when the performance 
is measured using four metrics, MMRE (mean magnitude of relative error) and 
prediction at levels 0.25, 0.50 and 0.75 respectively? 

RQ2. What is the performance of ensemble Learning Techniques? We deter-
mine which ML systems give the best and worst outcomes relating to each data-
set explored in the investigation. 

2. Background 
2.1. Dataset 

In this study we have taken the China dataset for software cost estimation from 
the Promise Data repository [28]. The China Dataset is comprised of 19 features: 
18 autonomous variables and 1 ward variable. It has 499 instances correspond-
ing to 499 projects. The clear insights of Chinese informational collection are in 
the appendix in Table 1. A set of autonomous variables chooses the estimation 
of the needy variable. The needy variable is efforts right now and the independ-
ent factors might be removed, as they may have little impact on predicting the  
 
Table 1. China data set statistics. 

Serial Number Variable Min Max Mean Standard Deviation 

1. ID 1 499 250 144 

2. AFP 9 17518 487 1059 

3. Input 0 9404 167 486 

4. Output 0 2455 114 221 

5. Enquiry 0 952 62 105 

6. File 0 2955 91 210 

7. Interface 0 1572 24 85 

8. Added 0 13,580 360 830 

9. Changed 0 5193 85 291 

10. Deleted 0 2657 12 124 

11. PDR_AFP 0.3 83.8 12 12 

12. NPDR_AFP 0.4 101 13 14 

13. NPDU_UFP 0.4 108 14 15 

14. Resource 1 4 1 1 

15 PDR_UFP 0.3 83.8 12 12 

16. Dev. Type 0 0 0 0 

17. Duration 1 84 9 7 

18. N_effort 31 54620 4278 7071 

19. Efforts 26 54260 3921 6481 
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efforts, consequently making the model much less difficult and productive. It has 
been seen from the China informational index that independent variables ID 
and Dev.Type do not play any role in deciding the value of effort. Consequently, 
variables ID and Dev are autonomous. Here we perform Cross-validation, a 
standard evaluation method that is an orderly method for running repeated 
percentage splits. It consists of partitioning a dataset into 10 pieces (“folds”); at 
that point hold out each piece for testing and train on the 9 staying together. 
This gives 10 assessment results, which are the average. 

2.2. Feature Selection Method 

There are different strategies utilized for diminishing information dimensional-
ity. We have utilized the Feature sub-selection procedure given in the WEKA 
tool [29] to diminish the quantity of the independent variable. Applying 
CfsSubsetEval with BestFit feature selection method reduces 19 features to 7 
features. When Genetic Algorithm is used for feature selection, 19 features are 
reduced to 9. The best combination of independent variables was searching 
through all possible combinations of variables. The dependent variable is Efforts. 
Software development efforts are defined as the work done by the product pro-
vider from detail until delivery estimated as far as hours. 

2.3. Performance Measures 

Mean Magnitude of relative error (MMRE) (or mean absolute relative error) 
currently utilizes the most effective and standard measures for estimation exact-
ness, for example, MMRE and PRED at power levels 0.25, 0.50 and 0.75, respec-
tively. 

In order to assess capability, we use a common criterion called Mean Magni-
tude of Relative Error (MMRE) [30] [31] [32] [33]. 

1

1MMRE k i i
i

i

E A
k A=

−
= ∑                     (1) 

here, Ei represents the estimated value for a data point, Ai represents the actual 
value of each data point, and k is the total number of data points. Here, Pre-
dict(A) is calculated as follows: 

( )Predict mA
k

=                         (2) 

Mean Relative Error (MRE) is denoted by (m) and includes the values when 
data points have less than or equal to A error. It is common to consider (25%) as 
the reference value [32]. 

2.3.1. Relative Absolute Error 
Relative Absolute Error (RAE) calculates the accuracy of a predictive model. 
RAE can be used in machine learning. Furthermore, RAE is expressed as the ra-
tio; it computes the mean error (residual) of errors produced by a trivial or naive 
model. The model is considered non-trivial if the result is less than 1. This is the 
model for a data set (k): 
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where Ei’s is prediction, Di’s is actual values, and Rae is the measure of forecast 
accuracy. D  is the mean of Di’s; n is the size of the dataset (in data points) [32] 
[33] [34]. 

