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Abstract 
Here we derive a new charge distribution function for an electron by using as 
an equation of motion a segment of charge whose self energy interaction is 
due to electric field potential. Our method is based on the consideration that 
a charged distribution function should be represented as an eigenfunction of 
electron mass energy. We compare our electron charge distribution function 
to that of Weinberg’s ( )rη  and our charged electron radius to that obtained 
by Kim.  
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1. Introduction 

The theory that particle mass is generated by Higgs mechanism is widely ac-
cepted. Especially after the discovery of the Higgs particle [1], the Higgs me-
chanism has been convinced as the true origin of Bosons. Encouraged by this 
discovery, many physicists have been trying to show that the Higgs mechanism 
is also true for fermions, specifically by showing a mass hierarchy for quarks and 
lepton [2]. However, some physicists are still not convinced that the Higgs me-
chanism is true for fermions, primarily because of lepton consideration. Quan-
tum Electrodynamics (QED) has been used to describe the interaction between 
leptons, especially electrons, and it is well known that it describes such electro-
magnetic phenomena quite well. The only ambiguity appears in the determina-
tion of self-energy, and physicists disagree on how to consider this ambiguity. 
Some physicists argue that to describe leptons, especially electron, QED is suffi-
cient even though this ambiguity exists. 

For instance, Weinberg shows an estimated charged radius in his famous book 
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Quantum Theory of Field I [3]. He recently also published the paper [4] in 
which he opposed the consideration in some leading approximations that only 
quarks and leptons with nonzero masses are third generation with the other lep-
ton and quark masses arising from some sort of radiative correction. Weinberg 
points out that this kind of theory was firstly proposed by S.M. Barr and A. Zee 
[5] and recently has been revived [6]. The opposition by Weinberg seems to 
show that he still favors the same scheme mentioned in his book. The motiva-
tion of this paper is also based on the work of Weinberg. We investigate an elec-
tron charged radius by considering that a charge distribution function is de-
scribed by a segment of charge function. By constructing a segment of charge 
function as an eigenfunction of electron mass energy, we find that the electron 
charge distribution function appears simultaneously when the electron gains 
mass energy by the absorption of an infinite number of photons, as described by 
Weinberg. 

2. Formalism 

In order to obtain a charge distribution function, we introduce a charge matrix 
state as 

( ) ( ) ( ) ( ) ( ) ( )†, 0 , , charge state ,t r e q t r q t r e t rλη λ η ληρ ρ= − = −
         (1) 

where ,λ η  are Dirac indices. This kind of charge matrix (only operator part) is 
also used by Karnieli [7]. 

Since electron charge is invariable over time, time derivative of this quantity 
must be zero. 

Dirac equation with mass less field is represented as 

0D qµ
µγ =                           (2) 

where D ieAµ µ µ= ∂ − . 
We employ γ  matrices following Weinberg way [8] as follows 

00

0

0 0
,

0 0
kk

k

i i
σ σ

γ γ
σ σ
   

= − = −   −     
Here, 0σ  is a unit matrix of 2 × 2 matrix and kσ  are the 2 × 2 Pauli ma-

trices ( 1, 2,3k = ), 0µ µα γ γ=  ( 0,1, 2,3µ = ) and 0iβ γ= . 
From Equation (2) we can obtain following equation as 

k
k

qi i q e A q
t

µ
µα α∂

= − ∂ −
∂

                    (3) 

†
† †k

k
qi i q e A q
t

µ
µα α∂

= − ∂ +
∂

                   (4) 

where 0,1,2,3µ = . 
Note that we use the same metric system that Weinberg employs in book [8] 

00 11 22 331, 1η η η η= − = = =  
Since we consider the equation of motion for a segment of charge function 
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ληρ , we consider the case that ( ) ( ) ( )0, expt r iP t rλη ληρ ρ= −
  . 

Then from Equation (3) and Equation (4) we obtain 

( ) ( )0
k

kP r i rλη ληρ α ρ= − ∂
                      (5) 

Here we use the following notation, 

( ) ( )( ) ( ) ( ) ( )( )† †0 charge statek k k
k k ki r i q r q r q r q iλη λ η λ ηα ρ α α− ∂ = − ∂ + ∂ −



   

 
Here 0  denotes vacuum state. 
We interpolate that Equation (5) implies free motion of a segment of charge. 

