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Abstract 
A new relativistically covariant approach is discussed for the derivation of lo-
cal conservation theorems for homogeneous anisotropic and, in particular, 
dispersive media. We start from a three-dimensional operator equation for 
the electric field and obtain mainly by coordinate-invariant methods the re-
sults basically expressed by the slowly varying amplitudes of the electric field. 
Apart from local energy and momentum conservation formulated by the 
energy-momentum conservation, we find a local conservation theorem for 
the action which is more general and which is the only one which remains 
also true for inhomogeneous media. 
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Some Notations 

Three-dimensional vectors: bold letters, e.g., , , ,a b c  ; 
ab  scalar products, [ ],a b  vector products, ⋅a b  dyadic products; 
Latin letters as indices, three-dimensional, e.g., 1,2,3i = , ijkε  is Levi-Civita 

pseudo-tensor;  
Greek letters as indices, four-dimensional, e.g., 1,2,3,4µ = ; 

4α ≡ π  (for CGS or Gauss system of units, α  is often in the denominator of 
formulae). 

1. Introduction 

The four-dimensional energy-momentum tensor was introduced 1913 by Eins-
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tein with notation µνΘ  in [1] (republished in [2]) for the relativistically cova-
riant generalization of the local conservation theorems of energy and momen-
tum in differential form1. Three-dimensional parts of this tensor (Maxwell stress 
tensor) were already known before and used earlier. These local conservation 
theorems of energy and momentum are as it is well known a consequence of the 
homogeneity or translation invariance of (three-dimensional Euclidean) space 
and of time. 

Beginning from 1915 Einstein published his General relativity theory (see, e.g., 
[2]) in which the symmetric energy-momentum tensor Tµν  is a kind of source 
term for curvature of space-time expressed by the symmetric Ricci tensor Rµν  
which results from Riemann curvature tensor which is a four-valent tensor by 
contraction over two of its four indices [3] [4]. Due, in particular, to Pauli [5] [6] 
who wrote in his very young year of 21 an encyclopedic article about the new 
General relativity theory which requires a symmetric energy-momentum tensor 
a long discussion of the right energy-momentum tensor, the symmetric Abra-
ham tensor or the non-symmetric Minkowski tensor, began where Pauli brought 
arguments in favor of the Abraham tensor. However, the Abraham tensor was 
only derived for isotropic media without taking into account dispersion and a 
more general symmetric tensor for all subgroups of the three-dimensional or-
thogonal group cannot exist. Pauli obviously recognized his incorrectness and in 
a later republication of his article shortly before his death he corrected it in the 
remark (see Section 13 here). Now the problem of the right energy-momentum 
tensor for media seems to be decided in favor of the Minkowski tensor. 

Our main older sources for considerations to the energy-momentum tensor 
and its parts were, in particular, Landau and Lifshits [3] [7], Agranovich and 
Ginzburg [8] [9] [10] and Silin and Rukhadze [11] where, in particular, the dis-
persion was taken into account and apart from already cited encyclopedic article 
of Pauli, the work of Tolman [12], Sommerfeld [13], von Laue [14], Fock [15], 
Skobeltsyn [16] and Ugarov [17] [18], the (astonishingly modern) work of 
Tamm [19] (1st Ed. 1929) and the monographs of Møller [20] and of Jackson 
[21] for the older development of electrodynamics and Relativity theory. The 
number of interesting text-books with treatment of these topics grew rapidly in 
the following time among them, e.g., [22] [23] [24] [25] [26] which organically 
take into account dispersion. Long before but less known is the coordinate- 
invariant approach which was developed, first, mainly in the work of F.I. Fyo-
dorov [27] [28] [29] (see also [30] [31]). Many articles of later time did not use 
these methods for reflection and refraction problems where, in particular, they 
are advantageous and derived with other (mostly coordinate) methods new re-

 

 

1Contravariant and covariant components of tensors are not yet distinguished in this article by up-
per and lower indices and µνΘ  is meant as contravariant tensor. The corresponding covariant 

energy-momentum tensor with notation Tµν  is introduced there by the relation T g gµν µα νβ αβ= Θ  

with gµν  the covariant metric tensor ( µνγ  corresponding contravariant tensor). Both these tensors 

are symmetric ones. All this was prepared for the transition to curvilinear coordinates which is dis-
cussed in Mathematical Part II written together with M. Grossmann. 
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sults or rederived older results. In [32] [33] were given new arguments in favor 
of the Abraham tensor. 

Apart from Abraham or Minkowski tensor there exist yet other serious problems 
with the energy-momentum tensor. As it is well known, the energy-momentum 
tensor is not uniquely determined by the requirement to satisfy a differential 
conservation theorem, e.g., [3] [20]. Practically, one has to do in every case of a 
calculated energy-momentum tensor with a whole class of equivalent ener-
gy-momentum tensors. One main use of this non-uniqueness is the possibility to 
remove the highly oscillatory terms in the approximation to waves with slowly va-
rying amplitudes (beams) if we first insert the whole electromagnetic field with a 
positive and corresponding negative peak in the frequency distribution. We dis-
cuss this in Section 14 but mention already here that the energy-momentum ten-
sor for media (only vacuum excluded) is basically non-symmetric and that by us-
ing the non-uniqueness it cannot be reduced to a symmetric one. Another diffi-
culty for dispersive media is that their energy-momentum tensor cannot be de-
rived starting from a Lagrange function as consequence of translation invariance 
of the medium in space and time (Noether theorem) as it is standard for elec-
trodynamics of the vacuum. For inhomogeneous media the energy-momentum 
tensor does not exist at all in a local conservation law. 