2.3.2. Root Relative Squared Error 
Root relative squared error (RRSE) takes the average errors, squares them and 
normalizes the average. Then, in order to maintain the error to the same dimen-
sion, the square root is calculated. In the following equation, Ei of an individual 
model i is shown:  
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where Ei’s is prediction, Di’s is actual values, Rae is the measure of forecast accu-
racy, D  is the mean of Di’s, and n is the size of the dataset (in data points) [32] 
[33] [34]. 

2.3.3. Relative Absolute Error 
Relative Absolute Error (RAE) calculates the accuracy of a predictive model. 
RAE can be used in machine learning. Furthermore, RAE is expressed as a ratio 
that computes the mean error (residual) of errors produced by a trivial or naive 
model. The model is considered non-trivial if the result is less than 1. This is the 
model for a data set (k):  
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where Ei’s is prediction, Di’s is actual values, Rae is the measure of forecast accu-
racy. D  is the mean of Di’s, and n is the size of the dataset in data points. 

2.3.4. Root Relative Squared Error 
Root relative squared error (RRSE) [32] [33] [34] takes the average errors, 
squares them and normalizes the average. Then, in order to maintain the error 
to the same dimension, the square root is calculated. In the following equation, 
the Ei of an individual model i is shown: 

( )

( )

2

1
2

1

n
ki ij

k n
jj

E D
R

D D
=

=

−
=

−

∑
∑

                    (6) 

where Ei’s is prediction, Di’s is actual values, and Rae is the measure of forecast 
accuracy. D  is the mean of Di’s; n is the size of dataset in data points. 

3. Machine Learning Techniques 

Right now, we are utilizing machine learning methods to predict effort. We have 
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used ensemble learning method bagging with base Learner Linear Regression, 
Support Vector Machine, Neural Network (MLP), MRules 5, REPTree, and 
Random Forest. 

3.1. Linear Regression 

Linear regression (LR) is widely used for predictive analysis. Basically, LR meas-
ures the degree to which variables are linearly related. The formula for linear re-
gression is: 

0 1 1 2 2 n ny x x xβ β β β= + + + +                  (7) 

Furthermore, multiple linear regression (MLR) is an empirical model that 
utilizes data from past results. According to Liung and Fan MLR is an empirical 
model that utilizes data from past results in order to measure current results 
[33]. 

0 1 1 2 2 .i i i n i ny x x xβ β β β= + + + + +                (8) 

where yi is the dependent variable, xi is the explanatory variable, β0 is the 
y-intercept (constant), βp is slope coefficient for each explanatory variable, and 
  is the model’s residuals (errors). 

3.2. Multilayer Perception (MLP) 

A multilayer perceptron (MLP) is used for regression; however, in MLP an in-
termediate layer (hidden layer) is used instead of using input as feed. MLP has 
several layers of nodes; it should have at least three layers of nodes: an input, a 
hidden layer and an output layer. MLP is a logistic model that can be in various 
depth level based on the number of intermediate layers, as shown in these equa-
tions: ( ) ( )tanhi iy v v=  and ( ) 1 e iv

iy v −= + . Here, y(vi) is the output of the ith 
node (neuron), and vi is the weighted sum of the input connections 

3.3. Sequential Minimal Optimization Regression 

Sequential minimal optimization (SMO) is useful when applied to solve quad-
ratic programming (QP) problem that comes out as a result of applying the 
training of support-vector machines. When looking at a binary classification 
problem with a dataset pairs (x1, y1), (x2, y2), ..., (xn, yn), where xi is an input vec-
tor and yi can be a label of either (−1) or (+1). A soft-margin support vector 
machine is then trained by solving a quadratic programming problem, which is 
expressed in form: 

( )1 1 1

1 ,
2

n n n
i i ji i j i j i jmax y y K x xα α α α
= = =

= −∑ ∑ ∑             (9) 

where K(xi, xj) is the kernel function;α’s are Lagrange multipliers, (Platt 1998). 
However, it must satisfy the two conditions 0 i Cα≤ ≤  (for 1,2, ,i n=  ) and 

1 0i
n

ii yα
=

=∑  (here C is a support-vector machine hyperparameter).  

3.4. REPTree 

REPTree is based on regression tree logic. It basically creates a number of trees; 
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the process is done on different iterations. Then, REPTree selects the best one 
from all generated trees. The selection will be considered representative. Then 
the mean square error is applied on the trees’ prediction [35]. 

