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Abstract 
A general approach is presented by which the exact frequency response of any 
transfer function of switched linear networks can be determined. This is 
achieved with a describing function approach using a state space equation 
formulation. This work presents a somewhat simplified set of equations to 
one previously given by one of the authors. To demonstrate application of 
the general formulation, the frequency responses of switched networks used 
as PWM DC-to-DC converters operating in continuous conduction mode 
(CCM) under voltage mode control are derived. (The accompanying paper, 
Part II, will present results for converters operating in discontinuous conduc-
tion mode (DCM)). From the general sets of equations developed here, both 
the control to output and input source variation to output frequency res-
ponses are derived. The describing function approach enables exact frequency 
response determination, even at high frequencies where the accuracy using 
average models may be compromised. Confirmation of the accuracy of the 
derived models is provided by comparing the responses with those obtained 
using the commercial simulator PSIM on a PWM boost converter. The mag-
nitude and phase responses are shown to match perfectly over the full range 
of frequencies up to close to half the switching frequency. Matlab code that 
implements the models is given such that the user can easily adapt for use 
with other PWM converter topologies. 
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1. Introduction 

DC-to-DC converters are an important and widely used class of power 
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processing systems. The input DC voltage is transformed to a higher or lower 
level, whilst achieving high power efficiency, that is, minimizing power losses. 
To achieve this, the controlling element is usually a set of switches. Typically 
these systems require tight control of the output voltage level despite variation in 
the input voltage and/or load current. Consequently negative feedback control is 
invariably used to achieve this requirement. To obtain an effective feedback de-
sign, an accurate determination of certain transfer functions need to be made. 
Generally small-signal averaged models are used for this purpose. In this work, 
however, describing function models are derived. The models derived are closed 
form expressions which contain state matrices of the switched networks along 
with the length of the various subintervals. In this paper, more specifically models 
for converters operating in continuous conduction mode (CCM) are considered.  

The describing function modeling method is used for non-linear systems by 
providing a sinusoidal input and then determining the magnitude and phase at 
this frequency component in the output spectrum. The use of average models, 
widely used for this purpose, generally fail to accurately predict the response at 
high frequencies. Describing function modeling methods have become more 
popular in recent years as greater accuracy at high frequencies is sought after [1] 
[2] [3]. 

The purpose of this paper is 1) to review a describing function modeling ap-
proach previously discussed by the author [4] [5] [6], and 2) to further develop 
this modeling approach. This has resulted in a simplification in the model deri-
vation. Next, 3) we demonstrate the derivation of exact frequency response 
models for PWM converters operating in CCM under voltage mode control us-
ing this newer formulation, and furthermore, 4) Matlab code is provided which 
may be adapted to determine exact frequency responses for any PWM converter 
topology. In this paper, confirmation of the accuracy of this modeling method is 
also provided by comparison with results obtained from a commercial simulator. 
With the latest developments included, this paper comprises an up-to-date re-
presentation of this very effective modeling method. A further purpose of this 
work is that with the derivation of the complete set of transfer functions to de-
termine PWM converter frequency responses, in future work, these will be used 
to aid in the development of simplified, yet accurate, circuit models. 

Since we are considering time varying networks, it is natural to consider the 
time varying transfer function [7] from which the required frequency response 
could be derived. In Section 4, starting with the definition of the time varying 
transfer function an expression is derived for the frequency response of the fre-
quency component in the output spectrum that is being sought after, i.e. the 
same frequency as that of the input perturbational sine wave. This expression 
contains small signal state, subinterval time and input source perturbational 
terms. These terms are dealt with by deriving a general small signal difference 
equation for any switching subinterval. This is undertaken in Section 3. 

The layout of the paper is as follows. The next section, Section 2, a quick re-
view of the structure of closed loop DC-to-DC switching regulators is given. The 
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subsequent section, as previously mentioned, serves to develop a mathematical 
representation of the system using state-space analysis. Starting with the large 
signal model, both DC and AC small signal discrete time models are derived. A 
general expression for the zero order component of the time varying transfer 
function, ( )0H jω , is then be developed in Section 4. In this way, any transfer 
function of interest can be derived. Specifically, we will look at the control input 
to output voltage transfer function, 

ˆ
ˆ
outv
r

, and input source to output voltage  

transfer function, 
ˆ
ˆ
out

g

v
v

. In Section 5, the method will be applied to a boost  

PWM converter operating in continuous conduction mode. Confirmation of the 
derived models is presented in Section 6, by comparison with frequency res-
ponses obtained with a commercial simulator. Finally, the Conclusion (Section 7) 
summarizes the main results obtained.  

2. DC-to-DC Switching Voltage Regulators 

Figure 1 shows a representation of a DC-to-DC switching power regulator op-
erating in voltage mode (VM). VM is used to describe a converter whose saw-
tooth signal is externally supplied rather than generated by some output of the 
system. Control is achieved by duty ratio d variation which can be adjusted to 
maintain an average (DC) output voltage ( )outV t  despite variations of the 
supply voltage ( )gv t . The power stages of switched converters consist of only 
storage elements and switches making the power conversion theoretically loss-
less with ideal components. They are essential for portable devices whose supply 
voltage will lower as batteries are drained and for integrated circuits whose inte-
grity would be severely compromised by heat dissipation. In Figure 1, the out-
put voltage ( )outv t  across the load resistance lR  is sensed through a gain  
 

 