In present article we consider first the equations of macroscopic electrody-
namics as averaged from microscopic electrodynamics (Section 2) then the con-
stitutive equations in the concept of media with spatial and frequency dispersion 
and the symmetry of the permittivity tensor for neglect of dissipation (Section 3) 
and its symmetry under presence of discrete symmetries (space inversion, time 
inversion and their product, Section 4). Then we derive a three-dimensional op-
erator equation for the electric field (Section 5) which is relativistically covariant 
but on the first glance it may seem to be paradoxical that this is possible. From 
this operator equation we derive a local conservation theorem for action (Section 
6) and for energy and momentum (Section 7) and discuss the obtained ener-
gy-momentum tensor (Section 8). A peculiarity of our approach is that we ob-
tain basically all results expressed by the electric field alone and after limiting 
transition to plane monochromatic waves we make the transition to more usual 
representation by the electric and magnetic field (Section 9). Then we consider 
the role which the group velocity plays (Section 10). After this we discuss the 
neglect of dispersion and the calculation of the group velocity in this case (Sec-
tion 11). Next, we consider the special case of a cold plasma (Section 12). In the 
discussion of controversial opinions to local conservation of angular momentum 
we show that a complete symmetry of the four-dimensional energy-momentum 
tensor is not necessary but only symmetry of the stress tensor (Section 13). The 
non-uniqueness of the energy-momentum tensor is considered under new as-
pects (Section 14). Connected with the general non-symmetry of the ener-
gy-momentum tensor arise some difficulties for the General relativity theory 
(Section 15) and, finally, we mention some possibilities for generalizations of the 
discussed material (Section 16). In two Appendices we have separated the deri-
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vation of the relativistic covariance of our approach and the transformation of 
the energy-momentum tensor under special Lorentz transformations. A short 
paper to some of these problems can be found in [34] (see “Remark” and “Ac-
knowledgements” at the end of present article). 

2. Maxwell Equations of Macroscopic Electrodynamics in 
Two Concepts 

The basis of our derivations is the following Maxwell equations of macroscopic 
electrodynamics 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

1, , , , , 0

1 4, , , , , , 4 , ,

t t t
c t

t t t t t
c t c t

∂
+ = =   ∂

∂ ∂
− = = − 

∂
π

∂
π

 

E r B r B r

B r E r P r E r P r

∇ ∇

∇ ∇ ∇

0
 (2.1) 

where E  and B  are the averaged electric field microE  and magnetic field 
microB  of microscopic electrodynamics in the electron theory of Lorentz [35]2 

(republ. in [36]; see also [37] [38]) in the sense of the transition from micro-
scopic to macroscopic electrodynamics ([7], de Groot and Suttorp [39], (II. sec-
tion 3)) 

( ) ( ) ( ) ( )micro micro, , , , , .t t t t≡ ≡E r E r B r B r            (2.2) 

This transition can include different averaging processes, for example, spatial, 
temporal and statistical ones (denoted by overlining of the corresponding quan-
tity). The averaged microscopic current density microj  and charge density 

microρ  are expressed by only one macroscopic quantity P , called polarization, 
in the rank of following definition 

( ) ( ) ( ) ( )micro micro, , , , , ,t t t t
t

ρ∂
≡ ≡ −
∂

j r P r r P r∇          (2.3) 

where the necessary validity of the continuity equation for microscopic current 
and charge densities 

( ) ( )micro micro, , 0,t t
t
ρ∂

+ =
∂

j r r∇                   (4) 

is taken into account. Such an identification is possible in almost all cases with 
exception of some static cases (e.g., electrostatics, stationary currents, magnetos-
tatics) which have to be considered in this concept as limiting cases. As usual, we 
define the “electric induction”3 ( ), tD r  by 

( ) ( ) ( ), , 4 , .t t tπ≡ +D r E r P r                  (2.5) 

From vectorial equations in (2.1) follows then by forming the divergence 

 

 

2Lorentz denotes microscopic fields with small letters corresponding to the Capital letters commonly 
used in macroscopic electrodynamics (but d  instead of e  for microscopic electric field). Most 
authors use microH  instead of microB  but since there is no difference between them in microscopic 
theory this is only of some didactic importance. 
3We follow here in terminology Landau and Lifshits [7] (Russian editions) to distinguish the “elec-
tric induction” from such notions as, e.g., “dielectric displacement” which are mostly used in a more 
special sense. 
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( ) ( ), , , 0,t t
t t
∂ ∂

= =
∂ ∂

B r D r∇ ∇0                (2.6) 

that are the scalar equations in (2.1) differentiated with respect to the time. 
Therefore with exclusion of the static limiting case, the scalar equations from 
(2.1) in 

( ) ( ) ( )

( ) ( ) ( )

1, , , 0, , 0,

1, , , 0, , 0,

t t t
c t

t t t
c t

∂
+ = =   ∂

∂
− = =   ∂

E r B r B r

B r D r D r

∇ ∇

∇ ∇
           (2.7) 

are redundant and the only field equations to take into account are the vectorial 
equations. 