3.5. Decision Tree 

Decision tree is a regression methodology. Basically, it provides an easily under-
standable modelling technique. Moreover, even if there are some imperfections 
in the data, such as missing values, it can predict patterns to overcome such is-
sues. Decision tree is an approach that uses continuous recursive partitioning 
until it reaches classification of a dataset data. It can be of two types, breadth 
first (BF) or depth first (DF). In both a greedy algorithm is typically applied. One 
drawback of decision trees is overfitting of data samples [35]. 

3.6. Bagging 

Bagging is a method to stabilize the accuracy of machine learning. Bagging helps 
reduce the issue of overfitting found in some regression methodologies such as 
decision tree. Hence, it is a method that iteratively samples from a certain data 
set according to a rectangular probability distribution with substitution [32] [35] 
[36]. In Bagging, each sample has the exact same size as the original data. Here, 
we should indicate that in sampling with replacement there is a chance that 
some dataset instances may never get a chance to be selected while others can be 
selected multiple times.  

3.7. Random Decision Forest (RDF) 

Random decision forest (RDF) was first introduced by Ho [35]. Random deci-
sion forest (RDF) corrects the problem of overfitting found in decision trees. 
Moreover, RDF is a learning scheme for regression; in RDF multiple decision 
trees are built. During the training of a model decision trees are built, and even-
tually an average prediction is reached. Moreover, the RDF training process for 
random forests uses the bagging technique. 

4. Experiment Design 

In the literature we have found some limitations and from our experiment, we 
discovered that most researchers ignore the steps in their Pre-processing. Before 
pre-processing remove the missing and noisy data from the dataset. Besides 
these limitations, attribute selection is another important limitation that directly 
affects the memory use and also affects the results. So, to overcome these limita-
tions we follow these basic steps (see Figure 1). 
○ Input as a dataset 
○ Preprocess the data: 
 by filtering out noisy and missing data,  
 by conversion,  
 by removing outlier. 
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Figure 1. Experiment setup for software cost efforts prediction. 

 
○ Apply Feature Selection Method (CfsSubsetEval: 1) Genetic Algorithm, 2) 

BestFit) 
○ Ensemble Learning Methods 
○ Computing the results 

5. Results 

Figure 2(a) shows the predicted effort compared to the actual effort using the 
China dataset using best fit algorithm and RF bagging. Results show a strong 
correlation between predicted and actual. Figure 2(b) also shows the same but 
by applying REPTree. Figure 2(c) shows the results when MRule 5 is applied. 
Next, Figure 2(d) shows the result when using LR Bagging, Figure 2(e) when 
using SMOReg and Figure 2(f) when applying MLP. 

Figures 3(a)-(f) show the same prediction experiment when the same six 
techniques are applied when genetic algorithms are applied.  

The results are shown in Figure 4, and in Table 2 and Table 3. Our results of 
effort estimation model predicted using bagging M5 rule with genetic Algorithm 
Feature selection method was better than all the other 12 methods examined in 
our study. This shows that bagging M5 rule has very good results for software 
efforts. The MMRE is 10% while Pred (25), Pred (50) and Pred (75) have 97%, 
98% and 99%, respectively. This shows that performance of Bagging M5 rule is 
excellent, even when we compare our results in existing research. Table 2 also 
shows that the performance of Ensemble learning is best among all. Table 3 
shows that the correlation of actual and predicted values is also very high. The 
charts in Figure 5 and Figure 6, for the real qualities and the qualities as pre-
dicted by the specific model, appear on the Y-axis and compare to the 499 Pro-
jects. The “‘blue” band displays the bend for the real values, though the “red” 
band introduces the band for the predicted qualities. The closer the real and  
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(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 2. Bestfit feature selection using (a) Bagging RF; (b) Bagging REPTree; (c) 
M5Rule; (d) Bagging LR; (e) Bagging SMOReg; (f) Bagging MLP. 
 
Table 2. Performance measures by bagging. 

