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Abstract 
This paper studies cyber risk management by integrating contextual log anal-
ysis with User and Entity Behavior Analytics (UEBA). Leveraging Python 
scripting and PostgreSQL database management, the solution enriches log 
data with contextual and behavioral information from Linux system logs and 
semantic datasets. By incorporating Common Vulnerability Scoring System 
(CVSS) metrics and customized risk scoring algorithms, the system calculates 
Insider Threat scores to identify potential security breaches. The integration 
of contextual log analysis and UEBA [1] offers a proactive defense against in-
sider threats, reducing false positives and prioritizing high-risk alerts. 
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1. Introduction: Objectives and Goals 

The main goals of this paper are in cyber risk management by implementing 
advanced behavioral & semantic log analysis techniques to identify insider threats 
efficiently. The approach of semantic log analysis incorporates information like 
syslog data, access logs, and event logs, and integrates information such as login 
patterns to discern risks through behavioral analysis. This solution will help in 
employing targeted mitigation strategies to tackle insider threats. Minimizing 
false alerts will also ensure that reliability of the security mechanism is main-
tained. 

The existing solutions for insider threat detection mainly focus on rule-based 
detection, signature-based IDS, etc. These traditional solutions have a problem 
of false positives and missed detections. Our solution introduces a novel seman-
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tic log analysis approach that combines log data with contextual behavioral in-
formation. Psychology-based profile analyses may also be integrated into this 
framework.  

Project Structure 

Figure 1 represents the structure of the project. We started with gathering Linux 
System logs from GitHub. The logs were cleaned and processed by removing 
null values, downsizing the number of logs to match semantic dataset size, and 
filtering them further to have the most unique but most important sample logs. 
These logs were finally ready to be integrated with the semantic data. The se-
mantic and behavioral data generation step included fields like login/logout 
timestamps, employee designation, resource accessed, etc. This dataset was ana-
lyzed, and risk score was associated to each field after careful analysis. Once final 
risk analysis was done, the integrated data was ready to give insider threat score 
and generate alerts. 

2. Existing Work 

We describe some related work in the paragraphs that follow that helped guide 
our approach.  

In [2], the authors develop a methodology for detecting potentially malicious 
insider behavior using virtual machine introspection (VMI). They propose a 
four-step methodology for the development and validation of malicious insider 
threat alerting using VMI, utilizing a malicious attacker taxonomy to aid identi-
fication of observables for monitoring potential malicious actions. The metho-
dology developed is effective in detecting malicious insider scenarios on Win-
dows guests. Validation using two datasets confirms the effectiveness of the identi-
fied observables, providing a practical approach for detecting insider threats us-
ing VMI. The proposed methodology offers a practical means of detecting insid-
er threats through VMI, addressing the challenges of characterizing, and detect-
ing malicious insiders in real-world systems.  

In [3], the authors introduce BIFROST, a statistical analysis-based insider 
threat detection system deployable to resource-disadvantaged systems. It aims to 
baseline network profiles and host activities unique to operational environ-
ments, alerting system operators to focus monitoring resources on hosts show-
ing potential characteristics of insider activities. The proof-of-concept imple-
mentation of BIFROST achieved best- and worst-case detection rates of ap-
proximately 74%. BIFROST represents a practical solution for detecting insider 
threats through statistical analysis. It provides a starting point for future research 
and development efforts in insider threat detection, offering potential improve-
ments in detection rates and operational effectiveness. 

In [4], the authors proposed Warder, an online insider threat detection system 
leveraging diverse feature dimensions and hypergraph-based correlation tech-
niques. Warder to create an user’s daily profile using neural language processing  
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Figure 1. Project structure block diagram. 
 

(NLP) models and correlates suspicious users’ activities with threat scenarios to 
enhance screening effectiveness. Evaluation using the public CMU CERT dataset 
shows that Warder outperforms competing approaches from the Oxford and 
CMU groups. This indicates the effectiveness of Warder in detecting insider 
threat activities compared to existing methods. Therefore, Warder offers a novel 
approach to online insider threat detection, addressing the limitations of existing 
methods by incorporating diverse feature dimensions and hypergraph-based 
correlation techniques. It represents a valuable contribution to the field of insid-
er threat detection, with potential for further refinement and improvement in 
future research. 

