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Abstract 
In the first step, the Ehrenfest reasoning concerning the adiabatic invariance 
of the angular orbital momentum is applied to the electron motion in the hy-
drogen atom. It is demonstrated that the time of the energy emission from 
the quantum level 1n +  to level n can be deduced from the orbital angular 
momentum examined in the hydrogen atom. This time is found precisely 
equal to the time interval dictated by the Joule-Lenz law governing the elec-
tron transition between the levels 1n +  and n. In the next step, the mechan-
ical parameters entering the quantum systems are applied in calculating the 
time intervals characteristic for the electron transitions. This concerns the 
neighbouring energy levels in the hydrogen atom as well as the Landau levels 
in the electron gas submitted to the action of a constant magnetic field. 
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1. Introduction 

In spite of its evident importance, the time parameter—for various reasons—is 
not much welcomed by the quantum physicists. Instead of its direct calculation, 
a probabilistic approach to the electron transitions has been developed from the 
very beginning of the quantum theory [1] [2] [3] [4] [5]. 

The aim of the present paper is to examine the time intervals characteristic for 
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the quantum emission process, partly on the basis of the Ehrenfest treatment of 
the adiabatic invariants [6] [7] and partly with the aid of a study of the mechan-
ical properties of electrons entering the simple quantum systems. 

A non-probabilistic approach to the calculation of the emission time of elec-
tron energy was based on a suitable modification of the classical Joule-Lenz law 
[8]. For the emission concerning the change of the electron energy due to transi-
tion between two neighbouring quantum levels, 

1 ,n n+ >                            (1) 

so 

1 ,n nE E+ >                            (2) 

and the emitted energy was  

1 .n nE E E+∆ = −                         (3) 

The classical Joule-Lenz law adapted to the quantum emission process [9] [10] 
[11] gave for the emission time t∆  the formula 

,E t h∆ ∆ =                           (4) 

so 

ht
E

∆ =
∆

                           (5) 

where E∆  is the expression given in (3). 
The first aim of the present paper is to point out that relation exactly equiva-

lent to that given in (5) can be obtained on the basis of the Ehrenfest reasoning 
concerning the invariant of the electron angular momentum entering the hy-
drogen atom [6] [7]. But another step worth to note is that t∆  obtained from 
the relation (5) can be approached also by examining the mechanical parameters 
of the electron particle in a quantum system. This observation—made first for 
the hydrogen atom [12] and repeated in the present paper in order to remove a 
printing error done in [12]—is demonstrated to hold also for the case of the 
Landau energy levels obtained in the electron gas in effect of the action of a con-
stant magnetic field; see Secs. 6 and 7. 

2. The Orbital Angular Momentum  
of the Electron being an Adiabatic  
Invariant in the Hydrogen Atom 

The electron orbital angular momentum in the hydrogen atom is given by the 
formula 

2 .p mrϕ ϕ=                            (6) 

In (6) the r is a distance between the electron of mass m and position of the 
atomic nucleus, the ϕ  is the speed of change of the angle ϕ  between the di-
rection of the electron observed from the nucleus and some constant direction. 

Ehrenfest identifies the frequency ν  of the electron circulation about a fixed 
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atomic nucleus at a distance r with the formula 

2
qν = ±
π


                           (7) 

The electron rotates uniformly, uninfluenced by any supplementary force ex-
cepting the electrostatic attraction force. The adiabatic invariant is 

kin2 d dE q p
ν

= ∫∫                         (8) 

where kinE  is the average kinetic energy of a particle. The invariance means that 
the right-hand side of (8) should retain its original values 

0, , 2 ,3 ,h h h                           (9) 

Because of (7) and in virtue of the relation 

kin kin2 2E E pq= =                        (10) 

We expect that the variable p entering (8) and (10) should take the values 

20, , ,
2 2
h hp = ± ±
π π

                      (11) 

3. Quantum Formulae for Systems Representing the 
Periodic Motion about a Centre of Attraction of the 
Newtonian Kind 

If χ  is a potential representing a central attractive force, the differential equa-
tions satisfied in the motion plane expressed in the polar coordinates ( ),r ϕ  
are: 

2 d 0
d

mr mr
r
χϕ− + =                      (12) 

and 

( )2d 0
d

mr
t

ϕ =                         (13) 

where t is the time variable. The integration of Equation (13) gives readily an 
adiabatic invariant equivalent to a constant angular momentum p pϕ=  repre-
sented in (6). 