Figure 1. General diagram of an VM DC-to-DC power converter featuring an output 
voltage controller. The output voltage is sensed through ( )H s  and fed through a com-

pensator to produce a signal ( )r t , which is then used by a comparator along with an ex-

ternally provided sawtooth signal to produce a rectangular wave with period sT  and du-

ty ratio d that controls the active switch. The input ( )gv t  contains both DC ( gV ) and 

AC ( ( )ˆgv t ) components. 
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( )H s  and fed into the output voltage controller along with an external refer-
ence voltage refV . Impedances 1Z  and 2Z  determine the gain and the pole 
and zero locations and are made up of capacitors, resistors, or both depending 
on the particular compensator used in the output voltage controller. The com-
pensator produces a control input signal ( )r t :  

( ) ( ) ( )2

1
ref ref out

Zr t V V v t H s
Z

 = + −                    (1) 

The control input signal ( )r t  is fed to a comparator that compares it to an 
externally introduced sawtooth signal of period Ts and amplitude MV , produc-
ing a rectangular wave with a duty ratio d and switching period Ts as illustrated 
in Figure 2 that regulates the switching between topologies of the power stage. 
Adjusting ( )H s  appropriately so that ( ) ( )ref outV V t H s= , where ( )outV t  is 
the DC component of ( )outv t , makes:  

refR V=                                (2) 

where R is the constant large signal (DC) component of ( )r t . D, the DC com-
ponent of d, is then determined by:  

ref

M

V
D

V
=                             (3) 

A good power converter will have minimal change in ( )outv t  with respect to 
change in ( )gv t , thus designing a power converter requires the satisfaction of a 
minimizing sensitivity of the output voltage to variations in the input voltage, or  

audiosusceptibility, represented by 
ˆ
ˆ
out

g

v
v

 over a specified frequency range where  

( )ˆgv t  and ( )ˆoutv t  are the small signal (AC) components of the input ( )gv t  
and ( )outv t , respectively. The design of a compensator requires the con-
trol-to-output transfer function 

ˆ
ˆ
outv
r

 where r̂  is the AC component of the 
control input signal ( )r t . The control design aims to provide an adequate level 
of positive phase margin. 

3. Large and Small Signal State Space Model 

State space analysis will be utilized to develop expressions that describe the to-
pological states of the switching converters. The large signal model will first be  
 

 

Figure 2. Rectangular wave produced by the comparator which regulates how long the 
active switch Q is turned on. The time sdT  is the actual time that the active switch is on 
in the presence of perturbations while sDT  is the DC average time that the active switch 
is on in the absence of perturbations. 
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developed and then perturbed to obtain the DC and AC the small signal models. 
While there is generally one switching device that controls the switching be-
tween two topologies, more topologies may exist should certain conditions be 
satisfied such as in Discontinuous Conduction Mode (DCM). Integer Ns denotes 
the number of topologies that are present within a switching period Ts. The time 
spent in a particular topology will define a subinterval so that Ts is divided into Ns 
different subintervals. The general state space represention for a time varying sys-
tem is:  

( ) ( ) ( ) ( ) ( )x t A t x t B t u t= +                    (4a) 

( ) ( ) ( ) ( ) ( )Ty t C t x t E t u t= +                   (4b) 

where ( )x t  is the state vector consisting of both the large signal and small sig-
nal values of each inductor current and capacitor voltage, ( )x t  is its derivative, 
( )y t  is the output of the system, and ( )u t  is the input vector. Without loss of 

generality, the input voltage, ( )gv t , is the only input considered here, thus 
making ( )u t  a scalar: 

( )

( )

( )
( )

( )

( ) ( )

( ) ( )
( ) ( )

( ) ( )

1 1 1

1 1 1

ˆ

ˆ

ˆ

ˆ

k k k

l l l

i t I t i t

i t I t i t
x t

v t V t v t

v t V t v t

   +
  
  
   +

= =   
+  

  
  

+     







                 (5) 

( ) ( ) ( ) ( )ˆ ˆg g gu t U u t v t V v t= + = = +                (6) 

for k inductors and l capacitors in the power stage of the converter. For a piece-
wise linear system the equations in (4) can be replaced by a set of sN  linear 
time invariant (LTI) state equations of the form:  

( ) ( ) ( )i ix t A x t B u t= +                      (7a) 

( ) ( ) ( )T
i iy t C x t E u t= +                     (7b) 

for ( )1, 1, 2, ,i i st t t i N+≤ ≤ ∈  , where iA  and iB  are the system and input 
matrices, respectively, that find the state derivative ( )x t  from ( )x t  and ( )u t  
for the ith subinterval of sT . T

iC  and iE  are the output and feedthrough ma-
trices, respectively, that extract a desired output ( )y t  from ( )x t  and ( )u t  
for the ith subinterval of sT . Solving the state Equation (7a) at the time bounda-
ries of the i-th subinterval leads to the following difference equation:  

( ) ( ) ( ) ( ) ( )11 1
1 e e dii i i i i

i

tA t t A t
i i it

x t x t B uτ τ τ++ +− −
+ = + ∫             (8) 

where ˆ
i i it T t= + . iT  is the DC component of it  and ît  is the AC component 

which is nonzero when a perturbation is introduced to the system. For DC analysis 
no perturbations are considered making i it T= , ( ) ( )x t X t= , and ( )u t U= . The 
DC form of (7ab) is: 

