
Journal of Software Engineering and Applications, 2024, 17, 321-339
https://www.scirp.org/journal/jsea

ISSN Online: 1945-3124
ISSN Print: 1945-3116

DOI: 10.4236/jsea.2024.175018 May 29, 2024 321 Journal of Software Engineering and Applications

Sher: A Secure Broker for DevSecOps and CI/CD
Workflows

Pranau Kumar, Vijay K. Madisetti

School of Cybersecurity and Privacy, Georgia Institute of Technology, Atlanta, USA

Abstract
GitHub Actions, a popular CI/CD platform, introduces significant security
challenges due to its integration with GitHub’s open ecosystem and its use of
flexible workflow configurations. This paper presents Sher, a Python-based
tool that enhances the security of GitHub Actions by automating the detec-
tion and remediation of security issues in workflows. Self-Hosted Ephemeral
Runner, or Sher, acts as a broker between GitHub’s APIs and a customizable,
isolated environment, analyzing workflows through a static rules engine and
automatically fixing identified issues. By providing a secure, ephemeral run-
ner environment and a dynamic analysis tool, Sher addresses common mis-
configurations and vulnerabilities, contributing to the resilience and integrity
of DevSecOps practices within software development pipelines.

Keywords
CI/CD Pipelines, GitHub, GitOps, DevSecOps, Isolation, Security, SAST

1. Introduction

The flexibility and responsiveness offered by modern software development
practices such as DevOps and DevSecOps has enabled rapid development cycles
[1]. Typically, there are several components and processes associated with De-
vOps—Continuous Integration (CI), Continuous Delivery (CD), Version Con-
trol, Monitoring, Collaboration, Infrastructure as Code (IaC), Configuration
Management, and Automation to mention some of them [2]. Similarly, DevSe-
cOps comprises a number of steps: 1) Identify DevSecOps needs, 2) Verify Code
Dependencies, 3) Adopt the Right Tools, 4) Identify Threat Models, 5) Adopt
Automation Tools, 6) Build Security Controls and Vulnerability Detection into
CI/CD Pipelines, and 7) Monitor & Deploy.

Continuous Integration and Continuous Delivery (CI/CD) are a set of

How to cite this paper: Kumar, P. and
Madisetti, V.K. (2024) Sher: A Secure Bro-
ker for DevSecOps and CI/CD Workflows.
Journal of Software Engineering and Ap-
plications, 17, 321-339.
https://doi.org/10.4236/jsea.2024.175018

Received: April 25, 2024
Accepted: May 26, 2024
Published: May 29, 2024

Copyright © 2024 by author(s) and
Scientific Research Publishing Inc.
This work is licensed under the Creative
Commons Attribution International
License (CC BY 4.0).
http://creativecommons.org/licenses/by/4.0/

Open Access

https://www.scirp.org/journal/jsea
https://doi.org/10.4236/jsea.2024.175018
https://www.scirp.org/
https://doi.org/10.4236/jsea.2024.175018
http://creativecommons.org/licenses/by/4.0/

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 322 Journal of Software Engineering and Applications

processes that have become synonymous with DevOps. CI lets developers regu-
larly merge their code changes to a central version-controlled repository, where
automated tests and builds can be run against them. This helps improve software
quality by detecting issues early in the development process.

CD, on the other hand, helps deploy and host the code changes made by de-
velopers to various infrastructure locations such as production, staging, or test-
ing environments. CI and CD together form a sequential series of steps starting
from code changes to deployment called a “pipeline” [3].

Tools that enable the setup of CI/CD pipelines are generally not developed by
engineering teams, with most of them opting to use offerings of commercial
CI/CD providers. This is primarily because of the complexity involved in dep-
loying and maintaining the software that controls this infrastructure. A few pop-
ular CI/CD providers include Jenkins [4], TravisCI [5], CircleCI [6], GitLab CI
[7], and GitHub Actions [8]. These providers let developers define “workflows”
or automation tasks that can be run in response to various events or “triggers”.
An example of such a workflow can be running a static analysis tool against the
codebase whenever a developer merges changes to the repository and then re-
porting the results.

While these tools let development teams be very productive, a major short-
coming associated with current tools is the inclusion of security as an after-
thought. This is a concern because supply chain security is directly dependent on
the security of CI/CD pipelines. A compromise in the pipeline can let attackers
poison any artifacts generated by the pipeline, steal sensitive secrets, and can also
let them laterally move across a team’s infrastructure. OWASP defines many
such attack vectors in their Top 10 CI/CD Security Risks [3].

Security researchers have demonstrated many practical attacks on CI/CD
platforms. They range from code injection to lateral movement to control of
domain controllers [9]. Unfortunately, it’s very easy to make mistakes while
configuring pipelines and issues can exist in the configuration of the infrastruc-
ture responsible for running the pipelines as well.