3. UEBA—User & Entity Behavior 

User and Entity Behavior Analytics (UEBA) plays a pivotal role in modern in-
sider threat detection, particularly when based on log analysis and marks a cru-
cial shift in cybersecurity strategy. UEBA not only encompasses user behavior 
but also extends its analysis to entity behavior, such as that of cloud applications 
or unmanaged end-points. This holistic approach enables a more comprehensive 
understanding of potential threats by correlating the behavior of various entities 
with user actions. Gartner’s introduction of UEBA emphasizes the importance of 
considering entity behavior alongside user behavior, thereby enhancing threat 
detection accuracy. By leveraging advanced analytics and modeling, UEBA sur-
passes the limitations of legacy SIEM systems and traditional UBA. These sys-
tems often struggle with false negatives due to lack of context, high maintenance 
requirements, and alert fatigue from false positives. UEBA addresses these chal-
lenges by adopting probabilistic models and risk factors, which replace Boolean 
alerts and enable more efficient threat detection.  

Incorporating UEBA into our work significantly enhanced insider threat de-
tection capabilities. By fusing user and entity behavior analysis with log data, 
UEBA provides a more nuanced understanding of potential security risks. This 
approach not only reduces false positives but also enables automated incident 
response and prioritization of alerts. UEBA’s ability to model complex user be-
havior patterns and detect anomalous activities across diverse log sources aligns 

https://doi.org/10.4236/jsea.2024.176027


I. Edlabadkar, V. K. Madisetti 
 

 

DOI: 10.4236/jsea.2024.176027 490 Journal of Software Engineering and Applications 
 

perfectly with the goals of my project, which aims to enrich log data with con-
textual information for insider threat detection. 

Moreover, UEBA’s adoption of machine learning techniques further refines 
threat detection by adjusting risk scores based on peer group comparisons and 
multiple indicators of anomalous behavior. This dynamic approach to risk as-
sessment goes beyond static threshold-based methods, ensuring more effective 
detection of sophisticated threats, such as APTs or insider attacks. By incorpo-
rating UEBA we can leverage its advanced analytics capabilities to enhance the 
accuracy and efficiency of insider threat detection, ultimately strengthening the 
security framework of organizations [5]-[18]. 

4. Implementation 

We now present a detailed description, where the sections describe the steps 
taken to tie together different aspects of our project. 

4.1. Gathering Linux System Logs 

Categorization of Log Types: we categorized different types of logs based on 
their relevance to the project. While logs such as firewall logs may focus on ex-
ternal threats and may not be directly applicable, logs from Linux and Windows 
servers, file access logs, VPN logs, and database logs were identified as more re-
levant and useful. These logs provide valuable insights into user activities and 
system events within the organization’s infrastructure. 

Relevance of Linux System Logs: Among the categorized log types, Linux sys-
tem logs emerged as particularly relevant and valuable for insider threat detec-
tion. Linux system logs capture a wide range of system activities, including user 
logins, file accesses, process executions, and system events. These logs provide 
rich contextual information that is essential for identifying potential insider 
threats within the organization. These system logs are obtained from GitHub [5]. 
The Linux logs used in this project are typically stored in the directory /var/log/. 
Specifically, the dataset was collected from the /var/log/messages file on a Linux 
server. These logs were gathered over a period of 260+ days as part of the Public 
Security Log Sharing Site project. /var/log/messages is a common location for 
system logs on Linux systems. It contains a variety of log entries related to sys-
tem events, including kernel messages, system startups and shutdowns, user lo-
gin/logout activities, and various other system-related events. The acquired sys-
tem logs were voluminous, comprising over 3000 records. However, these 
records were inconsistent, containing numerous null values and illegible for-
mats. Following extensive research, we opted to down sample the logs to a more 
manageable 300 records. Subsequently, we undertook a process of cleaning, re-
fining, and standardizing the logs. Once this preprocessing was complete, we 
imported the logs into Grafana for analysis. During the analysis phase, we iden-
tified the most pertinent and crucial Linux logs that would be utilized (Figure 
2). 
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Figure 2. Clean and standardized linux system logs. 

4.2. Linux Log Analysis—Risk Score Allocation 

For each log, we calculated a corresponding risk score by quantifying its impact 
and likelihood as a product of likelihood and impact. 

Risk = (Impact * Likelihood) 
Below are the risk scores and logs that we sampled: 
1) uid = 0 euid = 0 tty = NODEVssh ruser = rhost = [host_IP] 
• Impact—4 High—The impact is high as it involves a failed authentication 

attempt with the root user, potentially leading to unauthorized access with ele-
vated privileges. 