( ) ( )i iX t A X t BU= +                      (9a) 
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( ) ( )T
i iY t C X t E U= +                         (9b) 

and the DC form of (8) is: 

( ) ( ) ( ) ( )11 1
1 e e dii i i i i

i

TA T T A T
i i iT

X T X T BUτ τ++ +− −
+ = + ∫              (10) 

Evaluating the integral results in: 

( ) ( )1i i i iX T X T U+ = Φ +Ψ                      (11a) 

where 
( )1e i i iA T T

i
+ −Φ =                           (11b) 

[ ]1
i i i iA I B−Ψ = Φ −                         (11c) 

for ( )1,2, , si N∈  , which is the DC difference equation. Equation (11a) will be 
solved for a finite sN  as it will be required for later use. The case covered in this 
paper, i.e. CCM, there are two topologies so (11a) will only be given here for 

2sN = . Doing so makes use of the following condition for a converter in large 
signal steady state:  

( ) ( )sX t X t nT= +                          (12) 

for any nonnegative integer n. For 2sN = , (11a) becomes:  

( ) ( )2 1 1 1X T X T U= Φ +Ψ                      (13a) 

( ) ( )3 2 2 2X T X T U= Φ +Ψ                     (13b) 

From (12) we see that ( ) ( )3 1X T X T=  in DC steady state for 2sN = , Equa-
tion (13a) can be substituted into (13b) and ( )1X T  can be solved for:  

( ) ( ) ( )1
1 2 1 2 1 2X T I U−= −Φ Φ Φ Ψ +Ψ                 (14) 

With ( )1X T  solved for, (14) can then be substituted into (13a) to obtain an 
expression for ( )2X T . 

To obtain the small signal difference equation, the state vector ( )ix t  and 
switching time it  are first split into their DC and AC components:  

( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆi i i i i i ix t X t x t X T t x T t= + = + + +              (15) 

Taking the Taylor series expansions of the terms in (15):  

( ) ( ) ( )
( ) ( ) ( )

ˆ ˆ

ˆ ˆˆ ˆ ˆ
i i i i i

i i i i i

X T t X T X T t

x T t x T x T t

+ ≈ +

+ ≈ +





                   (16) 

Combining (15) and (16):  

( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆi i i i i i ix t X T X T t x T x T t≈ + + +                (17) 

Dropping all but the first order (small signal) terms and substituting (9a) gives 
( )ˆ ix t  and puts it in a form that will be convenient later on:  

( ) ( ) ( ) ( ) ( )ˆ ˆˆ ˆ ˆi i i i i i i i ix t X T t x T A X T BU t x T ≈ + = + + 
          (18) 

The input is also perturbed to get: 

( ) ( )ˆu t U u t= +                          (19) 
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where U is the constant DC component of ( )u t  and ( )û t  is the AC compo-
nent which will be chosen to take the form of ( )ˆ ˆ e j t

pu t u ω= , where ˆpu  is the 
peak value of the perturbation. The reasons for choosing an exponential form for 
the excitation signal is that the real component of e j tω  is a cosine wave and the 
exponential form will be convenient later on in solving the small signal differ-
ence equation for ( )ˆ ix T . For similar reasons, all perturbations in this paper will 
be chosen to be of the same form. Symbol ω  represents the frequency of the 
perturbation signal in radians/second. Substituting (19) into (8) gives:  

( ) ( ) ( ) ( ) ( )1 11 1 1
1 ˆe e d e e di ii i i i i i i

i i

t tA t t A t A t j
i i i i pt t

x t x t BU B uτ τ ωττ τ+ ++ + +− − −
+ = + +∫ ∫   (20) 

Evaluating the integral yields:  

( ) ( ) ( ) ( )

( ) ( )( )

1 1

11

1
1

1

e e

ˆe e

i i i i i i

i i ii

A t t A t t
i i i i

j I A t tj t
i i p

x t x t A I BU

j A I B uωωω

+ +

++

− −−
+

− − − −

 = + − 
 + − − 

        (21) 

Substituting ˆ
i i it T t= +  and 1 1 1

ˆ
i i it T t+ + += +  into (21) and denoting  

i ij I Aχ ω= −  and ( )1e i ij T T
i i

ωβ +− −= Φ  results in:  

( ) ( ) ( ) ( )

( )

1 1

11 1

ˆ ˆ ˆ ˆ1
1

ˆ ˆˆ1

e e

ˆe e e

i i i i i i

i i ii i

A t t A t t
i i i i i i

t tj T j t
i i i p

x t x t A I BU

I B uχω ωχ β

+ +

++ +

− −−
+

− −−

 = Φ + Φ −
 

 + −
 

        (22) 

With time perturbations ît  and 1ît +  appearing as exponents, the exponen-
tials containing them will be linearized by replacing them with the first two 
terms of the Taylor series expansion:  

e 1x x≈ +                          (23) 

which allows (22) to take the form: 

( ) ( ) ( ) ( ){ }
( ) ( ){ }1

1
1 1 1

1
1 1

ˆ ˆ ˆ ˆ

ˆ ˆ ˆ ˆe 1i

i i i i i i i i i i i i

j T
i i i i i i i p

x t I A t t x t A I A t t I BU

j t I I t t B uωχ ω β χ+

−
+ + +

−
+ +

   = Φ + − + Φ + − −   

 + + − + − 
  (24) 