One can often find in literature forms of the equations of macroscopic elec-
trodynamics where the averaged current and charge density are not fully in-
cluded only into one quantity ( ), tP r  called polarization and defined by (2.3) 
but into some different quantities, for example, electric polarization in a more 
special sense ( ), t′P r  and magnetization ( ), tM r  according to, e.g., de Groot 
and Suttorp [39] and Bloembergen [40] (chap. 3, Eqs. (3.3), (3.5)) (the “Nether-
land school” together with H.A. Lorentz) but also many other authors 

( ) ( ) ( )

( ) ( )

micro

micro

, , , , ,

( , , ,

t t c t
t

t tρ

∂ ′≡ + +  ∂

′≡ − +

j r P r M r

r P r





∇

∇
           (2.8) 

and in nonlinear optics sometimes additionally into electric quadrupole density 
and higher electric and magnetic multipole densities (indicated by additional 
points). They can be joined then in different ways with the electric field ( ), tE r  
and magnetic field ( ), tB r  to new quantities, for example, to a more special di-
electric displacement ( ), t′D r  and to a new field ( ), tH r  as follows 

( ) ( ) ( ) ( ) ( ) ( ), , 4 , , , , 4 , ,t t t t t t′ π+ π′≡ ≡ −D r E r P r H r B r M r     (2.9) 

which obey then the following field equations instead of (2.7) 

( ) ( ) ( )

( ) ( ) ( )

1, , , , , 0,

1, , , , , 0.

t t t
c t

t t t
c t

∂
+ = =   ∂

∂ ′ ′− = =   ∂

E r B r B r

H r D r D r

∇ ∇

∇ ∇

0

0
         (2.10) 

The field ( ), tH r  is mostly called magnetic field but it is not the averaged 
microscopic magnetic field ( )micro , tB r  and therefore not the “genuine” mag-
netic field [7] (chap IV, section 29, after Eq. (29.8)) (in our treatment with equa-
tions (2.7) we have ≡H B  and M  is included into P ). However, the greater 
symmetry of (2.10) in comparison to (2.7) is deceptive and to fix the separation 
(2.8) is then difficult and not fully unique without additional conventions, in 
particular, for high frequencies under presence of dispersion in the constitutive 
equations. To see this we recommend to read also the very instructive section 79 
in Landau and Lifshits [7]. All such more special schemes can be transformed to 
the general scheme which we prefer and which is characterized by Equations 
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(2.3), (2.5) and (2.7) and by constitutive relations considered in next Section and 
only some static cases have to be dealt with then as limiting cases. 

3. Linear Constitutive Equations for Homogeneous  
Anisotropic Dispersive Media 

The Maxwell equations of macroscopic electrodynamics (2.1) or (2.7) form a 
closed system of equations only together with constitutive equations which de-
pend on the kind of the considered medium. We discuss this now. 

The general linear constitutive relation between the electric induction ( ), tD r  
and the electric field ( ), tE r  for spatially and temporally homogeneous media 
is (summation convention over equal indices; ′≡ −r rρ , t tτ ′= − ;  

exp
t

τ ∂ − − ∂ 
ρ∇  is displacement operator of arguments of a function of ( ), tr  

to ( ), t τ− −r ρ ) 

( ) ( ) ( )

( ) ( )

3

3

ˆ, d d , ,

ˆd d , exp , ,

i ij j

ij j

D t E t

E t
t

ρ τ ε τ τ

ρ τ ε τ τ

= ∧ − −

∂ = ∧ − − ∂ 

∫

∫

r r

r

ρ ρ

ρ ρ∇
       (3.1) 

where the real-valued tensor function ( )ˆ ˆ ,ij ijε ε τ= ρ  characterizes the material 
properties and where the integration is written as going over the whole 
space-time and restrictions of this integration (e.g., to prehistory, causality) are 
thought to be included by vanishing of this tensor function in certain regions. 
These restrictions, for example, to the prehistory of the field evolution lead to 
properties of analyticity and thus to relations between real and imaginary part of 
the Fourier transform of ( )ˆ ,ijε τρ  which are called Kramers-Kronig relations 
which we do not discuss here (e.g., [7]). Relation (3.1) means that the most gen-
eral linear constitutive relations are also nonlocal in space that describes the spa-
tial dispersion4. The homogeneity of the medium is expressed by the property 
that ( )ˆ ,ijε τρ  does not explicitly depend on the considered space-time point 
( ), tr  but only on the differences ( ),τρ  to this point. 

Using the Fourier transform ( ),ijε ωk  of ( )ˆ ,ijε τρ  according to [9] [10] 

( ) ( ) ( )

( )
( )

( ) ( )

i3

i3
4

ˆ, d d , e ,

1ˆ , d d , e ,
2

ij ij

ij ijk

ωτ

ωτ

ε ω ρ τ ε τ

ε τ ω ε ω

− −

−

= ∧

= ∧
π

∫

∫

k

k

k

k

ρ

ρ

ρ

ρ
           (3.2) 

the constitutive Equation (3.1) can be represented by 

( ) ( ), i , i , ,i ij jD t E t
t

ε ∂ = − ∂ 
r r∇                 (3.3) 

where ( ),ijε ωk  denotes the complex permittivity tensor. After Fourier trans-
formation of the electric field ( ), tE r  (analogously ( ), tD r  and ( ), tB r ) ac-