• Likelihood—3 Moderate—Likelihood is moderate since it involves authen-
tication failure, which may occur occasionally, but still indicates potential secu-
rity threats. 

• Risk score = 12 
2) check pass; user unknown 
• Impact—2 Low—The impact is low as it involves a failed login attempt for 

an unknown user, indicating no successful access to the system. 
• Likelihood—3 Moderate—Likelihood is moderate since it suggests occasion-

al attempts to access the system with invalid user credentials. 
• Risk score = 6 
3) ALERT exited abnormally with 1 
• Impact—4 High—The impact is high as it signifies the abnormal termina-

tion of a critical process or service, potentially leading to system instability or 
disruption of services. 

• Likelihood—2 Low—Likelihood is low since abnormal exits with specific ex-
it codes are relatively rare occurrences. 

• Risk score = 8 
4) authentication failure; logname = uid = 0 euid = 0 tty = NODEVssh ruser = 

rhost =[host_IP] user = root 
• Impact—5 Very High—The impact is very high as it involves a failed au-

thentication attempt for the root user, which, if successful, would grant full ad-
ministrative privileges to the intruder. 
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• Likelihood—3 Moderate—Likelihood is moderate since it involves authen-
tication failure, which may occur occasionally, but still indicates potential secu-
rity threats. 

• Risk score = 15 
5) Authentication failed from: Software caused connection abort 
• Impact—3 Moderate—The impact is moderate as it indicates a failed au-

thentication due to a connection abort, potentially disrupting the authentication 
process and causing inconvenience to legitimate users. 

• Likelihood—3 Moderate—Likelihood is moderate since software-caused 
connection aborts may occur occasionally due to various factors such as network 
issues or system instability. 

• Risk score = 9 
6) usbcore: registered new driver hub 
• Impact—1 Very Low—The impact is very low as it represents a routine sys-

tem event related to USB driver management, which typically does not affect 
system functionality or security. 

• Likelihood—5 Very High—Likelihood is very high as the registration of new 
USB driver hubs is a common occurrence during system operation, especially 
during startup. 

• Risk score = 5 
7) audit: initializing netlink socket (disabled) 
• Impact—2 Low—The impact is low as it is auditing process and disabling it 

reduces immediate impact. 
• Likelihood—3 Moderate—Likelihood is moderate as this event may occur 

occasionally, especially if auditing features are configured or modified. 
• Risk score = 6 
8) ROOT LOGIN ON tty2 
• Impact—5 Very High—The impact is very high as it indicates a successful 

login as the root user, granting full administrative privileges to the intruder. 
• Likelihood—1 Low—Likelihood is very low since root logins should be rare 

and tightly controlled, especially directly on a terminal (tty). 
• Risk score = 5 
9) ANONYMOUS FTP LOGIN FROM [host IP] (anonymous) 
• Impact—3 Moderate—The impact is moderate as it indicates an attempt to 

access the system via FTP using anonymous credentials, potentially allowing 
unauthorized users to view or modify files. 

• Likelihood—2 Low—Likelihood is low as anonymous FTP logins should be 
restricted, and legitimate use cases for such logins are rare. 

• Risk score = 6 
10) warning: can’t get client address: Connection reset by peer 
• Impact—2 Low—The impact is low as it indicates a warning message due to 

a connection reset by the peer, which may temporarily disrupt communication 
but does not directly affect system functionality or security. 
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• Likelihood—3 Moderate—Likelihood is moderate as occasional connection 
resets by peers may occur due to network issues or communication errors. 

• Risk score = 6 
11) authentication failure; logname = uid = 0 euid = 0 tty = NODEVssh ruser 

= rhost = [host IP] user = guest 
• Impact—3 Moderate—The impact is moderate as it indicates a failed au-

thentication attempt for the “guest” user, which may lead to unauthorized access 
with limited privileges. 

• Likelihood—3 Moderate—Likelihood is moderate since authentication fail-
ures may occur occasionally, especially for commonly used usernames like 
“guest”. 

• Risk score = 9 
12) PCI: Invalid ACPI-PCI IRQ routing table 
• Impact—4 High—The impact is high as it indicates an error in the 

ACPI-PCI IRQ routing table, which can lead to hardware conflicts, device mal-
functions, or system instability. 

• Likelihood—2 Low—Likelihood is low as errors in the ACPI-PCI IRQ 
routing table are relatively rare occurrences. 

