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Abstract 

An extension of Shrödinger’s quantization on the space ( ),x p , where the Ha-

miltonian approach is needed, is made on the space ( ),x v  where the Hamil-

tonian approach is not needed at all. The purpose of this paper is to give a 
possible extension of the actual formulation of the Quantum Mechanics, and 
this is achieved through a function ( ), ,K tx v  which takes the place of the 

Hamiltonian on the Shrödinger’s equation and has units of energy. This ap-
proach allows us to include the quantization of classical velocity depending 
problems (dissipative) and position depending mass variation problems. Some 
examples are given. 
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1. Introduction 

Despite the enormous success of the Hamilton formulation of the Quantum Me-
chanics [1] [2] [3] [4], there are still some problems in the Hamiltonian Classical 
Mechanics formalism with ambiguities which become evident when one tries to 
make their quantization, for example, dissipative [5] and mass variation [6] 
problems. In addition, even some simple problems [7] can have the ambiguity of 
having two different Hamiltonians describing the same classical dynamics, but 
when their quantization is made, they describe different quantum dynamics [8]. 
These are the main reasons that one would like to study the possibility of making 
a quantization of systems without the Hamiltonian formulation [9]. Another 
reason would be that this different formulation could represent a possible exten-
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sion of the same Quantum Mechanics Theory, and this will be carried out here 
for the first time. 

In this work, it is proposed to make the quantization in terms of the variables 
( ),x v , where = v x , instead of the variables ( ),x p , where p  is the genera-
lized linear momentum deduced from a Lagrangian of the system, j jp L x= ∂ ∂  

1,2,3j = , in fact, this was done firstly by Heisenberg at his beginning of the ma-
trix theory quantization. In this way, one can get rid of the Hamiltonian formu-
lation, and the goal is to obtain a function ( ), ,K tx v  (having the energy as 
units) that can take the place of the Hamiltonian ( ), ,H tx p  in the Schrödin-
ger’s equation.  

2. Classical Function K(x, v, t)  

In this section, the analysis of several classical examples and cases will be made 
to obtain a function ( ), ,K tx v  that can be used for quantization of the classical 
system in terms of its variables x  and v .  

2.1. Conservative Systems 

Consider a conservative system which describes the motion in the space of a 
particle of mass position depending, ( )m x , under a position depending force 
( )F x . Its Newton’s equation of motion is  

 ( ) ( )0
d .
d

m
t

=v F x                          (1) 

This type of systems are invariant under Galileo’s transformations, as it is well 
known, and the so called energy is a constant of motion of the system,  

 ( ) ( )2
0

1, d ,
2

K m= − ⋅∫x v v F x x                     (2) 

where the first term represents the kinetic energy, and the second one is the po-
tential energy.  

2.2. Conservative Systems with Position Depending Mass 

Consider a conservative system which describes the motion in the space of a 
particle of mass position depending, ( )m x , under a position depending force 
( )F x . Its Newton’s equation of motion is  

 ( )( ) ( )d .
d

m
t

=x v F x                        (3) 

One must point out that this type of systems are not invariant under Galileo’s 
transformation [10], and Sommerfeld’s invariant formulation [11] is not satis-
factory [12]. However, one can still keep (3) as the right description of the prob-
lem [13]. Therefore, multiplying on both side of this expression by ( )m x v , 
rearranging terms, and integrating with respect the time, one gets  

 ( )( ) ( ) ( )21 d ,
2

m m t C= ⋅ +∫x v x F x v                 (4) 
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where C is the integration constant. Knowing that one has the relation d dt =v x , 
and dividing the above expression by a characteristic mass 0m , the following 
constant of motion is gotten  

 ( )
( )( ) ( ) ( )

2

0 0

1, d .
2

m
K m

m m
= − ⋅∫

x v
x v x F x x                (5) 

The mass 0m  is that one that whenever ( ) constantm =x , this constant is 0m . 
For example, for the 1-D harmonic oscillator ( ( ) 2

0 0F x m x= − ω ) with mass var-
iation ( ) 0 1m x m m x= + , and at first order in gradient 1m , one would have the 
1-D constant of motion  

 ( )
2

2 2 2 2 30 0
0 0 0 1

1 1, ,
2 2 3

m
K x v m v m x m xv x

 
= + + + 

 

ω
ω           (6) 

which will be a good approximation on the region 1 0m x m .  