1.1. GitHub Actions

GitHub, a popular source-code management platform introduced their CI/CD
product called Actions. GitHub Actions is tightly integrated with the GitHub
ecosystem. It lets users define configurations for their workflows and save them
alongside their code as simple YAML files. Second, users can run their work-
flows on GitHub’s infrastructure for free (with some limits [10]. At the same
time, GitHub lets teams freely bring in their own infrastructure to run work-
flows or do a mix of both. Further, Actions lets developers create workflows and
publish them to the public so that commonly used workflows can be re-used by
other developer [8]

These workflows, defined in a special folder within every repository (.github/
workflows), can be run against “triggers” or events that are defined in the confi-

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 323 Journal of Software Engineering and Applications

guration file by the developer. For example, triggers may be a push, pull request,
fork, etc. [11].

These features let most developers, experienced and unexperienced, easily get
started with building their CI/CD pipelines. This ease-of-use is one of the rea-
sons why GitHub Actions is very popular and is continuing to increase in popu-
larity. Large organizations ranging from Google to Microsoft to open-source or-
ganizations like Pytorch to government agencies like the NSA, all use GitHub
Actions [12].

The power and versatility exposes GitHub Actions to some of the same secu-
rity problems with CI/CD pipelines discussed above. This is compounded by the
fact that many of the workflows can be re-used and the open-source, collabora-
tive nature of GitHub allows for complex dependency chains to exist. Further
increasing the chance of security vulnerabilities is the feature that lets developers
use their own infrastructure for running workflows [13] [14] [15].

1.2. Contributions

These security issues can have potentially disastrous consequences and it is
imperative to enable developers to protect against common misconfigura-
tions.

In this paper, we introduce “Sher”, a tool designed to automatically detect and
remediate some of the security issues present in GitHub Actions discussed earli-
er. Sher is a Python-based tool that hooks into the GitHub REST API to act
based on repository events.

Our main contributions through Sher are as follows:
1) A broker that acts as a middleman between GitHub’s APIs and a customiz-

able, isolated and stateless environment to run Actions workflows.
2) An extensible rules engine to perform static analysis on workflows.
3) A tool to automatically remediate certain issues based on the results of the

static analysis.
In the next section, we describe details of the GitHub Actions ecosys-

tem—what workflows are, how they’re defined and how they can be triggered. In
doing so, we also explain the attack vectors covered by Sher. In Section 3, we
cover some of the previous research and existing tools in this area. We also
briefly explain how these works compare to mine. In Section 4, we describe how
Sher works and in Section 5, its architecture and implementation. Later in Sec-
tion 6, performance and effectiveness are compared against existing approaches.
Lastly, we conclude with future extensions of Sher and how it can be generalized
along with a summary of the paper.

2. DevSecOps Workflows

A CI/CD pipeline typically consists of a version control system, an automation
server, a testing framework and deployment tools. In GitHub Actions parlance,
the version control system used is Git, the automation server is called a “run-

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 324 Journal of Software Engineering and Applications

ner”, while testing framework and deployment tools are choices left to the de-
veloper based on their needs. Each “Action” consists of workflows, an automa-
tion consisting of a series of steps executed on a runner. These runners are VMs
or Docker containers that can be run on GitHub’s infrastructure or developers
can choose to self-host it. In this section, we describe what a workflow is, how it
is written, how it is triggered and the environment where it is run, and we also
describe common ways of adversarial attack.

2.1. Workflows

A workflow is a configuration file written in YAML that defines what the auto-
mation task is. GitHub defines it as a “configurable automated process that will
run one or more jobs” [11].

A repository’s workflows are stored in a pre-defined directory within the root
directory of the repository called .github/workflows. A repository can have mul-
tiple workflows each performing independent tasks or they can also be inter-
dependent on each other.

The following are essential components of a workflow (See Figure 1):
• Trigger: An event that causes a workflow to run.
• Job: A series of steps that execute on a runner.
• Step: Each step in a job is a small task that builds up progress for the job. This

can be a shell command, a third-party Actions workflow (simply called an
“action”), docker containers or external programs.

Each workflow can include one or more of the above components and each of
these components lets the developer define fine-grained conditions allowing
them to have a lot of control how exactly the automation is executed.

Listing 1 shows an example workflow that runs when there is a push to a re-
pository. The workflow checks out the repository, sets up node.js 20, installs a
package and runs a program called bats. The workflow consists of multiple key-
value pairs that each have a special meaning. The name key, as the name sug-
gests, defines the name of the workflow which in this case is learn-github-actions.
The on key defines the triggers. Triggers are events that GitHub generates and
can be consumed by Actions. Next, we have the jobs key which defines one or
more jobs that need to be run. In this case, the job’s name is check-bats-version.
The key for each job lists the steps to be taken (steps) and the kind of machine it
needs to be run on (runs-on). In this case, the runner is a GitHub hosted Ubun-
tu VM. The steps for this workflow includes 4 parts with the first two re-using a
third-party workflow to “check out” the repository and install node.js. The re-
maining steps involve running shell commands to install and run bat.

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 325 Journal of Software Engineering and Applications

Listing 1. A simple GitHub Actions workflow.

2.2. Triggers

Workflow triggers are events that cause a workflow to run [16]. Events can be
broadly categorized into events that occur in a repository; events that occur out-
side GitHub; scheduled events; manual events.

When an event that GitHub recognizes occurs, GitHub iterates through all the
workflows present in the workflows directory in a repository and matches the
event against the one defined using the on key. Some events also have types and
developers can choose to trigger their workflows for one or more of these types.