There for to obtain an appropriate equation of motion, we have to also consider 
self-interaction energy. First though, we decompose ληρ  to Lorentz invariant 
form and consider that a segment of charge is depend on only the radius r r=

 , 
then αβρ  is described as 

( ) ( ) ( ) ( ) ( ) ( ) ( )0 1 2 3ˆ ˆr I r i r r r i r rληρ ρ α ρ βρ β α ρ= + − ⋅ + + ⋅
         (6) 

Recalling that actual charge is a scalar quantity, a segment of charge function 
which is affected by self-interaction energy should be defined as 

( ) ( ) ( ) ( ) ( )0
1 1actual charge
4 4

Tr r e Tr r e rλη ληρ ρ ρ= = − = −        (7) 

where Tr denotes Trace of matrix. 
To consider self-interaction energy, we use Gauss’s Law as 

0

0

divE
ρ

=



                          (8) 

Since we consider only r dependent case, thus volume integral using Green’s 
theorem gives 

( )
( ) ( ) ( )2 2

0 00 0
2 2

0 0

4 d 4 d1 1
4 4

r r

r

r r r e r r r
E r

r r

ρ ρ′ ′ ′ ′ ′ ′π − π
= =

π π
∫ ∫

 
      (9) 

Then we obtain an electric field potential as 

( )
( )

( )0
2

00
00

0 0 0 0

4 d
4 d

4 4 4
a

r

r

r r re e eV r r r r
a r

ρ
ρ

′ ′ ′π− − − ′ ′ ′= − + + π
′π π π

∫
∫  

   (10) 

Note that to obtain Equation (8) we use the setting consideration that charge 
vanishes at and beyond 0r a= . 

This means that 

( ) ( )
( ) ( )

0 0

0 0

0

0

r r a

r r a

ρ

ρ

= >

≠ ≤
                      (11) 

Then we have to set the following two conditions. 
The first condition is 

( )0 2
00

4 d
a

rr r eρπ = −∫                      (12) 

Rearrangement gives 

( )0 2
00

1d
4

a
rr rρ =

π∫                       (13) 
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The second condition is 

( ) ( )0 0 0 0 0a aρ ρ= =                      (14) 

From Equation (10), the self-interaction energy is described as 

( ) ( ) ( )

( ) ( )
( )

( )0

0

22 2
00

0 0 0
0 0 0

4 d
4 d

4 4

e r

r
a

r

V e r V r

r r re er r r r r
a r

ρ

ρ
ρ ρ ρ

= −

 ′ ′ ′π
 ′ ′ ′= − + + π
 ′π π
 

∫
∫ 

  (15) 

Then the equation of motion of a segment of charge function becomes 

( ) ( ) ( ) ( )

( )
( )

( )0

2

0 0 1 1 0
0 0

22
00

0 0
0

2
4

4 d
4 d

4

r
a

r

eP r r r r
r r a

r r re r r r r
r

ρ ρ ρ ρ

ρ
ρ ρ


∂ = − − + −

∂ π


 ′ ′ ′π  ′ ′ ′+ + π  ′π
 

∫
∫





    (16) 

( ) ( )0 1 0P r r
r

ρ ρ∂
=
∂

                      (17) 

( ) ( ) ( )0 2 3 3
2P r r r

r r
ρ ρ ρ∂

= − −
∂

                 (18) 

( ) ( )0 3 2P r r
r

ρ ρ∂
=
∂

                      (19) 

Derivation of kinetic term of each equation above is shown in Appendix. 
Note that because we investigate electron charge distribution function by con-

sidering the equation of motion of its segment of charge with self-interaction 
energy, Equations (16)-(19) represent an electron in the rest frame. Also note 
that these equations are described in units of 1c= = . 

To obtain a proper unit description of the charge distribution of an electron, 
we rewrite Equations (16)-(19) as follows. 

