
Journal of Software Engineering and Applications, 2024, 17, 474-486
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.176026 Jun. 7, 2024 474 Journal of Software Engineering and Applications

Certis: Cloud Asset Management & Threat
Evaluation Using Behavioral Fingerprinting
at Application Layer

Kumardwij Bhatnagar, Vijay K. Madisetti

School of Cybersecurity & Privacy, Georgia Institute of Technology, Atlanta, GA, USA

Abstract
This paper introduces Certis, a powerful framework that addresses the chal-
lenges of cloud asset tracking, management, and threat detection in modern
cybersecurity landscapes. It enhances asset identification and anomaly detec-
tion through SSL certificate parsing, cloud service provider integration, and
advanced fingerprinting techniques like JARM at the application layer. Cur-
rent work will focus on cross-layer malicious behavior identification to fur-
ther enhance its capabilities, including minimizing false positives through
AI-based learning techniques. Certis promises to offer a powerful solution for
organizations seeking proactive cybersecurity defenses in the face of evolving
threats.

Keywords
Certis, SSL Certificate Parsing, JARM Fingerprinting, Anomaly Detection,
Proactive Defense

1. Introduction

In today’s rapidly evolving cybersecurity landscape, organizations face an ev-
er-increasing challenge in maintaining a comprehensive inventory of their digi-
tal assets and identifying potential threats within their networks. Modern enter-
prises often find themselves operating with broken processes for tracking and
securing these assets, resulting in risky security scenarios where attackers may
possess a better understanding of the target network than the defending IT and
security teams. At the core of this challenge lies the fragmented nature of exist-
ing asset-tracking Certis and the dynamic nature of modern IT environments.
Agent-based Certis, directory services, and network Certis each offer limited vi-

How to cite this paper: Bhatnagar, K. and
Madisetti, V.K. (2024) Certis: Cloud Asset
Management & Threat Evaluation Using
Behavioral Fingerprinting at Application
Layer. Journal of Software Engineering and
Applications, 17, 474-486.
https://doi.org/10.4236/jsea.2024.176026

Received: April 27, 2024
Accepted: June 4, 2024
Published: June 7, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.176026
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.176026
http://creativecommons.org/licenses/by/4.0/

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 475 Journal of Software Engineering and Applications

sibility into their respective domains, failing to provide a comprehensive view of
all assets. Additionally, periodic snapshots are inadequate for capturing the con-
stantly changing state of today’s cloud-based and distributed environments [1]
[2].

The consequences of this lack of visibility extend beyond immediate attack
risks. The inability to create an accurate asset inventory can undermine an or-
ganization’s entire risk management program and expose them to potential cy-
ber insurance non-compliance issues. Without a clear understanding of their IT
asset landscape, security teams cannot ensure that operational risk mitigation
controls, such as endpoint security and patch management, are deployed effec-
tively across all assets. This lack of accountability can provide cyber insurance
carriers with grounds to deny claims, even for assets unknown to the IT team,
due to the “failure to follow” clause commonly found in cyber insurance policies.

The Certis project was conceived as an application layer environment to ad-
dress these critical gaps in asset management and threat detection capabilities.
By focusing on SSL certificate parsing and analysis, Certis provides organizations
with powerful asset identification capabilities tailored to the application layer. As
organizations increasingly adopt cloud services and distribute their infrastruc-
ture across multiple platforms, the need for an automated, efficient, and com-
prehensive solution for application-layer asset identification and anomaly detec-
tion has become paramount.

Certis greatly enhanced cybersecurity by streamlining asset inventory and
threat detection in cloud environments. This powerful Certis leverages advanced
fingerprinting to uncover hidden threats and empower businesses to conduct
focused reconnaissance within specific cloud providers. By parsing SSL certifi-
cates and integrating them with cloud services, Certis goes beyond traditional
methods, offering a comprehensive solution for organizations to swiftly identify
critical assets and potential security breaches.