2.3. Liniar Dissipation 1-D Case 

Consider the 1-D motion of a particle of constant mass m under the Hook’s 
force kx−  in a dissipative medium which produces a velocity depending force 
of the form v−α , where k is the spring constant, and α  is the dissipative con-
stant. The associated dynamical system is given by the pair of equations  

 2d d, ,
d d
x vv x v
t t m
= = − −

αω                      (7) 

where k m=ω  represents the natural spring angular frequency. It has been 
shown [14] that the constant of motion associated to this system is given by  

 ( ) ( ) ( )2 ,2 2 2, 2 e ,
2

G v xmK x v v xv x −= + + α αω ω
αω ω             (8) 

where αω  and Gα  are defined as  

 

2 2 2 2

1 ln , if
2

1, and , if ,

1 arctan , if

v x
v x

m G
v x

v x


 + −Ω

<  Ω + −Ω 
= = =

+
  +   >  − −  

α α
α

α α α

α α α
α

α
α

α α

ω
ω ω

ω

ω α ω ω
ω

ω
ω ω

ω ω ω ω

   (9) 

where 2 2Ω = −α αω ω , and corresponding to strong, critical, and weak dissipa-
tion cases. Of course, when dissipation is zero ( 0=α ) one gets the usual energy 
of the harmonic oscillator.  

2.4. Quadratic Dissipation 1-D Case 

Consider the motion of a particle with position mass depending ( )m x  under 
gravitational force, ( )m x g− , in a dissipative medium where the force depende 
quadratically on its velocity, 2v−α  (with 0v < ). The equation of motion is given 
by  
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( )( ) ( ) 2d

,
d

m x v
m x g v

t
= − −α                   (10) 

where α  is a non negative constant. This equation can be written as  

 ( ) ( ) ( ) 2d ,
d x
vm x m x g m v
t
= − − +α                (11) 

where xm  is the variation of the mass with respect the position, d dxm m x= . 
Integrating this equation, it is not difficult to see that one gets the following 
function  

 ( )
( )( ) ( ) ( ) ( )

2 d d2 2
2

0 0

, e d e
2

x s
xm m sm x v gK x v m

m m
∫ ∫

= + ∫
σσα α

σ σ σ       (12) 

which is a constant of motion ( d d 0K t = ) of the system with energy units. The 
mass 0m  has been chosen such that if ( ) constantm x = , this constant has the 
value 0m .  

2.5. Electromagnetic Case 

The motion of a charged particle of charge q and mass m under an electric and 
magnetic fields E  and B  is governed by Lorentz’s equation of motion [12] 
(non relativistic case and CGS units)  

 
( )d

,
d
m qq
t c

= + ×
v

E v B                     (13) 

where c is the speed of light. This equation can be written in terms of the scalar 
potential Φ  and vector potential A , where = ∇×B A  and  

( )ct= −∇Φ −∂ ∂E A , as  

 
d .
d

q qm q
t c c
   + = −∇ Φ − ⋅   
   

v A A v               (14) 

Defining the new quantity of motion mV  as  

 ,m m q c= +V v A                      (15) 

and knowing that the function K associates to the equation ( )d dm t = −∇φV  
is just 2 2K m= +φV , where 2 2 2 2

x y zV V V V= + + , one can define the function K 
for this system as  

 ( )
2

, , .
2
m q qK t q

mc c
 = + + Φ − ⋅ 
 

x v v A A v            (16) 

For most of the cases, one has that 0⋅ =A v . So, the function K is given by  

 ( )
2

, , .
2
m qK t q

mc
 = + + Φ 
 

x v v A                (17) 

2.6. Relativistic Conservative Case 

This case is given as a good example for completeness of the concept of a constant 
of motion. The equation of motion of a relativistic particle of constant mass m 
on a conservative force ( )F x , with potential function ( ) ( ) dV = − ⋅∫x F x x , is 
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given by  

 
( ) ( )

d
,

d
m

F
t

=
γ v

x                         (18) 

where the function γ  is ( )2 2
1 2

1 c
−

= −γ v . It is well known [15] that this 
system has the following constant of motion  

 ( ) ( ) ( )2, 1 ,x v xK mc Vγ= − +                    (19) 

where the function ( )V x  represents the potential energy of the system,  
( ) ( ) dV = − ⋅∫x F x x . 