 

 

4According to Silin and Rukhadse [11] (p.14) the notion “spatial dispersion” was introduced by 
Gertsenshteyn. Clearly, the name “spatial dispersion” is not analogous to “frequency dispersion” 
which then has to be better named “temporal dispersion” or vice versa the “spatial dispersion” then 
“wave-vector dispersion”. 
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cording to 

( ) ( ) ( )

( )
( )

( ) ( )

i3

i3
4

, d d , e ,

1, d d , e ,
2

t

t

r t t

t k

ω

ω

ω

ω ω

− −

−

=

π

∧

= ∧

∫

∫

kr

kr

E k E r

E r E k
            (3.4) 

the constitutive relation (3.3) takes on the well-known form (e.g., [7] [8] [9] [10] 
[11] and others) 

( ) ( ) ( ), , , .i ij jD Eω ε ω ω=k k k                  (3.5) 

The dispersion of the medium is here expressed by the dependence of the 
permittivity tensor ( ),ijε ωk  on wave vector k  and frequency ω  and the 
anisotropy by its tensor character. 

The electric field ( ), tE r  and the electric induction ( ), tD r  are real quanti-
ties. From this follows for the Fourier transform of the electric field ( ), tE r  
(analogously ( ), tD r  and ( ), tB r ) 

( ) ( )( ) ( ) ( )( )** * *, , , , , .t t ω ω= ⇔ = − −E r E r E k E k        (3.6) 

As a consequence, the permittivity tensor ( ),ijε ωk  possesses the general 
symmetry property 

( ) ( )( )** *, , .ij ijε ω ε ω= − −k k                   (3.7) 

Local or differential conservation laws of energy and momentum can only be 
derived under the condition that the medium is lossless which means that it does 
not have any dissipation or accumulation or transmission of energy and mo-
mentum to other frequencies and wave vectors. As the later derivations show, 
the condition for this is the following symmetry 

( ) ( )ˆ ˆ, , ,ij jiε τ ε τ= − −ρ ρ                     (3.8) 

which after Fourier transformation according to (3.2) and in connection with 
(3.7) takes on the following form 

( ) ( ) ( )( )** *, , , ,ij ji jiε ω ε ω ε ω= − − =k k k              (3.9) 

and which for dispersive media can only be satisfied approximately for certain 
regions of wave vector and frequency. Such kind of conditions are closely related 
to Onsager conditions for quasi-stationary processes [7] (section 21, Ed. 1982) 
but instead of a rigorous derivation from basic principles we prefer again that 
one can conclude this from the necessary conditions for the most general possi-
bility of derivation of differential conservation laws of energy and momentum. 
These conditions should not be confused with the influence of point group 
symmetries on the medium properties which additionally may be present or may 
not. The symmetry conditions which are related to different inversion symme-
tries are discussed in next Section. 

To treat spatial dispersion it is mostly appropriate to make a Taylor-series ex-
pansion of ( ),ijε ωk  in powers of the full wave-vector k  (i.e., at 0 =k 0 ) 
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with notations in [9] (p. 155) and for the inverse tensor ( )1 ,ijε ω− k  in the new 
chapter XII in [7] (Ed. 1982) (Landau and Lifshits prefer there mainly to work 
with this inverse tensor) 

( ) ( ) ( ) ( )
( ) ( ) ( ) ( )1 1

, i ,

, i ,
ij ij ijk k ijkl k l

ij ij ijk k ijkl k l

k k k

k k k

ε ω ε ω γ ω α ω

ε ω ε ω δ ω β ω− −

= + + +

= + + +

k

k





        (3.10) 

that means for the expansion (3.10) 

( ) ( ) ( ) ( ) ( ) ( ), , , .ij ji ijk jik ijkl jiklε ω ε ω γ ω γ ω α ω α ω= − = − − = − 
 (3.11) 

The approximate transition from one to the inverse tensor in (3.10) is easily to 
make. 

We mention here shortly that in the most common treatment of macroscopic 
electrodynamics with two constitutive equations ( ) ( ) ( ), ,i ij jD Eω ε ω ω=k k  
and ( ) ( ) ( ), ,i ji jB Hω µ ω ω=k k  the more general tensor ( ),ijε ωk  corres-
ponds to the special one ( ijkε  is Levi-Civita pseudo-tensor) 

( ) ( ) ( )( )
2

1
2, .ij ij ikm jln mn mn k l

c k kε ω ε ω ε ε δ µ ω
ω

−= + −k         (3.12) 

This shows that a possible magnetization appears here as effect of spatial dis-
persion of second order in wave-vector k  that is important for the energy- 
momentum tensor and also for the boundary conditions at such medium. Fur-
thermore, we see that the tensor ( )ijklα ω  in (3.10) is more general and usually 
contains more non-vanishing terms than this special tensor proportional to 

k lk k  in (3.12)5. Only for magnetostatics this concept not used in present article 
is less appropriate. 