Application of (23) to (22) is the first step in linearizing this equation. This re-
sults in (24) which is an approximation however DC and AC small signal models 
only consider zeroth and first order terms, respectively, thus no accuracy is lost in 
the “small signal sense”. Substituting in (17) for ( )ix t  and ( )1ix t + , dropping any 
terms that are not small signal terms (first order), and solving for ( )1ˆ ix T + :  

( ) ( ) ( ) ( ) ( )
[ ] 1

1 1 1 1 1

1

ˆˆ ˆ

ˆ e i

i i i i i i i i i

j T
i i i p

x T x T A A X T B B U t

I B u ωχ β +

+ + + + +

−

 = Φ + − + − 
+ −

        (25) 

The small signal difference equation will later be solved for a finite sN . 
In summary, the difference equations developed in this section along with 

some important identities are, for ( )1,2, , si N∈  : 
DC Steady State Difference Equation (from Equation (11a)):  

( ) ( )1i i i iX T X T U+ = Φ +Ψ                     (26) 

AC Small Signal Difference Equation (from Equation (25)):  
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( ) ( ) ( )1 1 1
ˆˆ ˆ ˆi i i i i i i ix T x T t B u Tξ η+ + += Φ + +                (27) 

where  
( )

[ ]

( )

( )
( ) ( ) ( )

1

1

1

1

1 1 1

e

e

i i i

i i

A T T
i

i i i i

i i

j T T
i i

i i i

i i i i i i

A I B
j I A

I

A A X T B B U

ω

χ ω

β

η χ β

ξ

+

+

−

−

− −

−

+ + +

Φ =

Ψ = Φ −

= −

= Φ

= −

= − + −

              (28) 

The value of ( )1X T , for 2sN = , is given by (14), which is reproduced below:  

( ) ( ) ( )1
1 2 1 2 1 2X T I U−= −Φ Φ Φ Ψ +Ψ                (14) 

Another useful identity is:  

( ) ( )1 1i i i i i iX T A X T BUγ ξ+ += + = +                 (29) 

The following scalars or vectors may be split into their DC and AC compo-
nents:  

( )
( ) ( ) ( )
( ) ( )
( ) ( )

ˆ
ˆ

ˆ

ˆ

ˆ

i i it T t

d D d t

x t X t x t

u t U u t

r t R r t

= +

= +

= +

= +

= +

                       (30) 

where all perturbation signals take the following form:  

( )
( )
( )

ˆ ˆ e

ˆ ˆ e

ˆ ˆ e

j t
p

j t
p

j t
p

d t d

u t u

r t r

ω

ω

ω

=

=

=

                          (31) 

where ˆ
pd , ˆpu , and p̂r  are the peak magnitudes of the perturbations. It should 

be noted that because ( )u t  is a scalar containing only ( )gv t , ˆpu  is the peak 
magnitude of ( )ˆgv t . Also, the following holds for a small signal state vector in 
large signal steady state in the presence of exponential perturbations:  

( ) ( )ˆ ˆe sj nT
sx t x t nTω = +                       (32) 

for all positive n, which relates ( )x̂ t  to ( )ˆ sx t nT+  for all t. 

4. The Exact Small Signal Transfer Function Expression 

A general expression for the transfer functions of interest will be derived in this 
section by taking the average of the time varying function of a periodic network. 
This general expression will represent the frequency response of time interval 
modulated switched networks. The time varying transfer function is defined as:  

( ) ( ), , e djH j t h t ωτω τ τ
∞ −

−∞
= ∫                    (33) 

where ( ),h t τ  is the impulse response at time t caused by an impulse at time 
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t τ− . The output of the system ( )y t  can be found by generalizing (33) for any 
input ( )u t :  

( ) ( ) ( ), dy t h t u tτ τ τ
∞

−∞
= −∫                     (34) 

Considering an input of the form ( ) e j tu t ω=  as in (31) results in:  

( ) ( ) ( )

( )

( )

, e d

, e d e

, e

j t

j j t

j t

y t h t

h t

H j t

ω τ

ωτ ω

ω

τ τ

τ τ

ω

∞ −

−∞

∞ −

−∞

=

 =   
=

∫

∫                   (35) 

Rearranging gives a useful definition that will be used later:  

( ) ( )
( ) ( ) e

,
j tu t

y t
H j t

u t ω

ω
=

=                      (36) 

The relation between ( )u t  and its Fourier transform ( )U jω  is:  

( ) ( )1 e d
2

j tu t U j ωω ω
∞

−∞π
= ∫                    (37) 

where  

( ) ( )2U jω δ ω= π                      (38) 

and ( )δ ω  is the Dirac delta function. Substituting (37) into (34) yields:  

( ) ( ) ( ) ( )

( ) ( )

( ) ( )

1, e d d
2

1 , e d e d
2
1 , e d

2

j t

j j t

j t

y t h t U j

h t U j

H j t U j

ω τ

ωτ ω

ω

τ ω ω τ

τ τ ω ω

ω ω ω

∞ ∞ −

−∞ −∞

∞ ∞ −

−∞ −∞

∞

−∞

 =   

 =   π

π
=

π∫ ∫

∫ ∫

∫

           (39) 

From (39) the output frequency spectrum ( )Y jω  can be found. In taking 
the Fourier transform of (39), a dummy variable µ  will be used to avoid con-
fusion:  

( ) ( )

( ) ( )

( ) ( )