• Risk score = 8 
13) Couldn’t authenticate user 
• Impact—2 Low—The impact is low as it indicates a failed authentication at-

tempt for an unidentified user, suggesting no successful access to the system. 
• Likelihood—3 Moderate—Likelihood is moderate as occasional authentica-

tion failures may occur due to various reasons such as mistyped credentials or 
automated login attempts. 

• Risk score = 6 
14) There is already a security framework initialized, register-security failed. 
• Impact—4 High—The impact is high as it indicates a failure to register a se-

curity framework, potentially leading to inadequate security measures and leav-
ing the system vulnerable to security threats. 

• Likelihood—2 Low—Likelihood is low since failures to register security 
frameworks due to already initialized frameworks are relatively rare occurrences. 

• Risk score = 8 
15) Security Scaffold v[major].[minor].[patch] initialized 
• Impact—1 Very Low—The impact is very low as it indicates a routine event 

related to the initialization of the security scaffold, which is a standard security 
feature. 

• Likelihood—5 Very High—Likelihood is very high as the initialization of the 
security scaffold typically occurs during system startup or security module load-
ing. 

• Risk score = 5 
16) SELinux: Starting in permissive mode 
• Impact—2 Low—The impact is low as it indicates SELinux starting in per-

https://doi.org/10.4236/jsea.2024.176027


I. Edlabadkar, V. K. Madisetti 
 

 

DOI: 10.4236/jsea.2024.176027 494 Journal of Software Engineering and Applications 
 

missive mode, which allows actions that would normally be denied by SELinux 
policies but logs them for analysis. 

• Likelihood—3 Moderate—Likelihood is moderate as starting SELinux in 
permissive mode may occur occasionally, especially during troubleshooting or 
testing. 

• Risk score = 6 
17) Failure registering capabilities with the kernel 
• Impact—3 Moderate—The impact is moderate as it indicates a failure to 

register capabilities with the kernel, potentially leading to restricted functionality 
or security vulnerabilities. 

• Likelihood—2 Low—Likelihood is low since failures to register capabilities 
with the kernel are relatively rare occurrences. 

• Risk score = 6 
18) SELinux: Initializing. 
• Impact—1 Very Low—The impact is very low as it indicates a routine event 

related to SELinux initialization, which is a standard security feature. 
• Likelihood—5 Very High—Likelihood is very high as SELinux initialization 

typically occurs during system startup or security module loading. 
• Risk score = 5 
19) Session opened for user guest_user by (uid = [uid]) 
• Impact—2 Low—The impact is low as it indicates a routine event of a user 

session being opened, which is a standard operation. 
• Likelihood—4 High—Likelihood is high as user sessions are frequently 

opened during system operation. 
• Risk score = 8 

4.3. Generation of Semantic Dataset 

We started by researching examples of semantic data in the context of insider 
threats. The challenge we encountered was that most available data belonged to 
organizations with embedded employee details. Further, we did not have access 
to any organizational data. Therefore, we decided to generate a sample semantic 
dataset synthetically.  

We explored tools such as Mockaroo (see Figure 3) and Generate-Data to 
generate the sample datasets. However, we found that some of the fields pro-
vided by these tools were too limited for our project’s needs and could not be 
generated to fit the required dataset. To address this issue, we developed Python 
scripts (see Figure 4). These scripts allowed us to feed custom inputs and gener-
ate multiple fields in random order to create a dataset that met my project re-
quirements. 

After setting up our Grafana dashboard in Ubuntu VM, we decided to load 
the semantic dataset into a database (see Figure 5). We decided to use PSQL due 
to its support for complex data types, advanced querying capabilities, scalability, 
data integrity features, extensibility, and vibrant community. Its ability to handle 
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structured and semi-structured data efficiently, coupled with robust transaction-
al support and extensibility options, makes it well-suited for storing and query-
ing the diverse types of information found in semantic datasets. Additionally, 
PostgreSQL’s active community and ecosystem ensure ongoing support and de-
velopment, making it a reliable choice for long-term projects. 

 

 

Figure 3. Mockaroo exploration. 
 

 

Figure 4. Semantic data script example. 
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Figure 5. PSQL Db, semantic data. 