The development of Certis represents a significant step forward in empower-
ing organizations to take a proactive stance against cyber threats, streamline
their asset management processes, and ultimately fortify their digital defenses in
an increasingly complex and dynamic threat landscape. Current work on Certis
is exploring cross-layer capabilities, further enhancing its ability to provide a
comprehensive view of an organization’s IT asset landscape.

2. Related Work

Certis leverages the scanning of assets for SSL certificates and also behavioral
fingerprinting of these assets. The related work for these topics is described be-
low.

2.1. Masscan

Masscan is a powerful internet-scale port scanner designed to scan a massive
number of machines in an exceptionally short time. Unlike traditional port
scanners that scan one machine at a time, Masscan transmits millions of packets

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 476 Journal of Software Engineering and Applications

per second, enabling scans of the entire internet in under 5 minutes. This capa-
bility makes Masscan a valuable tool for security researchers and penetration
testers who need to identify and exploit vulnerabilities across large networks.

Masscan achieves its speed through asynchronous transmission, a technique
that allows it to send multiple packets simultaneously without waiting for res-
ponses. Additionally, Masscan can leverage its own custom TCP/IP stack, fur-
ther optimizing its scanning efficiency.

Beyond basic port scanning, Masscan can also perform banner checking, a
process that establishes a TCP connection with a target machine and retrieves
information about the service running on the scanned port. This functionality
provides valuable insights into the types of services running on a network, aiding
in vulnerability identification and exploitation [3] [4].

2.2. TLS-Scan

TLS-scan is a free, open-source tool designed to scan TLS servers and collect
comprehensive information about their security posture. It goes beyond basic
certificate validation by delving into the details of server ciphers, protocols, and
certificate extensions. This capability allows it to identify a wider range of vul-
nerabilities in TLS configurations, including weak ciphers, insecure protocols,
and outdated certificates.

TLS-scan can efficiently scan a large number of servers simultaneously, mak-
ing it a valuable asset for security professionals managing large server deploy-
ments or penetration testers conducting large-scale security assessments. By au-
tomating the scanning process, TLS-scan saves significant time and effort com-
pared to manual checks.

In addition to identifying vulnerabilities, TLS-scan can also be used to gather
valuable data for security analysis. The information it collects can be used to as-
sess the overall security posture of a server fleet, identify trends in TLS configu-
ration practices, and prioritize remediation efforts. This data-driven approach
allows security professionals to make informed decisions about how to best im-
prove the security of their TLS servers [3] [5].

2.3. JA3 and JA3S

JA3 and JA3S, are techniques developed by Salesforce for fingerprinting TLS
connections to detect malware. JA3 focuses on analyzing the specific way a client
initiates a TLS connection, whereas JA3S examines the server’s response. By
combining the fingerprints generated by these methods, a unique fingerprint of
a TLS connection can be created. This fingerprint can be highly effective in iden-
tifying malware, even when it utilizes common ports, IP addresses, or certifi-
cates. This capability is particularly useful as it allows security professionals to
distinguish malicious actors from legitimate traffic, even if they attempt to blend
in by mimicking common connection patterns.

In essence, JA3 and JA3S act like behavioral analysis tools for TLS connec-

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 477 Journal of Software Engineering and Applications

tions. By capturing the nuances of how a client initiates a connection and how
the server responds, they can create a behavioral profile that is specific to a par-
ticular site. This fine-grained analysis makes it possible to identify malware that
might otherwise evade detection by conventional methods [6].

3. Approach

In developing the Certis project, the approach has been methodically designed to
enhance cybersecurity capabilities within organizational networks by focusing
on three primary components: 1) SSL certificate parsing, 2) integration with
cloud service providers, and 3) the application of advanced behavioral finger-
printing techniques. This multi-pronged strategy aims to facilitate comprehen-
sive asset identification, anomaly detection, and the preemptive diagnosis of po-
tential security threats, thereby significantly bolstering the cybersecurity frame-
work of the users.