( ) ( )

e d

1 , e d e d
2

1 , e e d d
2

, e d e d

j t

j t j t

j t j t

j t j t

Y j y t t

H j t U j t

H j t t U j

H j t t

µ

ω µ

ω µ

ω µ

µ

ω ω ω

ω ω ω

ω δ ω ω

∞ −

−∞

∞ ∞ −

−∞ −∞

∞ ∞ −

−∞ −∞

∞ ∞ −

−∞ −∞

=

 =   

 =   

π

π

=

∫

∫ ∫

∫ ∫

∫ ∫

          (40) 

After applying the sifting property to (40):  

( ) ( )0, e dj tY j H t tµµ
∞ −

−∞
= ∫                       (41) 

Partitioning the time axis into an infinite number of switching periods in-
dexed by k and then further subdividing the switching periods into Ns subinter-
vals of length 1i it t+ −  results in:  

( ) ( )1

1
0, e d

s
i

i

N t j t
t

k i
Y j H t tµµ +

∞
−

=−∞ =

= ∑ ∑ ∫                  (42) 
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Noting from (7ab) and (36) that:  

( ) ( ) ( ) ( )T0, i iH t y t C x t E u t= = +                  (43) 

Equation (42) becomes:  

( ) ( ) ( )1 T

1
e d

s
i

i

N t j t
i it

k i
Y j C x t E u t tµµ +

∞
−

=−∞ =

 = + ∑ ∑ ∫             (44) 

Substituting in (17) and (19) into (44), evaluating the integral, linearizing the 
terms with ît  and 1ît + , and dropping all of the terms that are not small signal 
terms (first order) results in:  

( ) ( ) ( )T
1

1

ˆ ˆ ˆˆ ˆe
s

i
N

j T
i i i i i i i i i

k i
Y j C x T t t u Tωω η κ λ ρ

∞
−

+
=−∞ =

 = + + + ∑ ∑        (45) 

where 

( )
( )

( ) ( )

( ) ( )

1

1

T

T
1

T 1
1 1

e i i

i i i

i i i i

j T T
i i i i

i i i i i i i i i i

I

C X T E U

C X T E U

C T T I B E T T

ω

η χ β

κ

λ

ρ χ η

+

−

−
+

−
+ +

= −

 = − + 

 = + 
 = − − + − 

           (46) 

The expression (45) can be simplified by examining the terms of the summa-
tion regarding ît  and 1ît + :  

( )1
1

ˆ ˆe
s

i
N

j T
i i i i

i
t tω κ λ−

+
=

+∑                       (47) 

The summation (47) can be expanded into:  

( )

( )1

1
1

1

1 1
1

ˆ ˆe

ˆ ˆ ˆe e e e

s
i

s
Ni s i i

s s

N
j T

i i i i
i

N
j Tj T j T j T

i i N N i i i
i

t t

t t t

ω

ωω ω ω

κ λ

κ λ λ κ+

−
+

=

−
−− − −

+ +
=

+

= + + +

∑

∑
       (48) 

Further expanding the first two terms of (48):  

( ){ }
( ) ( )1

T
1 1 1

T
1 1

ˆ ˆe e

ˆe

ˆe e

Ni s
s s

i

N NN s ss
s s s s

j Tj T
i i N N

j T
i

j T Tj T
N N N N

t t

C X T E U t

C X T E U t

ωω

ω

ωω

κ λ

+

−−

−

− −−
+ +

+

 = − + 

 + + 

         (49) 

Because the system is periodic and cycles through Ns topologies, the following 
relations hold:  

( )

( ) ( )

1 1

T T
1 1

1 1

1 1

1 1

ˆ ˆ e

s

s

Ns
s

s

N

N

j T T
N

N

C C

E E

t t

X T X T

ω +

+

+

− −
+

+

=

=

=

=

                      (50) 

Letting ( ) ( ) ( )T T
1 1 1i i i i i iC C X T E E Uζ + + += − + − , Equation (49) becomes:  
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1
1

ˆ ˆ ˆe e eN Ni s s
s s s s

j T j Tj T
i i N N N Nt t tω ωω κ λ ζ+− −−

++ =               (51) 

and the last term of (48) becomes:  

( )1 1
1 1

1 1 1
1 1

ˆ ˆe e e
s s

i i i
N N

j T j T j T
i i i i i

i i
t tω ω ωλ κ ζ+ +

− −
− − −

+ + +
= =

+ =∑ ∑             (52) 

Combining (51) and (52) allows (47) to be expressed as:  

( ) 1
1 1

1 1

ˆ ˆ ˆe e
s s

i i
N N

j T j T
i i i i i i

i i
t t tω ωκ λ ζ+− −

+ +
= =

+ =∑ ∑                (53) 

and (45) to take the final simplified form:  

( ) ( ) ( ) ( )1T
1

1

ˆ ˆˆ ˆe e
s

i ii
N

j T Tj T
i i i i i i i

k i
Y j C x T t u Tωωω η ζ ρ+

∞
− −−

+
=−∞ =

 = + + ∑ ∑      (54) 

Note that Equation (54) is a simplified version of one previously derived in [6] 
(Equation (9)), where now only the time perturbation at the end of each subin-
terval is required. This equation is further simplified next leading to the general 
expression of the frequency response being sought.  