( ) ( ) ( ) ( )

( )
( )

( )0

2

0 0 1 1 0
0 0

22
00

0 0
0

2
4

4 d
4 d

4
a

r

r

eP r c r c r r
r r a

r r re r r r r
r

ρ ρ ρ ρ

ρ
ρ ρ


∂ = − − + −

∂ π


 ′ ′ ′π  ′ ′ ′+ + π  ′π
 

∫
∫

 





    (20) 

( ) ( )0 1 0P r c r
r

ρ ρ∂
=

∂
                      (21) 

( ) ( ) ( )0 2 3 3
2P r c r c r

r r
ρ ρ ρ∂

= − −
∂

                 (22) 

( ) ( )0 3 2P r c r
r

ρ ρ∂
=

∂
                      (23) 

Because we are interested in only charge distribution, we need only to obtain 
the solution of ( )0 rρ , however, this solution must correspond to a certain ei-
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genvalue that should be the rest mass of an electron. 
To do this, we need to consider only Equation (20) and Equation (21). By in-

serting the description of ( )1 rρ  from Equation (21) into Equation (20), we can 
obtain the equation for ( )0 rρ  as follows. 

( ) ( ) ( ) ( ) ( ) ( )

( )
( )

( )0

2 22 2
0 0

0 0 02
0 0 0 0

22
00

0 0
0

2
4

4 d
4 d

4

r
a

r

c r c r eP r r
P P r r ar

r r re r r r r
r

ρ ρ
ρ ρ

ρ
ρ ρ

∂ ∂ = − − + −
∂ π∂


 ′ ′ ′π  ′ ′ ′+ + π  ′π
 

∫
∫

 





    (24) 

Because we did not find out exact treatment of the integral part of Equation 
(24), we adopt a Tayler expansion around 0r = . This requires us to make a va-
riable dimensionless. 

Thus, we change a variable as 
0

rr
a

= . Then Equation (24) becomes 

( ) ( ) ( )

( )

( ) ( )

2

2
0 00

0 2

0

2 22 2
0 00 0

2
0 0 0

0

2
2 2 2
0 0 0 00 0

0

1

2

4 d

4 4

4 d 4 d
4

r

r

r r
r

r rr
P
c

a

a r r rP e e
a rc

a

e a r r r a r r r

ρ ρ
ρ

ρ

ρ ρ

 
  ∂ ∂  = − −

∂∂ 
 
 

 ′ ′ ′π
+ − +
 π π   

 


 ′ ′ ′ ′ ′ ′+ π + π  π


∫

∫ ∫





 



   (25) 

Note that the condition Equation (13) becomes 

( )1 2
0 30

0

1d
4

r r r
a

ρ =
π∫                      (26) 

To make dimension correct, we need to set one more condition as 

( )1 1
0 20

0

d
4

Cr r r
a

ρ =
π∫                      (27) 

Here 1C  is constant and is determined after obtaining the corresponding so-
lution ( )0 rρ  to the eigenvalue. 

To obtain the Tayler expansion, we define these integral as 

( ) ( )2
1 00

d
r

F r r rr ρ′ ′ ′= ∫                     (28) 

( ) ( )2 00
d

r
F r r rr ρ′ ′ ′= −∫                     (29) 

Then Tayler expansion around 0r =  of ( )1F r  and ( )2F r  become 

( ) ( )( ) ( ) ( )02 2 2
1 0 0

1 2
2

r
r r r r r rF r r

r
ρ

ρ ρ
∂ 

= + + 
∂ 

         (30) 
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( ) ( )( ) ( ) ( )02
2 0 0

1
2

r
r r r r r

r
r rF

ρ
ρ ρ

∂ 
= − − + 

∂ 
          (31) 

Note that usual Tayler expansion around 0r =  involves using the descrip-

tion of the value of nth derivative at 0r =  times 
!

nr
n

. However, we use only 

the nth derivative term itself because we are considering the case that r  itself is 
very close to zero. And note that this consideration restricts the order of singu-
larity at most 1, which means that if ( )0 rρ  has nr −  term largest n is 1. 

For the time being, we neglect derivative expression part in Equation (30) and 
Equation (31). Then we obtain 

( ) ( ) ( )2
1 2 0

1 1
2

r r rF r
r

F ρ+ =                   (32) 

We will demonstrate that this neglecting process does not affect the result by 
checking the corresponding eigenvalue solution ( )0 rρ . 

Then Equation (25) becomes 

( ) ( ) ( ) ( ) ( )

( )( )

2

2 2
0 00 0

0 0 1 02 2
0 0

0
0

2
220

02
0 0

0

2 1
4

1
4 2

r r
r r

r r
P P e a C
c ac

a a

P e
a

r

r r
c

a

ρ ρ
ρ ρ

ρ

 
  ∂ ∂  = − − − −

∂ π∂   
      

+
π 

 
 











  (33) 

Equation (33) is a homogeneous nonlinear second order differential equation. 
Because we have not discovered an exact treatment for this equation, we set the 
following condition to linearize it. 