3. Quantization in the Space (x, v)  

The main idea is to assign a linear operator to the energy function ( ), ,K tx v  in 
order to have an equation that can be identify with Schrödinger’s equation. 
Firstly one needs to point out that in the case of Hamilton approach, if the ge-
neralized linear momentum, j jp L v= ∂ ∂  with ( ), ,L tx v  being a Lagrangian 
of the system, is related with the velocity of the form j jp mv=  (m is the con-
stant mass), the function K is exactly a Hamiltonian of the system, ( ), ,H tx p . 
Therefore, the quantization (Schrödinger’s equation) done with the function K 
can represent an extension of the theory of Quantum Mechanics. To do this, op-
erators associated to the variables “ x ” and “ v ” are introduced, and as one could 
expect, the operators associated to these variables are postulated as  

 
( )

ˆ ˆand ,i
m

→ → = − ∇
x x v v
x

                 (20) 

where   is as usual the Planck’s constant divided by 2π. In addition, one has 
the following commutation relation between the components of these operators  

 [ ] ( )
ˆ, ,k l klx v i I

m
= −

 δ
x

                      (21) 

where “I ” is the identity operator and the component l̂v  is  

 
( )

ˆ .l
l

v i
m x

∂
= −

∂


x
                       (22) 

One needs to point out that the operator (20) would be an Hermitian operator 
if and only if the mass does not depend on the position. The square, or self 
composition of this operator, has the following expression  

 
( ) ( ) ( )
2

2 2
2

1 1ˆ .m
m mm

 
= − − ∇ ⋅∇ + ∇  

 

v
x xx

            (23) 

Then, using the above definitions, one associates and operator to the energy 
function ( ), ,K tx v  as ( )ˆ ˆ, ,K t i t= ∂ ∂x v  and defines the Schrödinger-like eq-
uation in the space ( ),x v  as  

 ( )ˆ ˆ, , ,i K t
t

∂Ψ
= Ψ

∂
 x v                     (24) 
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where ( ), tΨ = Ψ x  is the wave function. If one has position depending mass 
problem, the operator K̂  may be not Hermitian ( †ˆ ˆK K≠ ) and there would 
not be conservation of the probability since the system is not invariant under 
Galileo’s transformation,  

 ( )3

2 3d ˆ ˆ, d , , ,
d

i t K K
t ℜ

Ψ = Ψ Ψ − Ψ Ψ∫ x x †             (25) 

where the inner product has the usual definition, ( ) ( )†, d= ∫φ ψ φ ψx x x .  
However, for the case of position depending mass problems, one can con-

struct a Schrödinger equation with Hermitian operator in the following way  

 ( ) ( )†ˆ ˆˆ ˆ, , , , .x v x vi K t K t
t

∂Ψ  = + Ψ ∂


                (26) 

In addition, although there might be some doubts where the function ( ), ,K tx v  
can not be a constant of motion [16], this statement is not necessarily a request, 
but it is necessary that this function must have units of energy. Let us see few 
examples of Schrödinger-like equations for the classical systems shown before. 
However, one needs to point out that the dissipation force on a motion of a body 
in the classical system appears as the result of the average collisions of the body 
with the particles of the medium where this body is moving, meanwhile in quan-
tum mechanics this collisions are much more complicated and depends strongly 
of the energy of the particle and the particle itself ( , , , , , , ,e e p p n− + − + Λµ µ , etc.) 
[17], therefore, it is not so direct to make the identification and transition of the 
classical problem to the quantum problem. However, from the mathematical 
point of view, the quantum theory must be able to address these types of prob-
lems. The same situation is presented with the mass position depending problem.  

3.1. Quantization of Mass Variation of Conservative Systems 

Using (20) and (24) in (5), and assigning to the function ( )2 2f vx  (for any ar-
bitrary function f) the operator  

  ( )2 2 2 2 2 2 21 ˆ ˆ ˆ ˆ ,
3

f v v f f v vf v= + +                  (27) 

one can get the operator for the function 2 2m v  as  

 
2

2 2 2 2 2
2

1 1 2 .
3

m m m m
m mm
  = − − ∇ ⋅∇ + ∇ + ∇    

v          (28) 

Therefore, it follows that the Scrödinger-like equation is  

 
( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

2
2 2 2

0

0

1 1 2
6

1 d .

i m m m
t m m m m

m
m

  ∂Ψ
= − − ∇ ⋅∇ + ∇ + ∇ Ψ   ∂    

 
− ⋅ Ψ 
 

∫



 x x x
x x x

x F x x

 