While ( )Ŷ jω  is the entire output spectrum containing impulses at integer 
multiples of ω , we are only interested in the results at ω  which is the fre-
quency response ( )0H jω . ( )0H jω  can be obtained by taking the average of 
the inner summation over a period Tx rather than the entire output spectrum. 
Figure 3 shows that Tx can be an integer N multiple of Ts, therefore:  

( ) ( ) ( ) ( )1
1

T
0 1

0 1

1 ˆˆ ˆe e
s

i ii
NN

j T Tj T
i i i i i i i

k is

H j C x T t u T
NT

ωωω η ζ ρ+
−

− −−
+

= =

 = + + ∑ ∑    (55) 

While it appears from (55) that the outer summation will have to be evaluated 
N times since there are small signal terms that differ between switching cycles, 
after substitution and evaluation of the inner summation it is evident that these 
terms will become independent of which Ts they are evaluated for. Therefore, the 
outer summation will result in N equivalent terms which are then divided by N. 
This is equivalent to setting 1N = . 

It will become evident that finding the transfer functions of interest involves 
first determining expressions for ît  for ( )1,2, , si N∈  , solving the difference 
equation to obtain an expression for ( )1x̂ T , and then substituting the results  
 

 

Figure 3. Period Tx in the presence of perturbations, where the waveform of period Ts can 
represent any output of the system while in steady state. While the shortest possible Tx is 
not necessarily an integer N multiple of Ts, the relation x sT NT=  does provide conveni-
ence. 
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into the general expression ( )0H jω . After extracting 
ˆ
ˆ
outv
r

 and 
ˆ
ˆ
out

g

v
v

 from  

( )0H jω , the Bode plots of the transfer functions will be compared to those 
from a commercial simulator. 

5. Voltage Mode Transfer Functions 

The transfer functions of interest will now be derived for voltage mode (VM) 
DC-to-DC converters in CCM. As an example, the boost converter shown in 
Figure 4 will be used. The output voltage controller has been omitted in Figure 
4 since the open loop transfer functions are derived, so the control signal ( )r t  
is externally supplied. The control signal ( )r t  is compared to a sawtooth signal 
in order to generate a rectangular wave to directly control Q and regulate the 
switching between topologies. A VM converter has its sawtooth signal externally 
supplied rather than, for example, being generated from some output of the sys-
tem as for current mode control. So far, the start of the switching period Ts has 
been defined by the period of the sawtooth signal. This way of defining the be-
ginning of the Ts will be called Model 1. Defining the start of the interval to be 
the switching event controlled by ( )r t  instead, which will be called Model 2, 
will be considerably more convenient. For this reason, the derivations will take 
place in Model 2, and then the subscripts of the results rotated appropriately so 
that they apply to Model 1. Figure 5 shows very generally how Model 1 and 
Model 2 are related. 

In the following the transfer functions 
ˆ
ˆ
outv
r

 and 
ˆ
ˆ
outv
u

 for the CCM operat-
ing mode will be derived and subsequently applied to a boost converter example. 

A power converter operating in CCM implies that there are two topologies 
( 2sN = ) and thus two subintervals within a switching period Ts. Considering a 
CCM converter with Model 1, the first subinterval has an average (DC) length 
DTs and the second interval has a DC length ( )1 sD T− . The effective topologies 
of the boost power stage during the two subintervals are shown in Figure 6. The 
switching period is described by Figure 7 in both Model 1 and Model 2. Model 2  
 

 

Figure 4. A VM boost converter. The control signal r(t), externally supplied in this figure, 
is compared to a sawtooth signal of amplitude VM and switching period Ts to create a 
rectangular wave with duty ratio d that controls the switching between topologies. 
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Figure 5. A general switching period Ts described under Model 1 and Model 2. Under 
Model 1 the start and end of Ts is defined by the switching period of the sawtooth signal, 
thus 1 1

ˆ ˆ 0
sNt t += = , and the switching event ti is controlled by ( )r t . Under Model 2, the 

start and end of Ts is the switching event determined by ( )r t . 

 

 

Figure 6. The effective topologies of a VM boost converter in CCM assuming ideal 
switches. (a) is the effective topology during the first subinterval of DC length DTs where 
Q is on and P is off. (b) is the effective topology during the second subinterval of DC 
length ( )1 sD T−  where Q is off and P is on. 

 

 

Figure 7. Switching period Ts for a VM converter in CCM, described for both Model 1 
and Model 2. (a) shows the sawtooth voltage of period Ts being compared to the control 
signal ( )r t  to produce the rectangular wave (b). (c) illustrates how the times are de-

noted under Model 1 and Model 2. 
 
will be used for the following derivation, effectively swapping the order of the 
two subintervals. Considering Model 2, the switching time t2 is determined by 
the period Ts of the sawtooth signal and thus 2̂ 0t = . t3 is the time when the 
sawtooth signal reaches the value of ( )r t :  
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( )3
3

s

M

T r t
t

V
=                         (56) 

Dropping the DC components of ( )3r t  and 3t :  

( )3
3

ˆˆ s

M

T r t
t

V
=                         (57) 

Taking the Taylor series expansion of ( )3r̂ t  and dropping the second order 
term:  

( ) ( ) ( ) ( ) ( )3 3 3 3 3 3 3
ˆ ˆˆ ˆ ˆ ˆ ˆr t r T t r T r T t r T= + ≈ + ≈             (58) 

Substituting (58) into (57) gives an expression for 3̂t :  

( ) ( )3
3 3

ˆˆ ˆs

M

T r T
t r T

V
µ= =                     (59) 

where  

s

M

T
V

µ =                          (60) 