( )( ) ( ) ( )2
0 0 fr r rρ ρ= +                    (34) 

Then Equation (33) becomes the following nonhomogeneous linear second 
order differential equation. 

( ) ( ) ( ) ( ) ( )

( )

2

2
0 0 20 0 0

0 1 0 02

0 0 0

0

0

2 11
2

1
2

P P P
a C

c c c
a a a

P
f

r r
r r r

r

c

r

a

r

r

ρ ρ
α ρ α ρ

α

            ∂ ∂       + + + − − ∂∂      
             

 
 
 =
 
 
 

  



(35) 

To obtain the Equation (35), we used the fact that 
2

04
e cα=
π




. 

To solve Equation (35), we need to solve the following homogeneous equa-
tion. 
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( ) ( ) ( ) ( )

( )

2

2
0 0 0 0

0 1 02

0 0

20
0

0

2 1

1 0
2

P P
a

r r
r

r rr
C

c

P
c

r

c
a a

a

r

ρ ρ
α ρ

α ρ

     
     ∂ ∂      + + + −  ∂∂    
            

 
 
 − =
 
 
 

 



     (36) 

For the simplicity we use the following notation 

( )

2

0 0
0 1

0 0

1
P P

T a C
c c

a a

α

   
   
   = + −
   
   
   

 

                 (37) 

0

0

1
2

P
S

c
a

α

 
 
 =
 
 
 



                        (38) 

Then Equation (36) is expressed as 

( ) ( ) ( ) ( )
2

0 0 2
02

2 0
r r

r r
r r

T
r

S
ρ ρ

ρ
∂ ∂

+ + − =
∂∂

            (39) 

To solve Equation (39), we use ( ) ( )0 0
1r r
r

ρ ρ=  and rearrange Equation 

(39) to become the following after factor out 
1
r

 

( ) ( ) ( )
2

0 2
02 0T

r
r r

r
S

ρ
ρ

∂
+ − =

∂
                 (40) 

To determine the specific eigenvalue, we use 2z r= . 
Then Equation (40) becomes 

2
0 0

02

1 0
2 4 4

T S
z z zz

ρ ρ
ρ

∂ ∂  + + − = ∂∂  
                (41) 

By setting as ( ) ( )
1
4

0 0ˆz z zρ ρ
−

=  and factor out 
1
4z

−
, Equation (41) becomes 

2
0

02 2

3
ˆ 16 ˆ 0

4 4
S T

zz z
ρ

ρ

 
 ∂

+ − + + = 
∂   

 

                 (42) 

To obtain the standard form of Whittaker equation, we use z zξ= . 
Then Equation (42) becomes 

2 2
0

02 2

31
ˆ 164 ˆ 0

4 zz z

TS ξρ ξ ρ

 
 ∂

+ − + + = 
∂   

 

               (43) 
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By setting the value of ξ  at 2 1Sξ = , Equation (43) becomes 
1
22

0
02 2

31
ˆ 1 164 ˆ 0

4

T

zz z

Sρ
ρ

− 
 ∂  + − + + =

∂  
 
 

               (44) 

The standard form of the Whittaker equation is presented in Ref. [9] as 

2
2

2 2

1
1 4 0
4

W W
zz z

µκ
 − + ∂

+ − + + = 
∂   

 

                (45) 

By comparison to the standard form of Whittaker equation, we obtain 

1
2

1
4

1
4

TS

µ

κ
−

= ±

=
 

Basic solutions of Equation (45) are 

( ),M zκ µ  and ( ),M zκ µ−  

The definition of ( ),M zκ µ  is given in Ref [9] as 

( )

( )

( )

1
2

,

1
2

0

1exp ,2 1,
2 2

12 1
2exp
12 !2 1
2

n

n

M Fzz z z

z zz
n

nn

µ

κ µ

µ

µ κ µ

µ µ κ

µ µ κ

+

∞+

=

   = − − + +   
   

 Γ + Γ − + +    = −     Γ + + Γ − + 
 

∑
     (46) 

Because we do not want continuous eigenvalue, the series must be terminated. 
This condition gives 

1 0
2

nµ κ− + + =                        (47) 

The Lowest value ofκ corresponds to lowest eigenvalue comes from the case 

of n = 0 and 
1
4

µ = − . 