2.3. Runners

Each job in a workflow needs to specify what kind of machine the job can be run
on using the runs-on key. The machine that executes a job is called a runner.
Runners are of two types—Github-hosted and self-hosted. GitHub uses a tag
system to label the runners available to a repository and match a job to a runner.
For example, a job that specifies a runs-on value of ubuntu-latest causes Actions
to choose a GitHub-hosted runner using the latest available Ubuntu version. Si-
milarly, if the value is self-hosted, Actions chooses a self-hosted runner [11].

GitHub-hosted runners are runners that GitHub provides to users for free
with limits based on number of minutes of compute used. Each GitHub-hosted
runner is a VM that is instantiated with an operating system (Windows, macOS,
Linux), some pre-installed packages, and the runner software. These VMs are
ephemeral and are destroyed after the job is complete. GitHub is also responsible
for the maintenance of these runners.

On the other hand, self-hosted runners are machines that developers can set
up by themselves to accept and execute jobs from GitHub, on the pre-condition
that they are responsible for maintaining and upgrading the machines that run
the jobs. The main advantage of self-hosted runners is that it offers developers
control over the hardware, software, environment, and tools. For example, if a
machine learning engineer wants to run workflows that require a GPU, they can
create a machine that has a GPU and install the runner software that GitHub
provides so that it can be registered to execute the GPU-bound workflows that
the engineer requires.

However, self-hosted runners despite their ease-of-setup and flexibility is in-
secure in its default configuration. Runners, by default, have access to the same
resources as the user of the machine they run on. If the runner software is run-
ning as root, all jobs executed on the machine run as root. Similarly, self-hosted
runners, by default, are stateful. Any artifacts from previous jobs such as files

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 326 Journal of Software Engineering and Applications

and orphan processes are left behind and continue to stay on the machine unless
the developer takes special care to clean up. Lastly, as mentioned earlier, up-
grading and maintaining the machine and the runner software is the responsi-
bility of the developer.

2.4. Attack Vectors

GitHub Actions is unique in that it allows Actions workflows to be run by not
only the repository owner but also any user who has previously contributed to
the repository when they open a pull request Actions works and is by design.
However, it also opens up the following attack vectors:

1) Actions workflows from malicious PRs—When a contributor creates a pull
request, they can include a malicious workflow that may be run when the PR is
submitted. This PR may potentially be able to steal tokens used by the repository
and send them to the attacker.

2) Using untrusted Actions workflows—When a repository owner uses an
untrusted workflow from the GitHub Marketplace, they are potentially allowing
the workflow to run arbitrary code in the context of their repository. Once again,
this may allow the workflow to steal tokens, secrets and modify the output of the
workflow.

3) Usage of non-ephemeral self-hosted runners—When a developer sets up a
runner on their own infrastructure to run Actions workflows, the code used by
the workflow runs alongside other code on the machine with no isolation. Fur-
ther, by default, unless the developer configures a method to clean up the run-
ner, artifacts from a previous workflow are left behind. This can be exploited by
a malicious actor to run arbitrary code on a repository owner’s infrastructure.
When combined with attack vector 1, this can potentially allow any contributor
to run arbitrary code on a repository owner’s infrastructure.

3. Related Work

The importance of security issues in CI/CD pipelines is new and increasing
with the realization that software supply chain security is critical. Most re-
search papers discussing these issue are recently published within the last two
years. In this section, we discuss some of the existing literature, published work,
and open-source tools present in this space. We also discuss some of the gaps
present in their works that we have tried to address in our work.

NIST, in their paper [17] on “Strategies for the Integration of Software Supply
Chain Security in DevSecOps CI/CD Pipelines” describe measures to include
software supply chain security measures into a CI/CD pipeline. They describe
measures such as secure build, secure pull-push operations with repositories, in-
tegrity of builds and audit logs, secure commits, and security of workflows. These
measures show an accurate picture of the threats associated with pipelines.
However, the paper is prescriptive and does not provide any reference imple-
mentation of how one might integrate these security measures.

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 327 Journal of Software Engineering and Applications

Pan et al. [18], in their paper, “Ambush from All Sides: Understanding Secu-
rity Threats in Open-Source Software CI/CD Pipelines”, conduct a large-scale
measurement study of over 320 k CI/CD pipelines to define a threat model and
approaches attackers may take towards these pipelines. They go on to validate
the threat model with case studies.

Koishybayev et al. [19], in their paper, “Characterizing the Security of GitHub
CI Workflows”, scan over 440 k workflows on GitHub Actions and found that
over 99.7% of workflows re-use external third-party actions. Further, they found
that 99.8% of workflows execute with more privileges than needed—the work-
flow can read and write data to the source code of the repository. This paper
underscores the need for tools that analyze workflows and provide measures to
developers to secure their configurations.

Dakic et al. [20], in their paper, “CI/CD Toolset Security”, list CI/CD pipeline
security concerns in Jenkins, another popular tool provider like GitHub Actions.

Further, outside of academia, there are many open-source tools and compa-
nies trying to address some of the shortcomings of GitHub Actions by hooking
into the rich APIs that it provides.