4. Additional Restrictions of Tensor ( )ij kε ω,  for Discrete 
Symmetries of Spatial and Time Inversion 

We now consider the most simple discrete symmetries of order 2. 
1) Spatial inversion (presence of symmetry center) 
The presence of spatial inversion that means invariance of the medium with 

respect to the transformation → −r r  of the coordinates where due to the ho-
mogeneity the chosen coordinate origin is arbitrary and due to the property of 
E  and D  to be genuine vectors changing their sign under this transformation 
(in contrast, B  is a pseudo-vector) leads to 

( ) ( ) ( )( )** *, , , ,ij ij ijε ω ε ω ε ω= − = −k k k              (4.1) 

where in the second step (3.7) was used in addition. The first part of this condi-
tion means that for media with spatial inversion the components of the permit-
tivity tensor ( ),ijε ωk  are mutually independent from each other and are even 
functions of the wave vector k , whereas it does not mean a restriction for its 
dependence on the frequency ω . In composition with the condition (3.9) for 
absence of dissipation we have 

 

 

5For a deeper understanding we recommend here again the very instructive section 79 in [7] (Ed. 
1982). 
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( ) ( ) ( ) ( ), , , , ,ij ij ji jiε ω ε ω ε ω ε ω= − = − = −k k k k           (4.2) 

which relates different components of the permittivity tensor and is not true for 
regions of k  and ω  where dissipation is not negligible. If we deal with spatial 
dispersion by expansion of ( ),ijε ωk  in powers of the wave vector k  then we 
can use mainly the first part ( ) ( ), ,ij ijε ω ε ω= −k k  of these symmetry condi-
tions which are true also in case of dissipation. 

2) Time inversion (nonmagnetic symmetry classes) 
The presence of time inversion that means of invariance of the medium with 

respect to the transformation t t→ −  taking into account that E  and D  do 
not change their sign under this transformation (in contrast, B  changes it) 
leads to 

( ) ( ) ( )( )** *, , , ,ij ij ijε ω ε ω ε ω= − = −k k k              (4.3) 

where in addition (3.7) is used in last equality. The first part of this condition 
means that for media with spatial inversion the components of the permittivity 
tensor ( ),ijε ωk  are mutually independent from each other even functions of 
the frequency ω , whereas it does not mean a restriction for its dependence on 
the wave vector k . In composition with the condition (3.9) for absence of dis-
sipation we have here 

( ) ( ) ( ) ( ), , , , .ij ij ji jiε ω ε ω ε ω ε ω= − = − = − −k k k k          (4.4) 

In expansions of the permittivity tensor ( , )ij kε ω  in powers of k  one may 
use here mainly the part ( ) ( ), ,ij jiε ω ε ω= −k k  for simplifications which, how-
ever, are true only under neglect of dissipation. 

3) Product of spatial inversion with time inversion (nongyrotropic media) 
The presence of the product of spatial inversion with time inversion (includ-

ing, evidently, the case of presence of both symmetry elements separately and 
therefore also of their product) leads to the symmetry 

( ) ( ) ( )( )** *, , , ,ij ij ijε ω ε ω ε ω= − − =k k k              (4.5) 

where again the condition (3.7) is used in last equality. In composition with the 
condition for absent dissipation (3.9) we find 

( ) ( ) ( ) ( ), , , , .ij ij ji jiε ω ε ω ε ω ε ω= − − = − − =k k k k          (4.6) 

The most interesting part of this relation ( ) ( ), ,ij jiε ω ε ω=k k  describes 
complete symmetry of the permittivity tensor ( ),ijε ωk  and this symmetry, by 
definition, is called non-gyrotropy of a medium and is connected with the sym-
metry element of product of spatial inversion with time inversion of the medium 
but not necessarily with both symmetries separately. Clearly, a non-gyrotropic 
medium possesses this symmetry only in regions of wave vector and frequency 
where dissipation which is not included in the symmetric part can be neglected. 
On the other side, gyrotropic media are such media which do not possess this 
symmetry of the permittivity tensor ( ),ijε ωk . 

Usually, if nothing is said in crystal optics it is meant that the medium pos-
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sesses time inversion as symmetry element in addition to the spatial symmetry 
elements of one of the considered 32 crystal classes which are then called 
non-magnetic crystal classes and for which (4.3) is true. From the 32 crystal 
classes 11 do not possess a symmetry center and 11 possess it and therefore the 
spatial inversion as symmetry element and thus are non-gyrotropic and (4.1) 
and (4.5) are true for them in addition. There are 90 magnetic crystal classes 
from which 32 are trivial ones and correspond to the usual crystal classes but 
without time inversion as symmetry element. 

Furthermore, there exist 58 magnetic crystal classes which contain time inver-
sion not directly as symmetry element but in the form of the product of time in-
version with the elements of a coset to an invariant subgroup of one of the 11 
groups with only rotations [7] [41]. The 90 magnetic classes form the basis for the 
symmetry classification of ferromagnetics and anti-ferromagnetics. This concerns 
natural absence of time inversion as symmetry element but this absence can be 
generated also artificially under the influence of the medium by an external mag-
netic field from a primarily non-magnetic class. In the same way, among the 122 
crystal classes (magnetic and non-magnetic ones) there are 32 classes with symme-
try center for which (4.1) is true and 90 without symmetry center. This is contained 
in a compact form in Figure 1 copied from our paper [41]. 