Then we obtain the determining equation for eigenvalue as 

( )

12
2

1
1 20 0 02

0 1
0

0 0

1 1 1 21
4 4 4

c
P P a

TS a C
c c P

a a

κ α
α

−

                   = = = + −                      



 

     (48) 

Rearrangement yields the following for the eigenvalue determining equation. 

( )

12
2

1
20 0 0

0 1
0

0 0

21 1

c
P P a

a C
c c P

a a

α
α

      
             + − =                     



 

           (49) 
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Recalling that 
1
r

 and 
1
4z

−
, as well as z z

ξ
=  and 2z r= , can be factored 

out, the corresponding eigenfunction becomes 

( ) ( )
2

1
0

1 exp
2
rr const

r
ρ

ξ
 

= − 
 

                  (50) 

This solution has maximum, actually it is a singularity, at 0r = , so it has an 
appropriate solution from Tayler expansion around 0r = . The condition for 
the order of singularity that we mentioned before is also satisfied. And we can  

obtain the same factor of 
1
2

 when calculating the second order Tayler series 

with the derivative term that was neglected before. Thus, this solution is very 
acceptable. 

Another basic solution is 

( )

1
22

2
0 1 13 ,

4 42

const M r

r

ξρ
ξ

 
=  

 
                   (51) 

Note that ( )2
0ρ  does not have a singularity at 0r = . We need this solution 

also because in Equation (35) we are dealing with nonhomogeneous equation 
and we must construct a particular solution to complete it. 

We adopt 
1
4

µ = −  solution because in the case the solution corresponds to 

eigenvalue. If we take 
1
4

µ = +  in Equation (47), the determining equation is 

3
4

κ =  (n = 0) instead 
1
4

κ = , which has no singularity at 0r = . Therefore the 

type of solution in Equation (50) is more appropriate for the consideration be-

sides the determined eigenvalue is larger than 
1
4

µ = −  case. 

To obtain ( )f r , we describe ( )0 rρ  as a function of ( )f r  by solving the 
following equation 

( )( ) ( ) ( )2
0 0 fr r rρ ρ= +                    (52) 

We insert the solution of Equation (52), that is a function of ( )f r , into Equ-
ation (33) and obtain the following equation. 

2

2

2

2

2
1 1 4 1 42

1 4 2 2

1 1 4 1 4
0

2 2

f
f ff f T

f

f f

r
r r

rS f

r

∂ 
   ± + +∂ ∂∂ − + +   + ∂∂  

 ± + +
− + =  

 

          (53) 

We could not find the exact solution of Equation (54), so instead we seek a 
plausible solution by recalling that the equation we are dealing with is under the 
condition that r  is very small (near 0). Then as a trial solution, we set the fol-
lowing form. 
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( ) 21 4 r rf a b cr+ = + +                     (54) 

Recalling that r  is small, and noticing the fact that 

2 42
r r

b

r
f a∂
= +

∂  

the 
1
r

 term does not appear separately from the other terms, thus bmust be 0. 

Then, we can use the following approximations to describe Equation (53) 
second term of 1 4 f c+ =  

1
2 22

1 4 1 1
2

a af c c
c

r r
c

   
+ = + = +   

   
 

Comparing each 0r  (order o term), 2r  term, we obtain the following equ-
ations. 

0r  term 30
2 2
a c c T± = ± + 

 
                (55) 

2r  term 
2

21 10 1
2 2 2 4
a c c c c c ca T S

c c

   ± − 
= ± − + ± − +          

   (56) 

The remaining terms are only S multiplies of order 4r  and 6r  terms, and 
because we are dealing with Equation (35) under the condition that r  is small, 
we neglect them. 

For the + sign, we obtain the determining equation for c as 

( ) ( )

( )

4 3

2 2 22
 

3 30
4 2 2 2

4 9 18 18
   

T SS c T c

S T T TT c c

   = + + +   
   
 

+ − + − − 
 

              (57) 

Once the value of c is obtained, a is given from Equation (55) as 

3
c ca +

= −                         (58) 

Here, T and S are defined by Equation (37) and Equation (38). 
Note that the obtained ( )f r  is only an approximation and includes uncer-

tainty. However, this uncertainty does not affect the eigenvalue because it is only 
involved in the ambiguity for 0a , as shown in later. 