With 3̂t  obtained, the next step is to get ( )1x̂ T  by solving the difference 
Equation (27). From (27) an expression for ( )2x̂ T  is found:  

( ) ( ) ( )2 1 1 1 21
ˆ ˆ ˆx T x T B u Tη= Φ +                 (61) 

Using (27) again and substituting in (59) and (61) gives:  

( ) ( ) ( )
( ) ( ) ( ) ( )

3 2 2 2 3 2 2 3

2 1 1 2 3 2 1 1 2 2 2 3

ˆˆ ˆ ˆ

ˆ ˆ ˆ ˆ

x T x T t B u T

x T r T B u T B u T

ξ η

ξ µ η η

= Φ + +

= Φ Φ + +Φ +
      (62) 

Expressing all of the signals in their exponential form as in (31) and substi-
tuting in (32) for ( )3x̂ T :  

( ) ( ) 3 32
1 2 1 1 2 2 1 1 2 2ˆ ˆ ˆ ˆ ˆe e e esj T j T j Tj T

p p px T x T r B u B uω ω ωωξ µ η η= Φ Φ + +Φ +   (63) 

Solving for ( )1x̂ T :  

( ) ( ) ( ) ( ) ( )1
1 2 1 2 1 2 1 1 2 2 1ˆ ˆ ˆx T I r T B B u Tβ β ξ µ β η η−= − + +          (64) 

Now all that is left is to substitute (59), (61), and (64) into (55). Expanding (55) 
for 2sN =  gives:  

( ) ( ) ( )1 2

3

T T
0 1 1 1 1 2 2 2

2 3 2

1 ˆ ˆ ˆe e

ˆ ˆe

j T j T
p

s

j T
p

H j C x T u C x T
T

t u

ω ω

ω

ω η ρ η

ζ ρ

− −

−

= + +

+ + 

      (65) 

Substituting in (59):  

( ) ( ) ( ) ( )1 2T T
0 1 1 1 2 2 2 2 1 2

1 ˆ ˆ ˆ ˆe ej T j T
p p

s

H j C x T r C x T u
T

ω ωω η ζ µ η ρ ρ− − = + + + +   (66) 

Now substituting in (61):  

( ) ( ) ( )

( )

1T T
0 1 1 2 2 1 1 2

T
2 2 1 1 1 2

1 ˆ ˆe

ˆ

j T
p

s

p

H j C C x T r
T

C B u

ωω η η β ζ µ

η η ρ ρ

−= + +

+ + + 

        (67) 
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Finally substituting in (64):  

( ) ( )( ){
( )( ) ( )

}

1T T
0 1 1 2 2 1 2 1 2 2

1T T
1 1 2 2 1 2 1 2 1 1 2 2

T
2 2 1 1 1 2

1 ˆ

ˆ

p
s

p

H j C C I r
T

C C I B B

C B u

ω η η β β β ξ µ ζ µ

η η β β β β η η

η η ρ ρ

−

−

 = + − + 

+ + − +

+ + + 

      (68) 

Rotating the subscripts of (68) to Model 1 only involves switching them, giv-
ing the final result:  

( ) ( )( ){
( )( ) ( )

}

1T T
0 1 1 2 2 2 1 2 1 1

1T T
1 1 2 2 2 1 2 1 1 1 2 2

T
1 1 2 2 1 2

1 ˆ

ˆ

p
s

p

H j C C I r
T

C C I B B

C B u

ω η β η β β ξ µ ζ µ

η β η β β η β η

ηη ρ ρ

−

−

 = + − + 

+ + − +

+ + + 

      (69) 

where  

s

M

T
V

µ =                            (70) 

From (69) the transfer functions are extracted by setting the input of interest 
to one while setting the other to zero. The exact small-signal control-to-output 
transfer function 

ˆ
ˆ
outv
r

 is therefore found by setting ˆ 1pr =  and setting ˆ 0pu = :  

( )( ) 1T T
1 1 2 2 2 1 2 1 1

ˆ 1
ˆ
out

M

v
C C I

r V
η β η β β ξ ζ− = + − +            (71) 

The exact small-signal input-to-output transfer function 
ˆ
ˆ
out

g

v
v

 is found by 
setting ˆ 0pr =  and setting ˆ 1pu = :  

( )( ) ( )1T T
1 1 2 2 2 1 2 1 1 1 2 2

T
1 1 2 2 1 2

ˆ 1
ˆ
out

g s

v
C C I B B

v T

C B

η β η β β η β η

ηη ρ ρ

−= + − +

+ + + 

       (72) 

To relate these to formerly obtained results in the literature we will consider 
the following. The above transfer functions contain exponential terms. It can be 
readily shown that expanding these in a Taylor series and retaining only the first 
order terms results in the state space averaged transfer function models [8]. 
The state space averaged small-signal control-to-output transfer function is 
given by:  

( ) ( )( ) 1T T
1 2 1 2 1 1

ˆ 1
ˆ
out

M

v
DC D C j I DA D A

r V
ω ξ ζ

− ′ ′= + − + +  
      (73) 

and, the state space averaged small-signal input-to-output transfer function is 
given by:  

( ) ( )( ) ( ) ( )1T T
1 2 1 2 1 2 1 2

ˆ
ˆ
out

g

v
DC D C j I DA D A DB D B DE D E

v
ω

−′ ′ ′ ′= + − + + + +  (74) 

Comparison of these reduced order models with the exact models is discussed 
below.  
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6. Example 

A boost converter with the following parameters is used to compare the fre-
quency responses obtained using the PSIM simulator [9] and the derived mod-
els.  