In this paper, we studied 5 tools and solutions that currently exist—Gato [21],
Ubicloud [22], StepSecurity, Actions Runner Controller [10], Runs On [10].

1) Actions Runner Controller—This is a Kubernetes controller maintained by
GitHub that lets you deploy self-hosted runners as pods on a cluster. It gives the
runners statelessness when jobs capable running entirely in containers are used.
However, it cannot be easily used with custom hardware configurations.

2) Gato—Gato, or Github Attack Toolkit, is an open-source attack tool from
Praetorian [21] that scans for CI/CD issues in a GitHub repository. It also lets
researchers exploit pipeline vulnerabilities. However, it doesn’t have the capacity
to actually protect a pipeline by itself.

3) StepSecurity—StepSecurity is a startup that is focused on improving the
security of GitHub actions. “Harden runner” is an action that lets you harden
your self-hosted runners by restricting network traffic and applying other re-
strictions on the code that is run during a workflow. It also logs all network traf-
fic during a workflow for later use. They also have products that lets users scan
workflows. However, they don’t address the use-case of isolating the environ-
ment for a self-hosted runner [23].

4) Ubicloud—This is a startup that provides a cheaper and more secure alter-
native to GitHub-hosted runners. They provide a service that lets developers run
their GitHub Actions workflows on their infrastructure.

5) Runs on—Similar to Ubicloud, they let developers run GitHub Actions
workflows on AWS with the option to use custom AWS VM images if needed.

Having looked at the various approaches taken by different tools and compa-
nies to secure pipeline workflows, it is clear that there is no “correct way” to im-
prove the security. There are a list of tradeoffs based on the priorities of each
tool and its intended use case.

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 328 Journal of Software Engineering and Applications

Table 1. Comparison of Sher with some existing solutions.

Features Sher Gato Ubicloud Step Security
Actions
Runner

Controller
Runs On

Ephemeral Runners Yes No Yes No Yes Yes

Custom Runner
Environments

Yes No No No Yes Yes

Scan Workflows Yes Yes No Yes No No

Fix Workflows Yes No No Yes No No

Generate Exploits No Yes No No No No

Hardened Runners No No Yes Yes No NO

4. Methodology

In this paper, we propose an efficient solution to two major steps within GitHub
Actions—first, the ability to easily create customizable self-hosted and ephemer-
al runners; second, the ability to scan Actions workflows for potential security
issues, report them, and automatically take action on them. In doing so, we
create a broker-based architecture between GitHub’s APIs and a developer’s in-
frastructure giving them more control over how to use their own hardware while
preserving the ease-of-use of GitHub Actions Self-Hosted Ephemeral Runner

Sher, short for Self-Hosted Ephemeral Runner, is an open-source tool that acts
as a broker between GitHub’s APIs and the underlying infrastructure that runs a
workflow’s jobs. The primary objective is to provide users the ability to easily
and securely customize the environment according to their hardware and soft-
ware requirements while also preserving the flexibility in workflow definitions
afforded by GitHub Actions. [24]

The tool works by registering itself as an authorized GitHub App. GitHub
Apps are officially supported ways to extend the functionality of GitHub by us-
ing its REST APIs. GitHub also lets Apps subscribe to “events”. These events are
different from events that trigger workflows as described earlier. These are
events that describe any changes happening in a repository. For example, an
event is emitted if an account installs an app, a workflow is started, a workflow is
completed, a new branch is made, an issue is created, and many such other
events can be triggered. Each time an event is triggered, GitHub makes a POST
HTTP call to an endpoint defined by the developers where they can get details of
the event. This is called a “webhook” and lets developers add custom logic in re-
sponse to an event [25].

Similarly, Sher is a GitHub app that subscribes to events about GitHub Ac-
tions workflows. In response to an event describing the start of a workflow, the
tool creates a virtual machine just-in-time based on a pre-defined configuration.

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 329 Journal of Software Engineering and Applications

Figure 1. Self-Hosted ephemeral runner.

It then loads the runner software on the virtual machine and registers the runner
with GitHub. Once the runner has executed its job, GitHub sends out another
event signaling that the job has completed and the tool deletes the VM and its
data. This process repeats every time a job needs to run on a self-hosted runner.

The advantages of doing it this way are evident. The first is that it lets
workflow jobs run in an isolated environment. Further, since the VM is deleted
after the completion of every run, there is no possibility for an attacker to leave
behind artifacts on the infrastructure that can later be used by the attacker to
compromise infrastructure. Next, since the developer can choose to configure
the VM however they want (including the ability to passthrough desired PCIe
hardware), they can easily run custom workflows securely that would have oth-
erwise not been possible.

Scanning Tool

The second objective of Sher is to provide an open-source tool that can analyze a
developer’s workflows according to pre-defined rules and evaluate compliance

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 330 Journal of Software Engineering and Applications

Figure 2. Scanning tool.

with these rules. When possible, the tool also suggest remediations to the devel-
oper.

The scanning tool (See Figure 2) makes is currently available as a website at
https://ghasecurity.xyz. Anyone who has authorized the GitHub app for their
account can use it.