Then our ( )f r  is expressed as 

( ) 2f r ar c= +                        (59) 

where ,a c  denote the values by Equation (58) and Equation (57). 
To obtain a particular solution of Equation (35), we use the Wronskian me-

thod. Recalling that Equation (36) is homogeneous and that its solutions are ob-
tained in Equation (50) and Equation (51), the Wronskian becomes 
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( )

2 2

2 2

1 1
2 22 2

1 1 1 13 3, ,
4 4 4 42 2

1 1e e
r r

r r r
r

r
W

M M r
r

r r

ξ ξ

ξ ξ
ξ ξ

− − ∂  
 ∂
 

=  
   ∂  
    ∂    

 

           (60) 

Then a particular solution of Equation (35) is constructed as 

( )
( )

( )

( )

( )

2

2

1
22

1 1 12 3 ,22 4 422
0 1 13 0 0,

4 42

1 e 1d e d

r

r
r rP

f r M
f r

r rM r r
W r W

r

r
r

r
r

r

ξ

ξ

ξ
ξξρ

ξ

−

−

 
′  ′    ′ ′′ ′= −  ′ ′ 

∫ ∫ (61) 

This formula is presented as an example in book of Ince [10]. 
Thus, the general solution of Equation (35) is written as 

( ) ( )
1

2 22

0 0 1 13 ,
4 42

1 exp
2

P r rr r
r

r
A B Mξρ ρ

ξ ξ

 
    = + − +        

 

        (62) 

where A and B are arbitrary constants determined by condition Equation (26) 
and Equation (27). 

The corresponding eigenvalue is given in Equation (49). Equation (49) is re-
written as 

( ) ( )

3 1
2 2

1
120 02 0 1

0 0

2 2 1 1
P P

a C
c c

a a

α
α

   
       + − =     
   
   

 

             (63) 

To see whether this scheme works or not, we use the following form for 
2

1 1,
4 4

rM
ξ

 
 
 

. 

3
2 22

1 1,
4 4

exp
2

r rM r
ξ ξ ξ

    
= −    
    

                 (64) 

Then the second basic solution becomes 

( ) ( )
2

2
0 exp

2
rrρ
ξ

 
= − 

 
                     (65) 

Then Wronskian becomes 
2

2

1 e
r

r
W ξ

−
= . Thus we obtain the particular solu-

tion 

( ) 25 2
2P rcr aρ

α
 

= + 
 

                   (66) 

Then the general solution of Equation (35) is expressed as 
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( )
2 2

0
1 exp exp

2 2P
r rr

r
f A Bρ

ξ ξ
    

= + − + −         
           (67) 

Inserting Equation (67) to the condition equations Equation (26) and Equa-
tion (27), we obtain arbitrary constants A and B as 

1
2

3
0

16 e
5 34

A
a

ξη η 
= − +  π 

                   (68) 

1
2

3
0

6 63 e
5 4

B
a

ξ ηη= − + −
π

                    (69) 

where 5 2
2

c aη
α

= + . Then, the solution of this system is 

( )

[ ]( )

12 2
2 2

0 3
0

1 2
2

6 1 6 11 exp 2 e exp
2 5 24

63 e exp 0,1
5 2

r r
a

r r
r r

r r

ξ

ξ

ηρ η η
ξ ξ

ηη
ξ

     = + − − + − + −       π       
   

+ − + − ∈       

  (70) 

To calculate 1C , we use only the second term because it is proportional to 

3
0

1
a

 and reminding the fact that 0a  is very small quantity. 

Then we obtain 0 1 3a C = . Note that the second term is not dependent on η , 
so we can calculate anal most exact eigenvalue without knowing its value. 

Then Equation (49) (the determining equation for eigenvalue) becomes as 
3 1
2 2

0 0

0 0

2
2

P P
c c

a a

αα

   
   
   − =
   
   
   

 

                   (71) 

The solution of Equation (71) is 

20

0

4.74
P
c

a

α=


                        (72) 

Thus 0P  is expressed as 
2

0
0

4.74 c

c

acP
a a
α

=


 
where ca  denotes classical electron radius. 