3.1. SSL Certificate Parsing

The initial scan phase of Certis, SSL certificate parsing, involves the meticulous
extraction of critical data from SSL certificates. This data includes the Subject
Name, Subject Alternative Names (SAN), issuer details, validity periods, and key
usage information. By automating the extraction and analysis of these fields,
Certis can efficiently identify and catalog digital certificates within an organiza-
tional network, setting a solid foundation for more advanced security assess-
ments.

3.2. Integration with Cloud Service Providers

The second scan phase of Certis extends to the integration with major cloud ser-
vice providers such as Amazon Web Services (AWS), Google Cloud Platform
(GCP), Microsoft Azure, Oracle Cloud Infrastructure (OCI), and Cloudflare.
This integration allows Certis to perform targeted scans within specific regions
and services offered by these providers, enhancing the Certis’s reach and preci-
sion in scanning network assets. The integration process involves setting up se-
cure API connections, authenticating the Certis’s access, and meticulously re-
trieving and analyzing the cloud-based certificate data to ensure comprehensive
coverage and accuracy [3].

3.3. Advanced Behavioral Fingerprinting

The final component of the approach involves the deployment of advanced fin-
gerprinting techniques, such as server banner fingerprinting and JARM finger-
printing, which analyzes the unique characteristics of TLS handshakes per-
formed by servers. By sending a series of specially crafted handshake requests
and analyzing the server’s responses, JARM generates a fingerprint that is
unique to each server’s TLS configuration. This fingerprint helps in identifying
not only the types of servers operating within a network but also potentially ma-

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 478 Journal of Software Engineering and Applications

licious servers that may be camouflaged within regular traffic. These finger-
printing techniques enable Certis to detect and classify infrastructure compo-
nents and potential security threats with a high degree of precision. The insights
gained from these analyses help in the early detection of anomalies and potential
malicious behavior, thus providing an essential Certis for proactive cybersecurity
defense [7] [8] [9].

4. Implementation of Certis

We now describe how the Certis was implemented and deployed with the Go
language framework.

4.1. Architecture and System Design

The Certis project utilizes the Go language and consists of a cloud service scan-
ning Certis that includes functionality for grabbing server banners and generat-
ing JARM fingerprints, providing deeper insights into the security and configu-
ration of scanned entities. As shown in Figure 1, Certis is built using Go and
employs Go’s cobra command framework for handling command-line interac-
tions.

Figure 1. Process flow diagram for Certis.

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 479 Journal of Software Engineering and Applications

4.1.1. Architecture Components
• Command Handlers
o Individual cloud service handlers (aws.go, gcp.go, etc.) initiate cloud-specific

scanning processes.
o The root.go manages CLI command setup and global configurations.
• Core Logic Modules
o Pre-Run Checks: Validates input parameters, updates logging levels, and

checks output file configurations.
o Scan Management: Handles the orchestration of scanning processes, includ-

ing CIDR splitting and concurrent scanning operations.
o Server Banner and JARM Fingerprinting: functionalities that enrich scanning

results by gathering additional data from scanned hosts.
• Utilities and Helpers
o Utility Functions: utils.go contains key functions like PerformPreRunChecks,

UpdateLogLevel, and functions for scanning and result processing.
o Data Enrichment: Functions such as ServerHeaderEnrichmentThread and

JarmFingerprintEnrichmentThread enrich scan results with server headers
and JARM fingerprints.

4.1.2. System Flow and Interactions
Certis follows the sequence of steps as described below.
• Initialization
o The system initializes by setting up CLI commands and performing pre-run

checks, including input validation and log level adjustment.
• Scanning Execution
o Upon executing a command, the corresponding handler sets up channels and

context for cloud-specific scans.
o Functions in utils.go facilitate the splitting of CIDR blocks and the manage-

ment of concurrent scanning tasks.
• Data Enrichment Process
o Server Banner Grabbing: As scan results are obtained, server banners are

captured using HTTP requests, handled by the ServerHeaderEnrichment-
Thread.

o JARM Fingerprinting: Simultaneously, JARM fingerprints are generated for
each target using the JarmFingerprintEnrichmentThread, providing a unique
fingerprint of the server’s SSL/TLS configuration.