When a developer installs the GitHub app, they are able to grant access to the
app to scan their repositories as well. Once access is granted, the app can read the
repository’s workflows defined in the .github/workflows folder and provide a re-
port on the website for each defined rule. In select cases, the app also lets the user
automatically fix workflows according to best practices highlighted in the report.

The scanning tool supports three checks at present. These rules were carefully
selected after considering a tradeoff between ease of implementation and impact.
Since the tool is open-source, interested members of the community may add
more checks to the tool as needed to extend it. The checks are defined in the
form of a self-contained Python function.

The three rules currently present in the tool are as follows:
1) The first rule checks if a workflow re-uses third-party actions via its ref in-

stead of its commit hash. GitHub recommends [8] developers do this because it
is possible for a malicious actor to have a ref point to a different malicious com-
mit. When this happens, it can lead to a supply chain attack when the ref point-
ing to a malicious commit is imported by another workflow.

2) The second rule checks if a workflow is using a secret in a step that is not
necessary. Specifically, it checks if all the secrets accessible to a repository are
being passed to another workflow or third-party action. While the uses of this
are genuine, it can help to understand how repository secrets are being accessed

https://doi.org/10.4236/jsea.2024.175018
https://ghasecurity.xyz/

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 331 Journal of Software Engineering and Applications

and used. When all repository secrets are directly passed by inheritance to
another workflow or third-party action, it is generally not necessary and requires
the developer to audit that configuration.

3) The third rule reads the repository settings and checks the permissions of
the GITHUB_TOKEN token and if Actions are configured to approve pull re-
quests. The GITHUB_TOKEN token controls the access of Actions workflows to
the repository’s contents. By default, this setting only lets workflows read the
repository’s code and not modify it. But, many developers change this default
permission to allow workflows to both read and write even when it’s not neces-
sary. Similarly, the second setting that’s checked by this rule warns a user if Ac-
tions workflows are allowed to merge pull requests to the repository without ap-
proval. This setting, if enabled, is dangerous as it can let any Actions workflow to
create a pull request against the repository and automatically merge it without
any human intervention.

The advantage of using an extensible tool like this is that it lets users imme-
diately known if there are any glaring issues with their configuration. However,
not every rule might be potentially applicable to a workflow, and the tool will let
users disable rules not relevant to their workflows and prevent potential false-
positives.

5. Architecture

In this section, we describe the architecture of both parts of Sher in depth. In
doing so, we highlight how it acts as a broker between control-plane (GitHub)
and data-plane (infrastructure) and how it can potentially be generalized to oth-
er CI/CD pipelines.

Sher is built as a simple FastAPI [26] server on Python to listen and respond
to webhooks from GitHub. It’s designed to run on any system that supports
running Python and Vagrant. The source code for the tool is available at
https://github.com/pranau97/sher.

5.1. Self-Hosted Ephemeral Runner Broker

From start to finish, there are around 10 steps (See Figure 3) every workflow
needs to take to complete a job. These steps are as follows:
• The first step starts with a developer making a change to the repository. This

can typically be a push to the repository.
• When GitHub sees this push, it reads the workflows in the repository to see if

there are any that are triggered by a push.
• If yes, GitHub starts running those workflows. Further, it sends out a web-

hook to Sher that a workflow has started.
• Sher’s FastAPI server (See Figure 4) listens on

https://ghasecurity.xyz/webhook for incoming requests. When it receives a
webhook, the first thing that it does is verify that it is legitimate and came
from GitHub by checking a signature.

https://doi.org/10.4236/jsea.2024.175018
https://github.com/pranau97/sher
https://ghasecurity.xyz/webhook

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 332 Journal of Software Engineering and Applications

Figure 3. Architecture of runner broker.

Figure 4. Output of the FastAPI server showing received webhooks from GitHub and the corresponding processing.

• If the request is legitimate, the server starts processing the request. It checks
the request payload to see if the workflow that has been started uses a runner
with the tag, “auto-runner”. If not, the request is just ignored.

• Next, it sets up an job specific folder where it creates a Vagrantfile that de-
fines how the VM needs to be set up. Listing 2 shows the default Vagrantfile.

• The server then contacts GitHub to retrieve a registration token for a runner

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 333 Journal of Software Engineering and Applications

and boots the VM up and registers the runner as ephemeral with GitHub.
• At this stage, the workflow execution proceeds as normal as GitHub recog-

nizes the new runner and assigns the job to it.
• Once the job has completed, GitHub fires off another webhook to Sher stat-

ing that the workflow has completed.
• The server recognizes this event and in response terminates the VM and de-

letes the job specific folder.
• Since the runner was registered as ephemeral, GitHub also removes the run-

ner from the list of configured runners so that it’s not re-used.
Thus, Sher acts as a broker interpreting events from GitHub and translating it

into commands for Vagrant. This way, the control-plane (i.e., GitHub Actions)
remains the same). However, the data-plane (i.e., infrastructure) can be custo-
mized to the developer’s liking [27].

Listing 2. Default vagrantfile.