5. Elimination of Magnetic Field and Three-Dimensional 
Operator Equation with Relativistic Covariance for the 
Electric Field 

By differentiation of the second vectorial equation in (2.7) with respect to time 
and using the first vectorial equation, the magnetic field can be eliminated and 
using the constitutive Equation (3.3) we obtain the following equation for the 
electric field 

( ) ( ) ( )

( )

2
2

2 2

2
2

2 2

10 , ,

1 i , i , .

i j ij j i

i j ij ij j

E t D t
c t

E t
tc t

δ

δ ε

∂
= ∇ ∇ − +

∂
 ∂ ∂ = ∇ ∇ − + −  ∂∂   

r r

r

∇

∇ ∇
         (5.1) 

This equation for the electric field contains the full information about the 
electromagnetic field in the medium with exception of some static cases which 
have to be considered as limiting cases. 

Since Equation (5.1) carries the full information about the electromagnetic 
field the conservation theorems may be derived from it that possesses considera-
ble advantages, in particular, taking into account the dispersion as we will dem-
onstrate this in the following. For such derivations, roughly speaking, we have to 
multiply this equation from the left with other electric fields ( ),iE t′ r . However, 
in this way we do not get expressions which are relativistic-covariant (they mul-
tiply by factors under Lorentz transformations). This shortage can be removed if  

we divide this equation by 
2

2 2

1
c t

∂
∂

 as will be shown in Appendix A that makes  
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Figure 1. The 122 magnetic and non-magnetic crystal classes (from [41]). Hilfsspalte = auxiliary column. 
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difficulties only in the limiting transition to vanishing frequencies. Thus starting 
from Maxwell equations and constitutive equations as intermediate step (5.1) we 
arrive at the following vectorial equation for the electric field 

( )i , i , 0,ij jL E t
t
∂ − = ∂ 

r∇                   (5.2) 

where the tensor operator i , iijL
t
∂ − ∂ 

∇  is defined in the following way 

( )2 2

2

2

i , i i , i .i j ij
ij ij

c
L

t t
t

δ
ε

∇ ∇ −∂ ∂   − ≡ + −   ∂ ∂∂   
∂

∇
∇ ∇          (5.3) 

The vectorial equation for the electric field (5.2) together with definition (5.3) 
forms a closed system of equations of macroscopic electrodynamics of homoge-
neous media and, moreover, is relativistic-covariant (contrary to (5.1)) and are 
appropriate for the derivation of the energy-momentum tensor. After Fourier 
transformation of the electric field according to (3.4) we obtain from (5.2) the 
equation for the Fourier components ( ),ωE k  of the electric field and then the 
magnetic field ( ),ωB k  

( ) ( ) ( ) ( ), , 0, , , ,ij j i ijk j k
cL E B k Eω ω ω ε ω
ω

= =k k k k         (5.4) 

with the tensor operator ( ),ijL ωk  in this equation defined by 

( )
( )

( )

( )

2 2

2

2 2
2

2 2

, ,

4 , ,

i j ij
ij ij

i j ij ij

c k k
L

c k k
c

δ
ω ε ω

ω
ω δ χ ω

ω

−
≡ +

   = − − +  
  

π


k
k k

k k
        (5.5) 

where ( ) ( ),
,

4
ij ij

ij

ε ω δ
χ ω

−
≡

π

k
k  is the general susceptibility tensor. Since the  

tensor ( ),ijχ ωk  may be a complicated function of the wave-vector k  and, in 
particular, of the frequency ω  it is hardly possible to write down a Lagrange 
function for the system and the usual formalism of derivation of the ener-
gy-momentum tensor from such function is almost impossible. 

Equations (5.4) with operator (5.5) as transformed Equation (5.2) possess also 
a relativistically covariant form in three-dimensional orthogonal coordinates for 
arbitrary inertial systems ′  

( ) ( ), , 0,ij jL Eω ω′ ′ ′ ′ ′ ′ =k k                    (5.6) 

with 

( )
( )

( )
2 2

2, , ,i j ij
ij ij

c k k
L

δ
ω ε ω

ω

′ ′ ′−
′ ′ ′ ′ ′ ′≡ +

′

k
k k             (5.7) 

where ( ),ijε ω′ ′ ′k  is related to ( ),ijε ωk  by a transformation which we derive 
in detail in Appendix A. For an inertial system ′  moving with velocity V  in 
the inertial system   according to the special Lorentz transformation (A.14) it 
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possesses the form (A.20) [42] 

( )
( )

( )( )
( )

2 2

4 ,

2 2

4 ,

,

, ,

ij

ij

i k i k ik i k
ij ij ik

j l j l jl j l
jl kl kl

VV VV V k

V V V V V k

χ ω

χ ω

δ
ε ω δ γ δ

ω

δ
γ δ ε ω δ

ω

′ ′ ′=

=

π

π

′ ′ −  ′ ′ ′ − = + − +  ′  

′ ′ −   ⋅ + − + −  ′   

k

k

k V
k

V V

k V
k

V V





 (5.8) 

with the following relations between ( ),ω′ ′k  and ( ),ωk  and their inversion 
by → −V V  (see (A.15) 

( ) ( )

( ) ( )

2 2

2 2

1 , ,

1 , ,

c

c

ωγ γ ω γ ω

ωγ γ ω γ ω

 ′ ′= + − − = − 
 

′ ′ ′ ′ ′= + − + = + 
 

kVk k V kV
V
k Vk k V k V
V

         (5.9) 

and with relativistic invariant 
2 2

2 2
2 2 .

c c
ω ω′

′ − = −k k                     (5.10) 

In ( ),klε ωk  on the right-hand side of (5.8) one has yet to express the argu-
ments ( ),ωk  by the arguments ( ),ω′ ′k  according to the transformation for-
mulae (5.9) to have the same variables on both sides. This means that the trans-
formed permittivity tensor ( ),ijε ω′ ′ ′k  becomes dependent on the wave vector 
′k  even in case that the primary permittivity tensor ( ),ijε ωk  in the resting 

system of the medium does not depend on the wave vector k . However, this 
dependence on the wave vector k  in the system moving with velocity V  
which formally means spatial dispersion of the medium is of some other kind 
than the natural dependence of the permittivity of a medium on wave vector k  
in resting system and it is not reasonable to expand it in a Taylor series in k . 
For the formal derivation of the energy-momentum tensor these differences are 
not of importance. 