4.4. Semantic Dataset—Risk Score Allocation 

We began by following the NIST [15] guide and using the CVSS [7] calculator to 
assign scores to the columns of my semantic dataset. We have included screen-
shots showcasing the scores of each column, which primarily consist of em-
ployees accessing organization resources at specific times of the day. Below fig-
ures illustrate the risk scores associated with particular actions taken by em-
ployees to access these resources. 

We have incorporated actions such as uploading, downloading, and general 
access for testing purposes. The logs in our dataset mainly capture employee in-
teractions with organization resources, and the risk scores are heavily influenced 
by CVSS metrics. For instance, the risk score tends to be higher if sensitive re-
sources like log files or databases are downloaded or uploaded, whereas access-
ing common resources like websites results in lower risk scores. 

As illustrated in Figures 6-8, the risk scores are categorized by the day of the 
week, with higher scores on weekends, indicating increased risk when employees 
access office resources outside regular business hours. Additionally, it also dis-
plays risk scores for login and logout timestamps, with higher scores during ir-
regular office hours. Lastly, the dataset includes risk scores based on employee 
designations, where higher designation levels correspond to higher risk scores 
associated with the resources accessed. 

The final semantic risk score calculation formula is a below where each field 
mentioned indicates its respective score: 

(action * resource * day * login * logout)/designation 
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Figure 6. Action and resource semantic scores. 
 

 

Figure 7. Day and designation semantic scores. 
 

 

Figure 8. Login and logout timestamps with scores. 

4.5. Python Code and PSQL Database 

We chose Python as the programming language to generate the insider threat 
scores for its modernity and ease of use. Connecting to a PostgreSQL (PSQL) 
server was straightforward with Python3, making it a suitable choice for our 
project. Our software architecture consisted of several parts. Firstly, we defined 
the ranges for semantic scores in a dictionary format, allowing for easy reference 
and manipulation of semantic data within the code (see Figure 9). We then 
stored the semantic dataset in a PSQL database, where the code takes the em-
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ployee name as user input and retrieves the corresponding row for that em-
ployee (see Figure 10). Upon retrieving the employee’s record, our code calcu-
lates the Insider Threat score by fetching a random Linux log for risk score cal-
culation. If the employee record exists, the code proceeds to calculate the final 
Insider Threat score as the sum of the Linux log score and the semantic data 
score (see Figure 11). We ensured that my code handles cases of incorrect in-
puts and missing records gracefully, implementing appropriate error handling 
mechanisms. For the Linux log score calculation, a random log is selected from 
the dataset, and the risk score for this log is determined based on its unique 
identifier. 

By following these steps, we have been able to effectively utilize Python to 
connect to the PSQL database, retrieve the necessary data, and calculate insider 
threat scores based on a combination of semantic and Linux system logs.  

FinalInsiderThreatScore = SemanticScore + LinuxScore 
 

 

Figure 9. Dictionary of semantic data and linux logs. 
 

 

Figure 10. PSQL connection via python code and queries. 
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Figure 11. Function to calculate final semantic score. 

5. Flowchart 

The program starts by prompting the user to enter the name of an employee. It 
then connects to a PostgreSQL database and retrieves relevant data for the speci-
fied employee, including their actions, resources, login/logout times, and other 
details. The program calculates a semantic score based on this data using prede-
fined scoring dictionaries and formulas. After displaying the semantic score to 
the user, the program presents a menu of Linux logs and randomly selects one. It 
calculates a score for this selected log based on predefined likelihood and impact 
values. The program then combines the semantic score and the Linux log score 
to compute the final insider threat risk score, which it displays to the user before 
ending. 

User Input: Prompt the user to enter the name of the employee for whom the 
risk score needs to be calculated. 

Database Query: Connect to the PostgreSQL database and execute a query to 
fetch the relevant data for the specified employee name (action, resource, day, 
designation, login, logout). 

Data Fetching: Fetch the data from the database and store it in variables. 
Display Employee Data: If employee data is found, display it to the user. 
Calculate and Display Semantic Score. 
Select Random Log: Randomly select a log from the menu. Calculate and Dis-

play Linux log Score. 
Calculate Final Score: Add the semantic score and the Linux log score to get 

the final insider threat risk score. 
Display Final Score: Display the final insider threat risk score to the user. End. 
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6. Results 

The Screenshots of the Test Cases are below. These represent the output after 
code execution. 