Thus if 2
0 4.74 ca a= , then must be 2

0 eP m c=  (electron rest mass energy). 
Using Equation (72) we can determine c  to be 0.02284. With Equation (37), 

we can find 0.000522c =  and with Equation (38), we can find 0.00779a = − . 
From these values η  becomes as 0.322822η = . 

We describe this scheme in terms of choosing only the first term of 1 1,
4 4

M , 

but we can also obtain 2
0 eP m c=  when using the exact form of 1 1,

4 4

M . This is 
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because we can absorb the difference caused by including infinite series terms of 

1 1,
4 4

M  into 0a  used to obtain the electron mass energy eigenvalue. Our view-

point is that the result using exact form of 1 1,
4 4

M  is not very different from the 

result shown in this paper because the maximum value of the nth term of 1 1,
4 4

M  

is 

( ) ( )
21 1 1

2 1 ! 2 2 1 ! 17

n n

n n n n
α   ≈   + +     

3. Results 

Using the equation of motion for a segment of charge, we obtain the charge 
wave function for an electron as Equation (63). We call ( )0 rρ  as a wave func-
tion because it appears as the eigenfunction corresponding to eigenvalue. An 
important point is that this is interpreted as a charge distribution function. To 
make this clearer, we performed a calculation example by choosing only the first 
term of the infinite series of 1 1,

4 4

M . This result in an obtained charge distribu-
tion function that comes from an eigenfunction of electron mass energy. Also,  

its dominant function is 
21 exp

2
r

r ξ
 
− 
 

, which can be favorably compared to 

Weinberg’s charge distribution function relating ( )rη   to 

( )
( ) ( )

1

3 0
d 1 1 exp

1 1
const mr mrxx x

r x x x x

   
   − − + −
   − −   

∫ . We can say that the cha-

racteristic form of this expression is ( )3

1 exp mr
r

− − , which has a minus sign  

that, as pointed out by Weinberg, becomes plus sign after volume integration. 
This is exactly the same as our ( )0 rρ  expression. Weinberg adds the ( )rδ   
term to satisfy this condition. This modification seems to be inconsistent be-
cause it creates dipole moment, which is unlikely for reasons described later. 
However, apart from this and sign issue, we think that the behavior of Weinberg 
expression as a charge distribution function carries real physical meaning. When 
we compare our ( )0 rρ  to the characteristic form of Weinberg’s ( )rη  , both 
functions have a singularity at the origin, although the order of them is different 
and the corresponding term of the exponential part is Gaussian for our case. 
Thus we can say that the overall behavior is similar. The most interesting point 
is that our derivation is totally different from that of Weinberg even though both 
results are similar. Thus, we can say that our result may reflect Weinberg’s 
comment that by absorbing an infinite number of photons, an electron has mass 
while charge is simultaneously spread out to finite volume [3] because our result 
is obtained as an eigenfunction of electron mass energy. 

Our result has another interesting property. It shows a charged electron ra-
dius, denoted by 0a , that is almost 23 times as much as the classical electron ra-
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dius. This result is consistent with the result obtained by Kim et al. [11], who re-
formulate an electron equation of motion of electron by using nonrelativistic 
quantum mechanics. Anequation of motion of electron was first founded by 
Abraham [12] and Lorentz [13] more than century ago considering an electron 
as a point-like which caused run-aways solutions and no causal behavior. Later-
Caldiola [14] extended it, still in classical theory, showed that no run-aways and  

causality solution occur when the electron charged radius is more than 2
3

  

times classical electron radius. Kim et al. used nonrelativistic quantum mechan-
ics consideration based on neglecting magnetic term to this problem and ob-
tained the result that are alistic electron with no run-aways and no causality 
must satisfy the condition that the charged radius is smaller than 1.75 times 
Compton wave lengths. However, it has also pointed out that nonrelativistic 
quantum mechanics cannot strictly valid in point-particle limit because of va-
cuum polarization. In addition, QED calculation in this matter has not been re-
ported. This is presumably because no physicists know how to regularize soft 
photons. Even Weinberg showed his electron charged radius had some remain-
ing divergence [3]. The ACME collaboration report that they could not find a 
dipole moment inside electron electric field suggests that regularization based on 
the idea that creation and annihilation of tiny plus charge and minus charge in 
electric field is unlikely [15]. Therefore, Weinberg’s expression of an electron 
charged radius is still meaningful. This suggests that the lower bound of an elec-
tron charged radius according to quantum theory remains unclear. Thus, at the 
present time, we can say safely that the realistic electron satisfy the condition  

that its charged radius is more than 2
3

 times the classical electron radius and 

less than 1.75 times the Compton wave lengths. As we mentioned in sec. 2, our 
obtained 0a  is only approximation, but even using full expression of 1 1,

4 4

M ,  

would not yield a very different result. Thus, with respect to the electron charged 
radius, our result is also plausible. 