The transformation formulae (5.8) for the permittivity tensor from one to 
another inertial system and for (5.9) simplify essentially in non-relativistic  

approximation 1
c
V
  if we neglect quadratic and higher terms in 

c
V  in 

comparison to linear terms in 
c
V  (e.g., 1γ → ) that we do not write down.  

From transformations (5.8) together with (5.9) we see that if we change at the 
same time the signs of k  and ω  this also changes at the same time the signs 
of ′k  and ω′  according to 

( ) ( ) ( ) ( ), , , , , .ω ω ω ω′ ′ ′ ′→ − − ⇔ → − −k k k k          (5.11) 

As expected this means that the condition (3.9) for the dissipation-free case 
transforms into a corresponding condition for the dissipation-free case in an ar-
bitrary inertial system ′  moving with velocity V  in inertial system   

( ) ( ) ( ) ( ), , , , , ,ij ji ij jiε ω ε ω ε ω ε ω′ ′ ′ ′ ′ ′= − − ⇔ = − −k k k k      (5.12) 
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and is therefore invariant with respect to Lorentz transformations as one could 
have to expect for such a physical property. 

It is seen that the condition (3.9) for absent losses can be continued to the fol-
lowing condition for ( ),ijL ωk  

( ) ( ) ( )( )** *, , , .ij ji jiL L Lω ω ω= − − =k k k             (5.13) 

Therefore, if (5.13) is satisfied we can write down in addition to (5.2) the fol-
lowing equation for the electric field 

( )i , i , 0.ij iL E t
t
∂ − = ∂ 

r∇                   (5.14) 

The two Equations (5.2) and (5.14) form the basis of our derivations of local 
conservation laws and it possesses a great advantage that we have only one field 
function for the electric field in these equations in comparison to the electric and 
magnetic field in the common derivations. 

We now consider quasiplane and quasimonochromatic waves in the form 

( ) ( ) ( ) ( ) ( ) ( )0 0 0 0i i* * *
0 0 0 0 0 0, , e , e , , ,t tt t tω ω ω ω− − −= + = =k r k rE r E r E r k k   (5.15) 

where ( )0 , tE r  is a slowly varying complex vectorial amplitude and 0k  a 
mean wave vector and 0ω  a mean frequency. We suppose that 0k  and 0ω  are 
real and exclude in such way, but only for simplicity, evanescent waves with 
complex values of these quantities which may exist even in lossless media (for 
example, waves under total reflection in the lossless optically thinner medium or 
surface waves). The inclusion of such waves would complicate the following 
considerations but does not destroy the existence of local conservation theorems. 

The approximations which we make in the following are that due to slowness 
of changing of the amplitudes ( )0 , tE r  in such way that we may take into ac-
count in expansions only a small number of spatial and temporal derivatives of 
these amplitudes. This means that the wave vectors and frequencies in the Fourier 
decomposition of the quasiplane and quasimonochromatic wave are concen-
trated around 0k  and 0ω  (and, clearly, around 0−k  and 0ω− ) and the two 
complex conjugated parts in (5.15) are well separated. The supposition and at 
once approximation in the following is that we can deal with both parts as inde-
pendent solutions of the wave equation for the electric field. This is apparently 
equivalent to some averaging procedure over terms with rapidly varying fre-
quencies and wave vectors which then vanish from the equations such as made 
in [7] and is justified for quasiplane and quasimonochromatic waves. 

If we insert the first part from the right-hand side of (5.15) as independent 
solution into Equation (5.2) we obtain the following equation for the slowly va-
rying complex amplitude ( )0 , tE r  

( )

( )

0 0 0,

0
0 0

0 i , i ,

i i

ij j

ij ij
ij l

l

L E t
t

L L
L

k t

ω

ω

∂ = − + ∂ 
 ∂ ∂    ∂= − ∇ +    ∂ ∂ ∂    

k r∇
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( )
2 2 2 2

0,2 2
0 0 0

1 2 , ,
2

ij ij ij
l m l j

l m l

L L L
E t

k k k t tω ω

      ∂ ∂ ∂∂ ∂  − ∇ ∇ − ∇ + +            ∂ ∂ ∂ ∂ ∂ ∂ ∂        
r

 (16) 

where index “0” means that the corresponding derivatives have to be taken for 

0=k k  and 0ω ω=  (e.g., ( ) ( )0 00
,ij ijL L ω≡ k ). In the following, we take the 

derivatives of the slowly varying amplitudes up to the second order but before 
this we introduce a shorter relativistic-covariant notation of the equations for 

( )0 , tE r  and ( )*
0 , tE r . 