5.2. Scanning Tool

From start to finish, there are six steps involved in the process of scanning a
workflow. These steps are as follows:
• The process starts with a user who has installed the app going to the website,

https://ghasecurity.xyz.
• Once on the website, they are prompted to add their repository’s full name in

the format owner/name.
• The FastAPI server parses the repository name and looks it up to check if it

has the requisite permissions to access the repository’s contents. If yes, it
queries GitHub’s APIs to list all workflows in the default branch of the repo-

https://doi.org/10.4236/jsea.2024.175018
https://ghasecurity.xyz/

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 334 Journal of Software Engineering and Applications

sitory.
• The user is again prompted to select a workflow as shown in Figure 5 and

Figure 6.

Figure 5. Screenshots showing the Scanning tool’s search and workflow selection interface.

Figure 6. Architecture of the scanning tool.

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 335 Journal of Software Engineering and Applications

Figure 7. List of recommendations of the scanning tool.

• Once the user selects a workflow, the server reads the workflow’s contents
and runs each rule’s functions against the workflow and tabulates a list of
recommendations.

• These recommendations are then tabulated and sent to the website to display.
The recommendations are also color coded according to the potential securi-
ty risk posed by the configuration. Figure 7 shows how the list of recom-
mendations looks.

• For each category of recommendations, there is a button to apply a fix. If the
user selects the fix button, the tool then automatically applies a fix.

• If a fix is not available, the button is simply not displayed.
This way, Sher can be used as a tool to educate its users about potential issues

along with an explanation of why their configuration is potentially insecure.
Where possible, Sher also makes it very easy to automatically apply a fix.

6. Evaluation

We devised multiple test cases that are designed to emulate real-world usage of
Sher. We have already discussed in the preceding sections how Sher addresses
gaps in current solutions. The following test cases will prove how the gaps were
met by Sher.

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 336 Journal of Software Engineering and Applications

6.1. Test Cases for Runner Tool

Test cases for the runner tool were divided into two categories. One category was
used to test ephemeral runners while the other was used to test the same but
with custom VM images. The test cases are as follows:

1) Test Case 1: Deploying and destroying VM images on-demand in response
to webhooks from GitHub.

2) Test Case 2: Running successfully when fed a single-step, single-job
workflow.

3) Test Case 3: Running successfully when fed a multiple-step, single-job
workflow.

4) Test Case 4: Running successfully when fed a multiple-step, multiple-job
workflow.

The same test cases were repeated to test the functionality of the tool with
custom VM images. In all test cases, the tool was able to cleanly create a VM
image, run the job, and clean up after the job was marked complete.

6.2. Test Cases for Scanning Tool

For the scanning tool, we designed the following test cases:
1) Test Case 1: Scan workflows and settings. The backend should be able to

scan workflows for the defined rules and correctly generate recommendations.
2) Test Case 2: Parse repository names. The website should be able to correctly

parse the repository name. If the repository is incorrect, it should be able to dis-
play an error message as appropriate.

3) Test Case 3: List workflows in the default branch of the repository. The
website should be able to read the workflows present in .github/workflows and
list them correctly.

4) Test Case 4: Display table of recommendations for the three currently con-
figured rules.

5) Test Case 5: Automatically fix issues according to the generated recom-
mendations.

The tool was able to successfully pass the first 3 test cases. However, for test
case 4 and 5, not all rules had an automatic fix and there were some false posi-
tives detected too. These results for each test case are captured in Table 2.

These results are in-line with expectations. Trying to fix all false positives will
result in the rules becoming too complex and hard to maintain. Similarly, not all
rules are able to be fixed automatically. For example, a human is needed to audit

Table 2. Results of scanning rules.

RULE SCAN % FIX %

R1: Usage of git refs instead of commits 80% 100%

R2: Secrets usage 75% N/A

R3: Non-Default workflow permissions 100% 100%

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 337 Journal of Software Engineering and Applications

which secrets can be safely inherited by third-party actions and which rules
cannot be.

7. Summary

This paper has introduced Sher, a novel tool designed to enhance the security
infrastructure of GitHub Actions by automating the detection and remediation
of potential security issues in CI/CD workflows. Through a code development
process carried out by the first author as part of his research, Sher provides a
dual solution: it acts as a secure, ephemeral runner to isolate and execute jobs,
and it incorporates a static analysis tool to identify and fix vulnerabilities in
workflow configurations. The combination of these functionalities addresses a
significant gap in current CI/CD security practices, which often overlook the
necessity for dynamic and proactive security measures.

Sher’s architecture allows it to function as a middleman between GitHub’s
APIs and the user’s custom infrastructure, facilitating a controlled and secure
environment for running potentially vulnerable CI/CD tasks. The implementation
of Sher as a GitHub App, leveraging GitHub’s extensive webhook capabilities,
ensures that it integrates smoothly with existing GitHub workflows, maintaining
user familiarity and ease of use while significantly elevating the security posture
of the development pipeline.

7.1. Future Work

Looking forward, the Sher tool presents several avenues for extension and en-
hancement that could further solidify its utility and applicability in a broader
range of CI/CD security scenarios. One potential extension could involve ex-
panding the rule set of the static analysis tool to cover more comprehensive se-
curity checks. As the landscape of CI/CD security evolves (See [28] [29]), conti-
nuously updating and refining the rules based on the latest security research and
threat intelligence will enhance Sher’s effectiveness at identifying and mitigating
emerging threats.