(29) 

If one makes the approximation to an Hermitian operator ( )0ˆ i m= − ∇v , 
the operatior 2 2m v  would be given instead by  
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( ) ( ) ( ) ( ) ( ) ( )

( ) ( )( )

2
22 2 2

2
0

2

3 5 2
3

2 ,

m v m m m m m
m

m m

= − ∇ + ∇ ⋅∇ + ∇ ⋅∇

+ ∇ 

x x x x x x

x x

  (30) 

and the wave equation would be given by  

 

( ) ( ) ( ) ( ) ( )

( ) ( )( ) ( ) ( )

2
2 2

3
0

2

0

3 5 2
6

12 d .

i m m m m m
t m

m m m
m

∂Ψ = − ∇ + ∇ ⋅∇ + ∇ ⋅∇∂

 + ∇ Ψ − ⋅ Ψ   
∫



 x x x x x

x x x F x x

   (31) 

3.2. Quantization of a Charged Particle Motion under  
Electromagnetic Forces and Pauli-Like Equation 

From the expression (17) and since the mass is constant, the quantization of 
these systems can be carried out with the following Shrödinger-like equation  

 
2

,
2
m i qi q

t m mc
 ∂Ψ   = − ∇ + + Φ Ψ  ∂    



 A                 (32) 

where ( ), tΨ = Ψ x  is an scalar function. Here again there is conservation of 
probability, and if the system has dipole electric and magnetic moments P  and 
m , the interaction with the electric and magnetic fields can be added in the 
usual way [18] by adding the terms − ⋅P E  and − ⋅m B . Now, it is well known 
Pauli’s matrix, kσ , properties [19], and their relation with the spin-1/2, S  of a 
charged particle,  

 ( )( ) ( )2, 2 , , , ,
2

l
k j kj l ji I I i  = = ⋅ ⋅ = ⋅ + × ⋅ = 

  σ σ ε σ σ σ σ σa b a b a b Sσ  (33) 

where I is the 2 2×  identity matrix, ( ), ,x y z=
σ σ σ σ , 3,a b∈ℜ  are arbitrary 

vectors, and Einstein’s convention was used. Thus, the Pauli’s equation in the 
quantum space ( ),x v  for a charged particle of spin one-half can be written as  

 
2

,
2
m i qi q

t m mc

 ∂Ψ    = ⋅ − ∇ + + Φ Ψ   ∂     



 σ A             (34) 

where Ψ  is an spinor (a two components vector of scalar complex functions)  

 ( ) ( )
( )

1

2

,
, .

,
t

t
t

 
Ψ =  

 

ψ
ψ

x
x

x
                    (35) 

3.3. Quantization of 1-D Dissipative-Mass Variable Problem 

From the expression (12), one notices that it will appear the product of ( ) 2f x v  
where the this function is given by  

 ( ) ( ) ( )2 d2 e .mf x m x ∫= α σ σ                   (36) 

So, using the same expression (27) for 1-D, the Shcrödinger-like equation can 
be given as  
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( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

( ) ( )

2 2
2

2 2
0

2

2

2

0

1 1
6

d ,

i m x m x x
t m x x m xm x x

x m x m x m x x
x x x xx

g m
m

  ∂Ψ − ∂ ∂ ∂= − +   ∂ ∂ ∂ ∂  

 ∂ ∂ ∂ ∂ ∂
+ − + +  ∂ ∂ ∂ ∂∂   


+ Ψ


∫



 λ

λ λ

σ σ λ σ

   (37) 

where the function ( )xλ  has been defined as  

 ( ) ( )2 de .s m sx ∫= αλ                        (38) 

If the mass of the system is constant ( ( ) 0m x m= ), one would have that 
( )0v̂ i m x= − ∂ ∂  is an Hermitian operator, the function λ  would be  

( ) 02e x mx = αλ , and the wave equation would be  

 ( ) ( )( )
22 22

0
2

0 0 0

6 23 1 .
3 2

x gm
i x

t m m x mx

     ∂Ψ ∂ ∂  = − + + + − Ψ    ∂ ∂∂       





λ α α λ
α

 (39) 

3.4. Quantization of the Relativistic Scalar Case 

For completeness, for the system characterized by the expression (19), let us 
make first some algebraic manipulation. Let us write this expression in the form  

( ) 2 2 ,K V mc mc− + = γx  

let us take the square of this expression and pass the velocity dependence to the 
left hand side. So, one gets  

 ( )( )
2 22 2 4
21 .v K V mc m c

c
 
− − + = 

 
x               (40) 

In this way, using the identification of the operators for different variables and 
the function K, it follows that  

 ( )
22

2 2 2 4
2 21 .i V mc m c

tm c
  ∂ + ∇ − − + Ψ = Ψ  ∂  



 x       (41) 

4. Some Particular Solutions on the Space (x, v) 

In this section, two simple solutions of the above approach are presented for il-
lustration.  