• Result Processing and Output
o Enriched scan results are collected and potentially logged or saved to a file.
o Progress and final summaries are displayed in the console, and detailed re-

sults are written to disk if configured.

4.1.3. Design Considerations
• Concurrency and Performance
o The use of Go routines ensures high performance and efficient handling of

multiple, simultaneous scans.

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 480 Journal of Software Engineering and Applications

• Robustness and Error Handling
o Detailed logging and error management allow tracking of operations and

quick troubleshooting.
• Scalability
o The system’s modular design allows for easy expansion to include more

cloud providers or additional types of data enrichment like vulnerability
scanning or more detailed configuration assessments.

4.2. Detecting Malicious Servers Using JARM

We now describe how malicious servers are deteted with Certis.

4.2.1. Detecting Malicious Servers
• Comparison Against Known Malicious Configurations
o As detailed by Salesforce Engineering and other security researchers, JARM

fingerprints can be compared against a database of fingerprints known to be
associated with malicious servers. When a JARM fingerprint matches a known
malicious configuration, it suggests that the server may be part of a controlled
infrastructure used for malicious purposes like command and control (C2),
malware distribution, or phishing [7] [8] [9].

• Identifying Anomalous TLS Configurations
o Malicious servers often utilize unusual or less common TLS configurations to

avoid detection. By comparing the scanned servers’ JARM fingerprints against
a baseline of what is typically seen in benign environments, anomalies can be
detected. These anomalies may indicate a server being used for nefarious ac-
tivities.

• Tracking Malware Campaigns:
o JARM is effective for tracking and identifying servers related to specific mal-

ware campaigns. Since many malware families and their C2 infrastructure
share common TLS configurations, JARM fingerprints can help link different
malicious servers to the same campaign, even if other server attributes (like
IP addresses or domains) change [10].

4.2.2. Implementation of JARM within Certis
Certis incorporates JARM fingerprinting in the following way:

• Scanning Phase: During the scanning process, each target server is probed
to generate a JARM fingerprint.

• Enrichment Phase: These fingerprints are then passed through an enrich-
ment phase where they are compared against a list of known malicious finger-
prints.

• Alerting: If a match is found, the system alerts the user to the potential
threat, providing details such as the matched fingerprint, the server address, and
the likely type of threat it represents.

• Reporting: All findings are logged in a comprehensive report that includes
detailed information about detected anomalies and potential threats for further

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 481 Journal of Software Engineering and Applications

investigation [11] [12] [13].
In conclusion, the architecture and system design of the cloud service scan-

ning Certis effectively integrates command handling, core scanning logic, and
advanced data enrichment functionalities, including the innovative use of JARM
fingerprinting. This integration provides a robust framework for scanning mul-
tiple cloud environments and identifying configurations and behaviors indica-
tive of malicious servers. The code for the Certis can be found here:
https://github.com/kdab99/Certis.

5. Results of Implementation

1) The main page of the Certis is shown in Figure 2.
2) Successful implementation of SSL certificate search using a target regular

expression is show in in Figure 3.
This functionality allows the user to scan the target infrastructure and then

search for a particular certificate, allowing accurate asset identification and in-
ventorization.

3) Integration of cloud service provider IP ranges for scanning and searching
(See Figure 4):
o Scanning a cloud service provider’s entire IP range for the certificates issued

with a particular keyword. (AWS).
o Scanning a particular region in a CSP’s offering for a more concentrated scan

and search (GCP).
o Addition of debug commands along with additional threads for improved

scanning. (Oracle Cloud Infrastructure) as shown in Figure 5.
4) Building a database of JARM fingerprints of known malicious servers:

Figure 2. Main Certis view.

https://doi.org/10.4236/jsea.2024.176026
https://github.com/kdab99/cert-search

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 482 Journal of Software Engineering and Applications

Figure 3. Results of SSL search.