Another promising direction could be to extend Sher’s functionality to other
CI/CD platforms beyond GitHub Actions. By adapting the underlying principles
and mechanisms of Sher to platforms like GitLab CI, Jenkins, or CircleCI, the
tool could offer a versatile security solution that benefits a wider array of users
and use cases in the DevOps community. This cross-platform capability would
involve developing adapters or plugins that translate Sher’s security checks and
runner management features to the APIs and workflow specifications of these
other systems.

Moreover, integrating machine learning techniques to predict potential vul-
nerabilities based on historical data and common configuration errors could
significantly advance Sher’s preemptive security measures. This proactive ap-
proach would allow developers to avoid common pitfalls before they manifest as
security risks, thereby strengthening the CI/CD pipeline’s defense against at-

https://doi.org/10.4236/jsea.2024.175018

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 338 Journal of Software Engineering and Applications

tacks.

7.2. Conclusion

In conclusion, Sher represents an advancement in the security of GitHub Ac-
tions by providing a solution to a critical aspect of modern software develop-
ment: secure automation in CI/CD environments. As this tool evolves, it has the
potential to set new standards for security in DevSecOps practices, ensuring that
security is a cornerstone of the development process, not an afterthought. With
continued development and expansion, Sher could play a crucial role in shaping
the future of secure software deployment and management in an increasingly
complex cyber threat landscape.

Conflicts of Interest

The authors declare no conflicts of interest regarding the publication of this pa-
per.

References
[1] Oracle (2024) What is DevOps? https://www.oracle.com/devops/what-is-devops/

[2] Wikipedia (2024) GitHub.
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=1196345392

[3] GitHub Resources (2024) DevSecOps Explained.
https://resources.github.com/devops/fundamentals/devsecops/

[4] Jenkins (2024) https://www.jenkins.io/

[5] Travis CI (2024) Test and Deploy with Confidence.
https://www.travis-ci.com/

[6] Circle CI (2024) Build Anything Fast. The CI/CD Platform for the AI Future.
https://circleci.com/

[7] GitLab (2024) GitLab CI-Documentation. https://docs.gitlab.com/ee/ci/

[8] GitHub (2024) What is Github Actions?
https://web.archive.org/web/20211203130324/https://resources.github.com/downlo
ads/What-is-GitHub.Actions_.Benefits-and-examples.pdf

[9] Stawinski IV, J. (2024) Fixing Typos and Breaching Microsoft’s Perimeter.
https://johnstawinski.com/2024/04/15/fixing-typos-and-breaching-microsofts-peri
meter/

[10] GitHub (2024) GitHub Marketplace-GitHub Actions.
https://github.com/marketplace?category=&query=updated%3A%3E2023-07-21+so
rt%3Apopularity-desc&type=actions&verification

[11] GitHub (2024) Understanding GitHub Actions.
https://docs.github.com/en/actions/learn-github-actions/understanding-github-acti
ons

[12] Epling, J. (2024) Powering Community-Led Innovation with GitHub Actions.
https://github.blog/2019-11-14-powering-community-led-innovation-with-github-a
ctions/

[13] Smart, I. and Gazdag, V. (2024) RCE-as-a-Service: Lessons Learned from 5 Years of
Real-World CI/CD Pipeline Compromise.

https://doi.org/10.4236/jsea.2024.175018
https://www.oracle.com/devops/what-is-devops/
https://en.wikipedia.org/w/index.php?title=GitHub&oldid=1196345392
https://resources.github.com/devops/fundamentals/devsecops/
https://www.jenkins.io/
https://www.travis-ci.com/
https://circleci.com/
https://docs.gitlab.com/ee/ci/
https://web.archive.org/web/20211203130324/https:/resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://web.archive.org/web/20211203130324/https:/resources.github.com/downloads/What-is-GitHub.Actions_.Benefits-and-examples.pdf
https://johnstawinski.com/2024/04/15/fixing-typos-and-breaching-microsofts-perimeter/
https://johnstawinski.com/2024/04/15/fixing-typos-and-breaching-microsofts-perimeter/
https://github.com/marketplace?category=&query=updated%3A%3E2023-07-21+sort%3Apopularity-desc&type=actions&verification
https://github.com/marketplace?category=&query=updated%3A%3E2023-07-21+sort%3Apopularity-desc&type=actions&verification
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.blog/2019-11-14-powering-community-led-innovation-with-github-actions/
https://github.blog/2019-11-14-powering-community-led-innovation-with-github-actions/

P. Kumar, V. K. Madisetti

DOI: 10.4236/jsea.2024.175018 339 Journal of Software Engineering and Applications

https://www.blackhat.com/us-22/briefings/schedule/#rce-as-a-service-lessons-learn
ed-from-5-years-of-real-world-cicd-pipeline-compromise-27541

[14] Stawinski IV, J. (2024) Playing with Fire—How We Executed a Critical Supply
Chain Attack on Pytorch.
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical
-supply-chain-attack-on-pytorch/

[15] Khan, A. (2024) One Supply Chain Attack to Rule Them All—Poisoning GitHub’s
Runner Images.
https://adnanthekhan.com/2023/12/20/one-supply-chain-attack-to-rule-them-all/