4.1. 1-D harmonic Oscillator with Position Depending Mass  

Using the approximated constant of motion (6), one can write this expression of 
the form  

 ( ) ( ) ( )0, , , ,K x v K x v W x v= +                (42) 

where 0K  represents the usual harmonic oscillator with constant mass 0m , 
and W represents the term of the variation of mass at first approximation in 
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Taylor expansion,  

 ( ) ( )
2

2 2 2 2 30 0
0 0 0 0 1

1 1, , , .
2 2 3

m
K x v m v m x W x v m xv x

 
= + = + 

 

ω
ω    (43) 

Of course, for 1 0m = , one has that p mv= , and 0K  represents the Hamil-
tonian ( ) 2 2

0 0 0, 2 2 2H x p p m m x= + ω , and one knows that the solution of the 
Schrödinger’s equation would be ( ) ( ) ( )0 0, expn n nnx t c iE t x

=
Ψ = − Φ∑  , where 

the set ( ) ( ){ }0 ,1 2n nE n x= + Φω  is the solution of the eigenvalue problem 
Ĥ EΦ = Φ  [2]. This solution is exactly the solution of Schrödinger-like equa-
tion  

 ( )0
0

ˆ ˆ, .i K x v
t

∂Ψ
= Ψ

∂


                    (44) 

For 1 0m ≠ , one considers that W is a perturbation of the system and uses 
perturbative theory to find the modification of the energy levels of the system. 
Since W contains odd monomials order, there is not contribution a first order 
perturbation, ˆn W n  with ( )nx n x= Φ . It is not difficult to calculate that 
up to second order in perturbation theory, the eigenvalues are of the form  

 ( )
( )22 2

1
0 3

0

39 2 2 7 .
18 62

1 2n

n nmE n
m

ω
 +
 ≈ + + +
 
 



          (45) 

4.2. Free Relativistic Particle 

Just to have some idea what the relativistic case would be, let us consider the 
quantization in the space ( ),x v  of the relativistic free particle motion. In this 
case, one makes ( ) 0V =x  on the expression (41) and propose a plane wave 
solution of the form  

 ( ) ( ), e ,i tt ⋅ −ωψ k xx                        (46) 

on the resulting equation  

 
22

2 2 2 4
2 21 .i mc m c

tm c
  ∂ + ∇ − + Ψ = Ψ  ∂  



           (47) 

Thus, one gets the dispersion relation given by  

 ( )
2

2 2

2 2

1 1 .

1

mck
k

m c

 
 
 = −
 
 −
 





ω                (48) 

See following figure (Figure 1) where it has been plotted this relativistic dis-
persion relation.  

The general solution would be the superposition of all the solutions,  

 ( ) ( ) ( )( )
3

3, e d ,i k tt A ⋅ −

ℜ
Ψ = ∫

ωk xx k k               (49) 

where, due to conservation of probability, the function ( )A k  is such a  
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Figure 1. ( )2mc ω  (vertical) vs. ( )22 2 2k c mc   (horizontal) with 2 241.42 10 secmc = × . 

 

 ( )3

2 3d 1.A
ℜ

=∫ k k                         (50) 

5. Conclusions and Comments 

It has been done an extension of the Shrödinger’s quantization approach to the 
quantization on the space ( ),x v  through the function ( ), ,K tx v  which has 
energy units. Within this approach, the Hamiltonian notion is not needed, and 
the quantization of conservative systems is the same with this approach and the 
Hamiltonian approach (in fact, it must be the same whenever the generalized li-
near momentum is of the form m=p v ). The possibility to include the quanti-
zation of mass variation problems and velocity depending problems (dissipation) 
is clearly stablished. In addition, the quantization of non relativistic interaction 
of charged particles with electromagnetic field is also stablished. 
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