In the next step let χ  be an attractive electrostatic potential between the nu-
cleus of charge Ze  and the electron: 

2 2Ze e
r r

χ = − = −                        (14) 

on condition in the last step in (14) we put 

1.Z =                            (15) 

In effect we obtain from (6) and (12): 
2 2 2

2 2
2 2 3 2

d 1 .
d

p e emr mr mr p
r mr r mr r

ϕ
ϕ

χϕ
 

= − = − = − 
 

          (16) 
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In the hydrogen atom, the constant radius r of the electron orbit implies 

0.r =                            (17) 

Therefore (16) is reduced to the equation 
2 2

3 2 0
p e

mr r
ϕ − =                         (18) 

which gives 
2

2 .
p

e
mr
ϕ =                           (19) 

By assuming a quantized angular momentum pϕ  in (6) [see also (11)] we 
obtain 

2 .n np mr L nϕ ϕ= = =
                      (20) 

In effect (19) and (20) give the result: 
2 2 2

2 2n

p nr r
me me

ϕ= = =
                      (21) 

which is equivalent to a well-known formula for the radius nr  of the nth Bohr 
orbit in the hydrogen atom; see e.g. [13]. 

4. Application of the Formulae (7) and (10) in  
Calculating the Left-Hand Side of (8) 

Because of (7) and (10) the left-hand side of (8) can be transformed as follows: 

2kin kin2 4 2 2 2 2 .n
E E pq p mr n

q q ϕ ϕ
ν

π π
= ± = ± = ± π = ± π = ± π






 

       (22) 

The last steps in (22) are dictated by (6) and (20). 
A constant value of the angular velocity ϕ  can be represented by the ratio: 

2
t

ϕ π
=
∆

                            (23) 

where t∆  is the time period of the electron circulation along the orbit. A sub-
stitution of (21) and (23) into (22) gives: 

22 2

2

2 .nm n
tme

  π
=  ∆ 



                       (24) 

Therefore 

( )3 3 3

4 4

2 2 .
n nt

me me
π π

∆ = =


                     (25) 

This is a result obtained earlier (see [9] [10] [11]) on the basis of the quantum 
formulation of the Joule-Lenz law applied to the hydrogen atom. In fact, the 
time intervals deduced from the Joule-Lenz law were widely applied to the emis-
sion spectrum of the hydrogen atom; see [14] [15] [16] and [17]. 
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5. Mechanical Parameters of the Electron in the Hydrogen 
Atom Applied in Calculating the Time Intervals of 
Electron Transitions 

In a recent paper, we found [12] that the time intervals similar to that in (25) can 
be obtained when the mechanical parameters of the electron motion in the hy-
drogen are taken into account. For example, let the change of the electron posi-
tion on an orbit between two quantum states 

1,n n+                            (26) 

characterized by the change of the orbit length 

( ) ( )

( )

2 2 2 2

1 2 2

2 2

2 2

1
2 2 2

2 2 1 4

n n n

n nr r r
me me

n n
me me

+

 +
π∆ = π − = π − 

  

= π + ≈ π





 

           (27) 

is examined together with the change of the electron velocity 

( )
2 2 2

2

1 1 1
1 1n

e e n n ev
n n n n n

+ −
∆ = − = ≈

+ +  

             (28) 

concerning the same orbits. For if we put 

2 n

n

r
t

v
π∆

∆ =
∆

,                         (29) 

we obtain from (27), (28) and (29) 

( )32 2
16 3

2 2 4

2
4 4 3 10 secn

n

nr nt n n
v me e me

−π∆
∆ = ≈ π = π ≈ ×

∆


          (30) 

which is a much similar result to that calculated in (25): a difference between 
(25) and (30) is given by a factor of 2. A printing error done in calculating t∆  
entering (30) in Ref. [12], Equation (19), has been removed. 

6. Landau Levels in the Electron Gas and  
Their Semiclassical Properties 

A well-known treatment of the Landau energy levels in the electron gas has been 
obtained with the aid of the free-electron oscillations examined on the basis of 
the quantum theory [18] [19] [20]. The energy levels due to the action of a con-
stant magnetic field B on the gas expressed in cylindrical coordinates , ,r zϕ , 
are [19] 

2 21
2 2

zkeBE n j
cm m

 = + + + 
 



                   (31) 

and their important property is that—because of integer n and j—they are sepa-
rated by a constant energy amount in a plane normal to a constant magnetic 
field B ( )constzk = : 
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.eBE
cm

ω∆ = =                         (32) 

The electron wave functions are 

( ) ( ) ( )exp exp zR r ij ik zψ ϕ=                   (33) 

and ω  in (32) is a circular electron oscillation frequency in the field B. The 
time period of the oscillation is T. 

The constant frequency entering (32) 

eB
cm

ω =                           (34) 

is coupled with T by the formula 

22 ;
T

ω ν π
= π =                         (35) 

see [18] [19] [20]. Because of (3) and (4) we obtain 

2h ht T
E ω ω

π
∆ = = = =

∆ 

                    (36) 

which formally is a result much similar to that calculated earlier for t∆  in the 
hydrogen atom; see (25). 