6.1. Test Case 1 

The employee is identified as an insider threat. 
Figure 12 represents the output of the code when the employee is identified as 

an insider threat. As shown, the code takes employee name as the input and dis-
plays the employee record. It is illustrated that the employee is a system admin 
(higher privilege) and downloads a sensitive logfile outside office hours on 
weekend. As per the semantic risk score formula, the score is high. Additionally, 
random Linux log is assumed to be generated for the given employee and final 
insider threat score is shown. 

6.2. Test Case 2 

The employee is not identified as an insider threat. 
Figure 13 represents the output of the code when the employee is not identi-

fied as an insider threat. As shown, the code takes employee name as the input 
and displays the employee record. It is illustrated that the employee is an tech-
nical support specialist (lower privilege) and accesses websites during office 
hours on a weekday. As per the semantic risk score formula, the score is low. 
Additionally, random Linux log with ID = 17 is assumed to be generated for the 
given employee and final insider threat score is shown. 

6.3. Test Case 3 

The employee record does not exist. 
Figure 14 represents the output of the code when the employee record does 

not exist. As shown, the code takes employee name as the input and throws the 
error when the record fetching fails. As per the Flowchart (Figure 14), the Linux 
score is not even calculated because the execution failed at previous level of 
finding the employee record. 

6.4. Test Case 4 

Random Linux log allocation for the same employee. 
Figure 15 represents the output of the code when the employee is not identi-

fied as an insider threat with demonstration of random Linux log selection. As 
shown, the code takes employee name as the input and displays the employee 
record. It is illustrated that the employee is a technical support specialist (lower 
privilege) and accesses websites during office hours on a weekday. As per the 
semantic risk score formula, the score is low. Additionally, random Linux log 
with ID = 3 is assumed to be generated for the same employee and final insider 
threat score is shown. 
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7. Comparison with Existing Work 
7.1. Detection Methodology 

Existing solutions primarily rely on rule-based detection and signature-based 
intrusion detection systems (IDS). These methods are often expensive to imple-
ment, rely on historical data, and may not provide real-time detection. Further-
more, they tend to be rigid and inflexible in their detection approach. In con-
trast, our solution offers an innovative insider threat detection scheme that 
enriches log data with contextual information. This approach enables real-time 
detection instead of periodic scanning, resulting in more timely identification of 
potential threats. Additionally, the flexibility and customization inherent in our 
solution allow organizations to tailor the detection process to their unique needs 
and vulnerabilities. 

 

 

Figure 12. Insider threat. 
 

 

Figure 13. Not insider threat. 
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Figure 14. No record. 
 

 

Figure 15. Random log selection. 

7.2. False Positive Rates 

Rule-based and signature-based detection methods are known to suffer from 
high false positive rates, as they compare observed activities with known patterns 
and rules. This can lead to unnecessary alerts and increased operational over-
heads. Our solution mitigates this issue by adopting a simple approach to log 
analysis that focuses on enriching log data with semantic information. By doing 
so, our solution reduces the occurrence of false positives, leading to more accu-
rate and actionable alerts for insider threats. We have also added future work 
possibilities using ML to enhance false positive rate mitigation. 

7.3. Scalability and Cost Effectiveness 

Implementing and maintaining traditional insider threat detection systems can 
be costly and resource-intensive, particularly when additional data collection 
processes or computations are required. Our solution leverages existing Linux 
logs generated automatically as part of routine employee activities. This elimi-
nates the need for additional data collection processes or computations, making 
the detection process more scalable and efficient. Additionally, the cost effec-
tiveness of my approach reduces the financial burden associated with imple-
menting and maintaining insider threat detection systems. 
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7.4. Adaptability to Emerging Threats 

Traditional rule-based and signature-based detection methods may struggle to 
adapt to emerging or novel insider threat tactics. These methods are often li-
mited by their reliance on predefined rules or patterns. In contrast, our solution 
offers a more adaptive approach to insider threat detection. By enriching log da-
ta with contextual information and leveraging real-time detection techniques, 
our solution can more effectively identify and respond to evolving insider threat 
tactics, even those that may not have been previously encountered. 

7.5. Integration with Organizational Policies 

Existing solutions may lack the ability to seamlessly integrate with organization-
al policies and procedures, leading to gaps in coverage or conflicts with existing 
security measures. Our solution addresses this challenge by offering flexibility and 
customization options. By allowing organizations to tailor the detection process 
to their unique needs and vulnerabilities, our solution can better align with or-
ganizational policies and procedures, ensuring a more cohesive and comprehen-
sive approach to insider threat detection. 