Figure 4. Cloud service IP scanning.

Figure 5. Use of debug features.

6. Comparison with Existing Approaches

TLS fingerprinting techniques like JA3 have been essential for identifying client
devices based on their TLS handshake behaviors. However, with the sophistica-

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 483 Journal of Software Engineering and Applications

tion of cyber threats on the rise, a more robust method is needed for server-side
fingerprinting. JARM, an advanced server-side fingerprinting technique dis-
cussed in depth by Salesforce Engineering, significantly enhances the capabilities
of security Certiss, providing an edge over traditional JA3 signatures.

6.1. Overview of JA3

JA3 hashes aspects of the TLS handshake initiated by clients, capturing details
like the TLS version and cipher suites. While effective for identifying clients and
tracking potential malicious activities associated with specific client configura-
tions, JA3 predominantly focuses on client-side behaviors.

6.2. Advantages of JARM over JA3
6.2.1. Server-Side Fingerprinting
JARM shifts the focus from client to server, targeting server configurations. This
is vital as malicious servers often initiate cyber attacks, including malware dis-
tribution or operating as command and control (C2) centers. JARM’s server-
centric approach provides insights into potentially harmful server infrastruc-
tures, making it indispensable for modern cyber defense strategies.

6.2.2. Detailed Analysis of Server Responses
JARM probes servers with multiple TLS handshake variations to analyze how
servers react to each. This method is more comprehensive than JA3’s single-
handshake approach, capturing a wider array of server responses. Salesforce En-
gineering highlights how JARM’s probing technique can effectively discern be-
tween servers hosting different services, even on the same machine, by noting
the subtle differences in their TLS configurations.

6.2.3. Consistency and Reliability
JARM uses multiple probes to generate a fingerprint, which ensures consistency
and reliability in the fingerprint’s accuracy. This approach helps reduce false po-
sitives, providing a dependable method for ongoing server monitoring and
anomaly detection.

6.2.4. Proactive Threat Detection
Incorporating JARM into Certis allows for proactive scanning and identification
of servers with fingerprints that match known malicious entities. This proactive
approach is crucial in an environment where adversaries continuously adapt
their tactics. JARM enables security teams to update their threat databases with
the latest fingerprints, enhancing the dynamic nature of security surveillance
and response.

6.2.5. Integration with Security Operations
JARM fingerprints enrich security operations by offering detailed and actionable
data. This enables quick correlation of suspicious server activities with broader
security incidents, facilitating faster responses and more focused investigations.

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 484 Journal of Software Engineering and Applications

Salesforce Engineering’s discussion on JARM emphasizes its utility in tracking
malicious infrastructures, underscoring its value in comprehensive security
frameworks.

7. Conclusion & Current Work

The Certis project has effectively demonstrated its capability to enhance cyber-
security measures through its comprehensive approach to SSL certificate pars-
ing, cloud service integration, and advanced fingerprinting techniques. The im-
plementation of these components has established a solid foundation for proac-
tive security management within organizational networks, enabling precise asset
identification and anomaly detection.

7.1. Current Work

Looking ahead, we are enhancing Certis further by incorporating cross-layer
malicious behavior identification capabilities. This expansion focuses on inte-
grating more complex analytics that span multiple network layers, enhancing
Certis’s ability to detect sophisticated cyber threats that operate across different
operational levels of network infrastructure. This approach leverages intercon-
nected data insights from both the network and application layers to provide a
more holistic view of security threats, ultimately leading to more robust and re-
silient cybersecurity defenses.

• Development of Cross-Layer Analysis Algorithms: By developing algo-
rithms that analyze patterns and anomalies across different network layers, Cer-
tis aims to identify complex malicious activities that single-layer tools might
miss.

• Integration with Existing Security Systems: To facilitate cross-layer analy-
sis, Certis integrates more deeply with existing security infrastructures, such as
intrusion detection systems (IDS) and security information and event manage-
ment (SIEM) systems, creating a more interconnected security ecosystem.