Feature 
Selection Algorithm 

ML Algorithm MMRE PRED 25 PRED 50 PRED 75 

BEST FIT 

Bagging LR 0.147558 0.88 0.946667 0.98 

Bagging SMOReg 0.126655 0.911824 0.963928 0.983968 

Bagging MLP 0.176172 0.8 0.906667 0.96 

Bagging MRules5 0.10263 0.97333 0.98 0.99333 

Bagging REPTree 0.153349 0.88 0.95333 0.98 

Bagging RF 0.251015 0.78 0.88 0.93333 

Genetic Algorithm 

Bagging RF 0.318897 0.74 0.82 0.9 

Bagging REPTree 0.152987 0.88 0.95333 0.98 

Bagging M5 Rule 0.10006 0.97333 0.98 0.99333 

Bagging LR 0.193831 0.8133 0.9133 0.946667 

Bagging MLP 0.157302 0.8733 0.966667 0.966667 

Bagging SMOReg 0.128885 0.906667 0.966667 0.973333 
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(b) 

 
(c) 

 
(d) 
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(e) 

 
(f) 

Figure 3. Genetic feature selection using (a) Bagging RF; (b) Bagging REPTree; (c) 
M5Rule; (d) Bagging LR; (e) Bagging MLP; (f) SMOReg. 
 

 
Figure 4. Comparing MMRE genetic vs. MMRE best fit. 

 

 
Figure 5. Best fit feature selection comparison. 
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Figure 6. Genetic algorithm feature selection. 

 
Table 3. Comparative MMRE and PRED analysis. 

Results Algorithms 
MMRE-genetic 

algorithm 
MMRE-bestfit 

PRED (25) GA/ 
Pred (25) BF 

Our 

Bagging RF 0.251015 0.147558 0.8133/0.78 

Bagging REPTree 0.153349 0.126655 0.88/0.88 

Bagging M5 Rule 0.10263 0.176172 0.9733/0.9733 

Bagging LR 0.14755777 0.10263 0.8133/0.88 

Bagging MLP 0.176172 0.153349 0.87/0.80 

Bagging SMOReg 0.126655 0.251015 0.9066/0.9118 

[8] 
Augmented COCOMO 0.65 0.65 Pred (20) 0.3167 

Parsimonious COCOMO  0.64 0.304 

[27] Clustering 0.0103 0.0103 Pred (30) 0.356 

[31] 

Regressive 0.623 0.623 - 

ANN 0.352 0.352 - 

Case Based Reasoning 0.362 0.362 - 

[20] 

SVR 0.165 0.165 0.8889 

RBF 0.1907 0.1906 0.7222 

Linear Regression 0.233 0.233 0.7222 

[33] 

ANN 0.900 0.900 0.22 

Classification and 
Regression Tree 

0.770 0.770 0.26 

Ordinary Least 
Square Regression 

0.720 0.720 0.33 

Adjusted analogy-based 
estimation using 

Euclidean distance 
0.3800 0.3800 0.57 

Adjusted analogy-based 
estimation using 

Manhattan distance 
0.360 0.360 0.52 

Adjusted analogy-based 
estimation using 

Minkowski distance 
0.430 0.430 0.61 
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predicted bands, the lower the error and the better the model. The charts show 
that the real and the predicted qualities are exceptionally near one another. 

Answer to Research Questions  
RQ1: Impact of feature selection algorithm on different ensemble learning al-

gorithms.  
If we look at Table 2 and Table 3 when we use BestFit feature selection the 

MMRE is minimum in all cases. If we check the PRED 0.25, 0.50 and 0.75 the 
value is high; this shows that the performance of all algorithms is best, while by 
using genetic algorithm for feature selection the value of MMRE is increased and 
the values of PRED 0.25, 0.50 and 0.75 are decreased so the impact of feature se-
lection is very high in this study. 

RQ2. What is the performance of ensemble Learning Techniques? 
The performance of bagging M5Rule is best among all the algorithms, even 

for feature selection cases; at the same time, they are highly correlated in the 
comparative analysis available in Table 3. 

6. Conclusion 

In this study we perform comparative analysis among twelve ensemble methods 
for predicting the efforts. We use the Promise data set repository for predictions. 
The data set contains nineteen (19) features so we use two feature selection 
methods named BestFit and Genetic Algorithm on six ensemble learning algo-
rithms. The results show that the Genetic Algorithm feature selection for the 
bagging M5 rule is the best method for predicting efforts with MMRE value 10%, 
and PRED (25), PRED (50) and PRED (75) have values 97%, 98% and 99%, re-
spectively. In the future researchers can use Ensemble Learning with different 
feature selection methods for predicting efforts estimation. Hence, the ensemble 
learning method shows ability for predicting efforts. 
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