A semiclassical treatment of the electron motion in the magnetic field has 
been done in [19]. One of results concerns the radius of the orbit occupied by an 
electron circulating in the magnetic field. In case the electrons in the magnetic 
field are considered in cylindrical coordinates, the radial part of the wave func-
tion 

( )R r                             (37) 

[see (33)] satisfies the Schrödinger equation by the formula [19] 
2 22 2 2 2 2

2
2 2 2

d 1 d
2 d 2 2d 8

zkR R j e B j eBr R E R
m r r mc mr R c m

  
− + − + = − −  

   

       (38) 

where j and zk  are quantum numbers which refer to the ϕ -dependent and 
z-dependent part of the cylindrical wave function, respectively. 

In general the function ( )R r  in (37) has n nodes. An equivalent of the clas-
sical orbit of an electron is that for which 

0.n =                            (39) 

In effect of (39) we have [19] 

( ) ( ) 2exp 2 .jR r r eB hc r = − π                   (40) 

Consequently to (39) the planar part of the electron energy is reduced to the 
dependence on a single quantum number j: 

1
2j

eBE E j
cm

 = = + 
 

                      (41) 

giving the same energy interval as that presented in (32) on condition we put 
1.j∆ =                            (42) 
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The wave function (40) has a maximum at certain value value of r and can be 
expanded approximately as a Gaussian function about that maximum. This 
treatment gives for the orbit radius r the formula [19] [21] [22] 

2 jhcr
eB

π =                          (43) 

So consequently 
1 2

1 2

1 .jhcr
eB

 =  π  
                      (44) 

7. Confirmation of the Results Attained in Sec. 6 by the 
Mechanical Properties of the Electron Motion in the 
Magnetic Field 

A semiclassical treatment of the free-electron motion in the magnetic field done 
in Sec. 6 gives the radius (44) of the electron orbit due to the applied field. We 
demonstrate now that the formula (36) for the transition time between Landau 
levels can be obtained with the aid of a simple mechanical reasoning. 

The change of jr  is connected with the change of j; see (44). Since the orbit 
length is 

2j jl r= π                           (45) 

for the quantum transition 

1j j+ →                           (46) 

We obtain the change 

( ) ( )
1 2

1 2 1 2
1 1 2

22 2 1 .j j j j
hcl r r r j j
eB+

π    ∆ = π∆ = π − = + −   π  
      (47) 

The electron velocity jv  on the orbit j is given by the relation 
2

2
j

j

mv
E =                           (48) 

So 
1 22

.j
j

E
v

m
 

=  
 

                        (49) 

In effect because of (49) we obtain the velocity change 

( )
1 2

1 2 1 2
1

1 2 1 2 1 2 1 2

2

2 1 11 .
2 2

j j jv E E
m

eB j j
m cm

+
 ∆ = − 
 

        = + + − +        
         



          (50) 

But for large j we have 

1 .
2

j j≈ +                          (51) 

So expression (50) becomes approximately equal to 
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( )
1 2 1 2

1 2 1 22 1 .j
eBv j j

m cm
     ∆ ≅ + −        

               (52) 

From the mechanics we have 

,j
j

l
v

t
∆

∆ =
∆

                         (53) 

so from (53): 

( )

( )

( )

1 2
1 21 2 1 2

1 2 1 2
1/2 1 2

3 2

1 2 1 2

2 1

2 1

2 2 .
2

j

j

hc j jl eBt
v eB j j

m cm

cm
eB ω

   π + −   ∆  ∆ = ≅
∆      + −        

π π
= =

π

             (54) 

This is precisely the result for t∆  obtained in (36). 

8. Summary 

In the first step, an analysis of the Ehrenfest invariant demonstrated that the 
time interval necessary for the energy emission from level 1n +  to level n in the 
hydrogen atom can be deduced from the electron orbital momentum on level n. 
This interval is found to be precisely equal to the time dictated by the Joule-Lenz 
law for the electron transition from 1n +  to n [9]. 

In the next step, the time interval due to the Joule-Lenz law connected with 
the emission of energy between two neighbouring quantum levels is examined 
with the aid of the mechanical properties possessed by the electron. In the case 
of the hydrogen atom the time interval calculated in this way occurs to be twice 
as large as the interval given by the Joule-Lenz formula; see Sec. 5. Another use 
of the mechanical parameters is done for calculating the transition time between 
two neighbouring Landau levels in the electron gas. In this case, when the large 
quantum numbers are considered for the levels, the time intervals obtained from 
the Joule-Lenz approach and those with the use of the mechanical parameters 
become the same (see Sec. 7 and [9]). 
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