7.2. Use Cases

Certis is particularly valuable in identifying and mitigating potential threats
across various domains. For instance, it can be instrumental in detecting mali-
cious servers on the Internet by leveraging JARM fingerprinting to profile TLS
servers and pinpoint suspicious behaviors unique to threat actors. Similarly,
Certis’s capability to scan and analyze SSL certificates aids organizations in
mapping out their digital infrastructure, identifying misconfigurations, and dis-
covering hidden attack surfaces, which are crucial for securing large-scale net-
work environments against evolving cyber threats.

7.3. Potential Tradeoffs

As we expand the scope of Certis, several tradeoffs are anticipated, particularly
in minimizing false positives, which are erroneous identifications of benign ac-

https://doi.org/10.4236/jsea.2024.176026

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 485 Journal of Software Engineering and Applications

tivities as threats:
• Balancing Sensitivity and Specificity: Enhancing Certis’s ability to detect

real threats without increasing false positives requires a delicate balance. This
involves refining the algorithms to improve their accuracy and specificity, en-
suring that they are sensitive enough to detect real threats while sophisticated
enough to disregard benign anomalies.

• Training with Diverse Data Sets: To reduce false positives, it is crucial to
train the system using diverse and comprehensive datasets that include a wide
range of normal and anomalous behaviors across different network layers. This
ensures the system can learn to accurately differentiate between genuine threats
and regular network activities.

• Continuous Learning and Adaptation: Implementing AI/LLM-based &
machine learning techniques that allow Certis to continuously learn from new
data and adapt to changing network behaviors over time will be vital. This adap-
tive approach can help reduce false positives by keeping the system updated with
the latest behavior patterns.

In conclusion, these future enhancements aimed at cross-layer malicious be-
havior identification promise to elevate its effectiveness and efficiency further.
By addressing the challenges associated with expanding capabilities, particularly
around minimizing false positives, Certis is poised to offer a more powerful
framework in the arsenal against cyber threats.

Acknowledgements

We thank the reviewers for their comments that improved the paper.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Tomlinson, C. (2023) Identifying Cyber Asset Management’s Top 3 Challenges and

How to Solve Them. JupiterOne.
https://www.jupiterone.com/blog/the-3-biggest-challenges-of-cyber-asset-managem
ent-caasm-and-how-to-solve-them

[2] Guy, J.J. (2021) Asset Inventory Has Become a Serious Security Problem. SC Media.
https://www.scmagazine.com/perspective/asset-inventory-has-become-a-serious-se
curity-problem

[3] Park, D. (2020, May 12) How to Scan AWS’s Entire IP Range to Recon SSL Certifi-
cates. https://www.daehee.com/scan-aws-ip-ssl-certificates/

[4] Graham, R. (n.d.) GitHub—Robertdavidgraham/Masscan: TCP Port Scanner,
Spews SYN Packets Asynchronously, Scanning the Entire Internet in under 5 Mi-
nutes. GitHub. https://github.com/robertdavidgraham/masscan

[5] prbinu (n.d.) GitHub—prbinu/TLS-Scan: An Internet scale, Blazing Fast SSL/TLS
scanner (Non-Blocking, Event-Driven). GitHub.
https://github.com/prbinu/TLS-scan

https://doi.org/10.4236/jsea.2024.176026
https://www.jupiterone.com/blog/the-3-biggest-challenges-of-cyber-asset-management-caasm-and-how-to-solve-them
https://www.jupiterone.com/blog/the-3-biggest-challenges-of-cyber-asset-management-caasm-and-how-to-solve-them
https://www.scmagazine.com/perspective/asset-inventory-has-become-a-serious-security-problem
https://www.scmagazine.com/perspective/asset-inventory-has-become-a-serious-security-problem
https://www.daehee.com/scan-aws-ip-ssl-certificates/
https://github.com/robertdavidgraham/masscan
https://github.com/prbinu/tls-scan