4. Discussion 

To this point, there has not been a decisive experiment result to determine the 
size of a charged electron, the few results we do have illustrate why this problem 
is difficult. Let us consider the example of e e+ −−  collision. Approaches to us-
ing these data can be divided into two groups. One group says that an electron is 
a point-like because no resolution data show up even though collision energy is 
very high, very much larger than the mass energy of electron. The other group 
uses data for extrapolating to low energy, ( 2 0q ≈ ), then claims that the electron 
charged radius is a finite and not point-like. The consideration that the size of a 
charged electron is obtained at low energy, (almost 2 0q ≈ ) during a e e+ −−  
collision experiment is based on Cabbibo’s paper [16]. Also, this consideration 
corresponds to the determination method of pion charged radius [17] together 
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with the determination equation of 2Fπ  from cross section of pion-electron 
collision data given by NA7 Collaboration (CERN) [18]. However, there is a pa-
per that might suggest an answer to this problem. Karnieli et al. suggest that the 
temporal duration of Cherenkov radiation, envisioned for almost a century as a 
shock wave, is limited by underlying entanglement between particle and light 
defined current operator as ( ) ( ) ( )†ˆ , , ,J r t ec r t r tψ αψ=

    where ( ),r tψ   is a 
delocalized wave function instead of being limited by ( ) ( ),J r t ev r vtδ= −



     
which uses current density and emits shock wave [7]. This means that a free 
charged electron is not a point-like but spread out in space-time. However, a 
complete and accurate description of this property depends importantly on 
whether or not the Higgs mechanism generates the masses of leptons, or at least 
electrons. 
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Appendix 

Considering polar coordinate each 1 2,x x  and 3x  are represented as 

1 2 3sin cos , sin sin , cosx r x r xθ θ θ θ θ= = =  

( )( ) ( )( )

( )( )

( )( )

( ) ( )

1 2 3
0 0

1 2 3

1 2 3
0

1 2 3 31 2
0

0

1 1

sin cos sin sin cos 1

1

ˆ 1

k
ki q r i q r

x x x

i q r
r r r

xx xi q r
r r r r

i r q r
r

α α α α

α θ θ α θ θ α θ

α α α

α

 ∂ ∂ ∂
− ∂ = + + ∂ ∂ ∂ 

∂ ∂ ∂ = − + + ∂ ∂ ∂ 
∂ = − + +  ∂ 

∂
= − ⋅

∂


 
where 1 denote unit matrix. 

Note that because qµ  is a function only of r, the ,
θ ϕ
∂ ∂
∂ ∂

 terms become 0. 

( ) ( )1ˆk
ki i r q rα α− ∂ − ⋅



 case 

Recalling that ( ) ( ) ( )2 2 21 2 3 1α α α= = =  (case 1) ( )k l l k k lα α α α= − ≠  (case 
2), we obtain the following. 

From case 1 term, multiplying by factor ( )2 1i− = −  yields 

( ) ( ) ( )( )
2 2 2

2 2 21 2 3
1 13

1 1

3 sin cos sin sin cos

2

x x x
q q

r rr

q q
r r

θ ϕ θ ϕ θ
 + + ∂

− + + + 
∂ 

∂
= +

∂  
From case 2 term, 
We show only the 1 2 2 1α α α α+  part. Recalling that 2 1 1 2α α α α= −  

( ) ( )

2 2 1 1

1 1 2 2

2 22 1 1 2
3 3 sin sin cos sin cos sin 0

x x x x
x r r x x r r x

x x x x
r rr r

θ ϕ ϕ θ ϕ ϕ

∂ ∂ ∂ ∂   + − −   ∂ ∂ ∂ ∂   
∂ ∂

= − + + − =
∂ ∂  
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