7.6. Ease of Deployment and Management 

Implementing and managing traditional insider threat detection systems can be 
complex and time-consuming, requiring significant expertise and resources. Our 
solution aims to simplify the deployment and management process by offering a 
user-friendly interface and streamlined configuration options. By providing a 
simple and intuitive approach to log analysis, our solution reduces the burden 
on IT teams and facilitates more efficient management of insider threat detec-
tion efforts. 

8. Problems Faced 
8.1. Absence of Real-World Data 

One of the primary challenges we faced was the absence of real-world data and 
reliance on sample data for log analysis techniques. Sample data often fails to 
accurately reflect the complexity of actual activity and threats encountered in 
real-world scenarios. To address this challenge, we explored various approaches 
to simulate realistic but synthetic data scenarios and validate the system’s per-
formance under different conditions. 

8.2. Volume of Logs 

Managing the volume of logs proved to be another significant challenge. Pre-
processing logs is necessary before conducting analysis due to the sheer volume 
of data generated by systems and applications. To manage this challenge effec-
tively, we opted to focus on a subset of logs, prioritizing critical sources such as 
syslogs and event logs. This enabled me to streamline the analysis process and 
allocate resources more efficiently. 
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8.3. Lack of Semantic Data 

Another challenge we encountered was the lack of readily available semantic da-
ta for analysis. Semantic data, which provides deeper insights into the meaning 
and context of log entries, is typically embedded within organizational data, mak-
ing it challenging to access and utilize effectively. To address this challenge, we 
explored techniques for extracting and incorporating semantic data into the anal-
ysis framework, leveraging existing tools and methodologies where possible. 

8.4. Variation in Risk Score Metrics 

Defining and calculating risk scores presented challenges due to variation across 
different frameworks and standards. The inconsistency in risk score metrics 
made it difficult to maintain consistency and comparability. To address this is-
sue, we decided to integrate the risk matrix with established frameworks such as 
the National Institute of Standards and Technology (NIST) and the Internation-
al Organization for Standardization (ISO) 27001. Additionally, we referred to 
resources such as the CERT guide to insider threats to ensure alignment with 
industry best practices and guidelines. 

In conclusion, while these challenges posed significant hurdles during the de-
velopment and implementation of the insider threat detection system, careful 
consideration and strategic planning enabled me to overcome them effectively. 
By addressing these challenges head-on, we enhanced the robustness and relia-
bility of the system, ultimately improving its effectiveness in detecting insider 
threats. 

9. Future Work 
9.1. False Positives Mitigation 

To address the issue of false positives in insider threat detection, following strat-
egies would make a good solution. Refinement of Analysis Algorithms: This ap-
proach involves continuous refinement of analysis algorithms to minimize false 
positives. This entails fine-tuning algorithms to enhance their ability to differen-
tiate between genuine threats and benign activities. This method would leverage 
machine learning techniques to enable continuous learning and adaptation of 
the system. By incorporating machine learning, our system could dynamically 
adjust its detection capabilities based on evolving patterns and behaviors, thus 
reducing false positives over time. Providing additional context and supporting 
evidence for alerts is essential for mitigating false positives. Incorporating con-
textual information such as user behavior patterns and system configurations 
would validate alerts and provide a clearer understanding of potential threats. 

9.2. Integration of Diverse Log Sources 

The project could integrate logs from diverse systems and applications to en-
hance the effectiveness of insider threat detection. In addition to Linux logs, we 
could integrate logs from various systems and applications, including Windows, 
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network devices, and cloud services. This comprehensive approach would enable 
us to gain a holistic view of the organization’s IT environment and improve detec-
tion accuracy across different platforms. By integrating logs from diverse sources, 
our system can detect insider threats more accurately, even across different plat-
forms. This capability is crucial for detecting sophisticated attacks that may in-
volve multiple systems or services. 

9.3. User-Friendly Interface 

Ensuring ease of use and adoption is essential for the success of our insider threat 
detection system. To achieve this, the future goal would be focusing on design-
ing a user-friendly interface with the following features. The system could have 
an intuitive dashboard that allows users to easily navigate logs, drill down into 
specific events, and take appropriate actions in response to detected threats. We 
can provide customizable dashboards and reporting features to enhance usabili-
ty. This allows users to tailor the interface to their specific needs and preferences, 
ultimately improving their experience with the system. By prioritizing user-friendly 
design principles, aim to enhance usability and facilitate efficient monitoring and 
response to insider threats. 
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