[16] GitHub (2024) Events that Trigger Workflows.
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows

[17] Chandramouli, R., Kautz, F. and Torres-Arias, S. (2024) Strategies for the Integra-
tion of Software Supply Chain Security in DevSecOps CI/CD Pipelines.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204D.pdf

[18] Pan, Z., et al. (2023) Ambush from All Sides: Understanding Security Threats in
Open-Source Software CI/CD Pipelines. IEEE Transactions on Dependable and Se-
cure Computing, 21, 403-418.
https://ieeexplore.ieee.org/abstract/document/10061526

[19] Koishybayev, I., Nahapetyan, A., Zachariah, R., Muralee, S., Reaves B., Kapravelos
A. and Machiry, A. (2022) Characterizing the Security of Github CI Workflows.
Proceedings of the 31st USENIX Symposium, Boston, 10-12 August 2022, 2747-
2763.

[20] Dakic, V., Redzepagic, J. and Basic, M. (2024) CI/CD Toolset Security. Proceedings
of the 33rd DAAAM International Symposium on Intelligent Manufacturing and
Automation, Vienna, 27-28 October 2022, 161-164.
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2022/working_
papers/dpn34029_a_2_Dakic.pdf

[21] Praetorian Inc. (2024) Gato (GitHub Attack Toolkit).
https://github.com/praetorian-inc/gato

[22] Ubicloud (2024) Open, Free, and Portable Cloud. Elastic Compute, Block Storage
(Non Replicated), Virtual Networking, Managed Postgres, and IAM Services in
Public Beta. https://github.com/ubicloud/ubicloud

[23] StepSecurity (2024) Secure Your GitHub Actions with StepSecurity Platform.
https://www.stepsecurity.io/

[24] Kumar, P. (2024) Sher.
https://github.com/pranau97/sher?tab=readme-ov-file#tiger-sher

[25] GitHub (2024) About GitHub Marketplace for Apps.
https://docs.github.com/en/apps/github-marketplace/github-marketplace-overview/
about-github-marketplace-for-apps

[26] Ramírez, S. (2024) FastAPI. https://fastapi.tiangolo.com/

[27] HashiCorp (2024) Vagrant by HashiCorp. https://www.vagrantup.com/

[28] Github (2024) About Billing for GitHub Actions.
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billin
g-for-github-actions

[29] Sharma, A. (2024) GitHub Actions Being Actively Abused to Mine Cryptocurrency
on GitHub Servers.
https://www.bleepingcomputer.com/news/security/github-actions-being-actively-ab
used-to-mine-cryptocurrency-on-github-servers/

https://doi.org/10.4236/jsea.2024.175018
https://www.blackhat.com/us-22/briefings/schedule/#rce-as-a-service-lessons-learned-from-5-years-of-real-world-cicd-pipeline-compromise-27541
https://www.blackhat.com/us-22/briefings/schedule/#rce-as-a-service-lessons-learned-from-5-years-of-real-world-cicd-pipeline-compromise-27541
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/
https://johnstawinski.com/2024/01/11/playing-with-fire-how-we-executed-a-critical-supply-chain-attack-on-pytorch/
https://adnanthekhan.com/2023/12/20/one-supply-chain-attack-to-rule-them-all/
https://docs.github.com/en/actions/using-workflows/events-that-trigger-workflows
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-204D.pdf
https://ieeexplore.ieee.org/abstract/document/10061526
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2022/working_papers/dpn34029_a_2_Dakic.pdf
https://www.daaam.info/Downloads/Pdfs/proceedings/proceedings_2022/working_papers/dpn34029_a_2_Dakic.pdf
https://github.com/praetorian-inc/gato
https://github.com/ubicloud/ubicloud
https://www.stepsecurity.io/
https://github.com/pranau97/sher?tab=readme-ov-file#tiger-sher
https://docs.github.com/en/apps/github-marketplace/github-marketplace-overview/about-github-marketplace-for-apps
https://docs.github.com/en/apps/github-marketplace/github-marketplace-overview/about-github-marketplace-for-apps
https://fastapi.tiangolo.com/
https://www.vagrantup.com/
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://docs.github.com/en/billing/managing-billing-for-github-actions/about-billing-for-github-actions
https://www.bleepingcomputer.com/news/security/github-actions-being-actively-abused-to-mine-cryptocurrency-on-github-servers/
https://www.bleepingcomputer.com/news/security/github-actions-being-actively-abused-to-mine-cryptocurrency-on-github-servers/

	Sher: A Secure Broker for DevSecOps and CI/CD Workflows
	Abstract
	Keywords
	1. Introduction
	1.1. GitHub Actions
	1.2. Contributions

	2. DevSecOps Workflows
	2.1. Workflows
	2.2. Triggers
	2.3. Runners
	2.4. Attack Vectors

	3. Related Work
	4. Methodology
	Scanning Tool

	5. Architecture
	5.1. Self-Hosted Ephemeral Runner Broker
	5.2. Scanning Tool

	6. Evaluation
	6.1. Test Cases for Runner Tool
	6.2. Test Cases for Scanning Tool

	7. Summary
	7.1. Future Work
	7.2. Conclusion

	Conflicts of Interest
	References