( )10 s, 100 kHz
15 V

0.25
58 H
5.5 F
18.6

s s

g

l

T f
V

D
L
C
R

= µ =

=

=
= µ
= µ
= Ω

                  (75) 

The “AC Sweep” functionality in PSIM is used to obtain the frequency res-
ponses from this simulator. The PSIM circuit configuration used to obtain the 
control to output response is shown in Figure 8. The 100 kHz triangular wave-
form at the negative input of the comparator has a peak-to-peak amplitude of 1 
V. At the positive input of the comparator a 0.25 V DC voltage is added to the 
small amplitude perturbation source, Vsweep. This established a steady state 
duty ratio of 0.25. The amplitude of the perturbation source needed to be ad-
justed to be small enough to not overdrive the converter, which yields inaccurate 
results, yet needs to be large enough to provide a measurable output signal at 
high frequency. A start and end amplitude value of 0.02 V was found to give 
good results. The frequency sweep was from 100 Hz to 45 kHz (which is slightly 
less than half the switching frequency). 

The magnitude and phase responses for the control-to-output function are 
shown in Figure 9 and Figure 10, respectively. The describing function model is 
given by Equation (71). In each figure, there are two plots drawn. The first plot 
shows the model response which is drawn in blue, subsequently the response 
obtained from PSIM is overlaid in red. The match is so close such that the red 
completely overwrites the previous plotted curve. The complete Matlab code 
used to run the models and produce the plots is shown as three functions in the 
Appendix. 
 

 

Figure 8. PSIM schematic used to obtain the control-to-output frequency response for 
the boost converter operating in CCM. 
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Figure 9. The magnitude response for the control to output transfer function of the boost 
converter operating in CCM. Model magnitude plot is in blue and the PSIM obtained 
magnitude plot is in red. We see excellent agreement such that only the red plot is mostly 
visible, since it is the second plot to be drawn. 
 

 

Figure 10. The phase response for the control to output transfer function of the boost 
converter operating in CCM. Model phase plot is in blue and the PSIM obtained phase 
plot is in red. We see excellent agreement such that only the red plot is mostly visible. 
 

The PSIM schematic used to obtain the input voltage to output voltage re-
sponse is shown in Figure 11. The perturbation source is now in series with the 
input voltage. A starting value of 0.05 V and end amplitude value of 0.3 V was 
used for the Vsweep perturbation signal. The magnitude and phase responses for 
the control-to-output function are shown in Figure 12 and Figure 13, respec-
tively. The describing function model is given by Equation (78). Again the 
agreement between the derived model and the simulated result is seen to be ex-
cellent. These results validate the derived models. 
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Figure 11. PSIM schematic used to obtain the input-to-output frequency response for the 
boost converter operating in CCM. 
 

 

Figure 12. The magnitude response for the input to output transfer function of the boost 
converter operating in CCM. Model magnitude plot is in blue and the PSIM obtained 
magnitude plot is in red. We see excellent agreement such that only the red plot is mostly 
visible. 
 

 

Figure 13. The phase response for the input to output transfer function of the boost con-
verter operating in CCM. Model phase plot is in blue and the PSIM obtained phase plot is 
in red. We see excellent agreement such that only the red plot is mostly visible. 
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Application of the reduced order (state space averaged) models, i.e. equations 
(73) and (74), for this example has shown that the accuracy obtained with these 
models is sufficient for this operating mode (i.e. CCM) and control regime (i.e. 
voltage mode control). Note however when one considers other operating mod-
es, such as DCM, or other control schemes, such as current mode control, the 
low order averaged models lack sufficient accuracy at high frequencies. A wide 
range of models have been presented to model converters in DCM, for example, 
see [10] for a recent historical overview of these models. 

7. Conclusions 

Integral in control system design for dc-to-dc regulators is the use of transfer 
functions to determine relevant frequency responses. Typically average models 
have been used which may provide reasonable accuracy at low frequencies but 
often are inaccurate at high frequencies. In contrast a describing function model 
has been further developed in this paper. These models are based on a state equ-
ation formulation of the system. They are exact in the small-signal sense and 
therefore can precisely determine the frequency response over all excitation fre-
quencies of interest. This modeling approach has been applied here to PWM 
converters operating in CCM in deriving control-to-output and input-to-output 
transfer functions. 

An application example has been provided in the form of a boost dc-to-dc 
converter. The control to output voltage and input source voltage to output vol-
tage frequency responses were determined. These were subsequently compared 
with the frequency responses obtained using the commercial simulator PSIM. 
An excellent match was achieved for the considered frequency range up to al-
most half the switching frequency. As the modeling method is exact, it may be 
used as a benchmark for accuracy by which other models may be compared and 
from which simplified models may be derived. 
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Appendix 

The appendix shows the Matlab code of the three functions used to determine 
and plot the frequency responses of the boost converter example (Figures 
A1-A3). 
 

 

Figure A1. Matlab function: loadCCM.m. This function produces the state matrices for 
the boost converter. 
 

 

Figure A2. Matlab function: exact_ccm.m. Given the state matrices and other parame-
ters, the control to output and input to output transfer functions are determined. 
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Figure A3. Matlab script: boost_CCM.m. This is the main program which calls the pre-
vious functions and plots the frequency responses. 
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