K. Bhatnagar, V. K. Madisetti

DOI: 10.4236/jsea.2024.176026 486 Journal of Software Engineering and Applications

[6] Althouse, J. (2019, January 15) TLS Fingerprinting with JA3 and JA3S. Salesforce
Engineering Blog.
https://engineering.salesforce.com/TLS-fingerprinting-with-ja3-and-ja3s-24736285
5967/

[7] Althouse, J. (2020, November 17) Easily Identify Malicious Servers on the Internet
with JARM. Salesforce Engineering Blog.
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet
-with-jarm-e095edac525a/

[8] Scott, A. (2021, January 29) Fingerprinting SSL Servers Using JARM and Py-
thon—Palo Alto Networks Developers—Medium. Palo Alto Networks Developers.
https://medium.com/palo-alto-networks-developer-blog/fingerprinting-ssl-servers-
using-jarm-and-python-6d03f6d38dec

[9] Perez, G. (2020, December 23) JARM: A Solid Fingerprinting Tool for Detecting
Malicious Servers. SecurityTrails.
https://securitytrails.com/blog/jarm-fingerprinting-Certis

[10] KC7 Foundation. (n.d.) JARM Fingerprinting. K7 Cyber.
https://kc7cyber.com/post/4

[11] cedowens (n.d.) C2-JARM/README.md at Main · cedowens/C2-JARM. GitHub.
https://github.com/cedowens/C2-JARM/blob/main/README.md

[12] myceliumbroker (n.d.) myceliumbroker/jarm. GitHub.
https://github.com/myceliumbroker/jarm/blob/main/jarm-fingerprints.json

[13] abuse.ch (n.d.) SSL Blacklist by abuse.ch. SSLBL. https://sslbl.abuse.ch/blacklist/

https://doi.org/10.4236/jsea.2024.176026
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/
https://engineering.salesforce.com/tls-fingerprinting-with-ja3-and-ja3s-247362855967/
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a/
https://engineering.salesforce.com/easily-identify-malicious-servers-on-the-internet-with-jarm-e095edac525a/
https://medium.com/palo-alto-networks-developer-blog/fingerprinting-ssl-servers-using-jarm-and-python-6d03f6d38dec
https://medium.com/palo-alto-networks-developer-blog/fingerprinting-ssl-servers-using-jarm-and-python-6d03f6d38dec
https://securitytrails.com/blog/jarm-fingerprinting-tool
https://kc7cyber.com/post/4
https://github.com/cedowens/C2-JARM/blob/main/README.md
https://github.com/myceliumbroker/jarm/blob/main/jarm-fingerprints.json
https://sslbl.abuse.ch/blacklist/

	Certis: Cloud Asset Management & Threat Evaluation Using Behavioral Fingerprinting at Application Layer
	Abstract
	Keywords
	1. Introduction
	2. Related Work
	2.1. Masscan
	2.2. TLS-Scan
	2.3. JA3 and JA3S

	3. Approach
	3.1. SSL Certificate Parsing
	3.2. Integration with Cloud Service Providers
	3.3. Advanced Behavioral Fingerprinting

	4. Implementation of Certis
	4.1. Architecture and System Design
	4.1.1. Architecture Components
	4.1.2. System Flow and Interactions
	4.1.3. Design Considerations

	4.2. Detecting Malicious Servers Using JARM
	4.2.1. Detecting Malicious Servers
	4.2.2. Implementation of JARM within Certis

	5. Results of Implementation
	6. Comparison with Existing Approaches
	6.1. Overview of JA3
	6.2. Advantages of JARM over JA3
	6.2.1. Server-Side Fingerprinting
	6.2.2. Detailed Analysis of Server Responses
	6.2.3. Consistency and Reliability
	6.2.4. Proactive Threat Detection
	6.2.5. Integration with Security Operations

	7. Conclusion & Current Work
	7.1. Current Work
	7.2. Use Cases
	7.3. Potential Tradeoffs

	Acknowledgements
	Conflicts of Interest
	References