Our derivation of the energy-momentum tensor is similar to the derivation of 
approximate equations for beam solutions with the only difference that in last 
case the determinant of ijL  has to be taken as starting point for the expansion 
to get the equation for the main component of ( )0 , tE r . 

6. Local Action Conservation in Relativistic Covariant Form 

The derivation of local (or differential) laws of action conservation and of other 
local conservation theorems becomes much more concise if we introduce for 
abbreviation the following four-dimensional notations of special theory of rela-
tivity6 

( )

( ) ( )0 0 0 00

2
2 2 2 2 2 2

2

i ii
0 0

i 1, i , , , , , , ,
i

1 ii e i , e e i , i .
i

t tk r

r ct k r c t k
c c tc

c t c t
ω ω

ω ω

ω− −

∂   ≡ ≡ = − = − ∇ ≡   ∂   
∂  ∂    − ∇ = − = − +    ∂ ∂    

k r k r

r k r k

k

∇

∇ ∇
(6.1) 

An advantage of the four-dimensional formalism is that we obtain the results 
in relativistic covariant form. 

We may write the equations for the electric field (5.2) and (5.14) in the con-
cise form7 

( ) ( ) ( ) ( )i 0, i 0.ij j ij iL E r L E r− ∇ = ∇ =              (6.2) 

with ( )ijL k  in relativistic-covariant form (see Appendix A, (25)) 

 

 

6Modern development mainly for preparing the transition to General relativity theory favors to use 
only representations by real components for space-time. This makes it necessary to distinguish be-
tween contravariant and covariant components of vectors and tensors but this becomes very incon-
venient for our purposes. According to Pauli [5] (Part III, p. 71), the historically older notation 

( )4
4 ix x ct= =  was first used by Poincaré in 1906 in Journal “R.C. Circ. mat. Palermo 21, 129” for 

vectors ( )( ), , ,x x y z t= ≡x  of space-time later called Minkowski space (after Minkowski’s Lecture 

“Raum und Zeit” in Köln in 1908, published in 1909 [43] (republ. [44, 36]) in the year of his prema-
ture death). Apart from basic Maxwell equations, Einstein up to 1912 preferred to write down all 
four-dimensional vectorial relations separately in the 4 components and mentions 4 ix ct=  only 

shortly in 1910 with reference to Minkowski [43] that can be traced from the collection of Einstein’s 
scientific papers [1] (p. 138, for corresponding article). Minkowski on his part finds it in [43] to be a 

“very pregnant manner” to cloth 1s ct= −  in the “mystic formula” 53 10 km 1secs× = − . 
7Deviating from (6.1) we now used in the notations of the argument of the electric field jE  and of 

the operator function ijL  the four-dimensional notations in the form ( ),r t= r  and ( ),k ω= k  

which we do not want to change here into that of (6.1). However, by comparison with second line in 
(1) it seems that this does not cause problems. 
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( ) ( ) ( ) ( )
2

2
2, , ,ij ij i j ij ij

cL k L k kω δ ε ω
ω

≡ = − +k k k           (6.3) 

and k substituted by i− ∇ . The quasiplane and quasimonochromatic waves 
(5.15) take on the shorter form 

( ) ( ) ( )0 0i i*
0, 0,e e .k r k r

j j jE r E r E r −= +                (6.4) 

In the same approximation as in (5.16) we obtain from the first of Equation 
(6.2) 

( ) ( )

( ) ( )

0 0,

2

0,0
0 0

0 i

1i ,
2!

ij j

ij ij
ij j

L k E r

L L
L E r

k k kλ λ µ
λ λ µ

= − ∇

  ∂ ∂  = − ∇ − ∇ ∇ +     ∂ ∂ ∂    


     (6.5) 

and from the second equation 

( ) ( )

( ) ( )

*
0 0,

2
*
0,0

0 0

0 i

1i .
2!

ij i

ij ij
ij i

L k E r

L L
L E r

k k kλ λ µ
λ λ µ

= + ∇

  ∂ ∂  = + ∇ − ∇ ∇ +     ∂ ∂ ∂    


     (6.6) 

We first derive a conservation theorem which is even more fundamental than 
the theorem for energy-momentum conservation since it may be extended to 
inhomogeneous media. 

If we multiply (6.5) by ( )*
0,iE r  and (6.6) by ( )0, jE r  and form the difference 

of the obtained equations then it can be written as the 4-divergence of a 4-vector 
function in the following way 

( ) ( ) ( ) ( ) ( ) ( ){ }

( ) ( )

( ) ( ) ( ) ( )( )

* *
0, 0 0, 0, 0 0,

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

0 i i i

i .
2

i ij j j ij i

ij
i j

ij
i j j i

E r L k E r E r L k E r

L
E r E r

k

L
E r E r E r E r

k k

λ
λ

µ µ
λ µ

= − − ∇ − + ∇

 ∂ = ∇ −  ∂  
 ∂ + ∇ − ∇ +   ∂ ∂   



   (6.7) 

The terms are explicitly written down up to first-order derivatives of the 
slowly varying amplitudes but the higher-order terms on the right-hand side can 
also be represented as 4-divergence of a 4-vector ( )T rλ  and (6.7) possess the 
form of a vanishing 4-divergence and can be included in the local conservation 
law 

( ) 0,T rλ λ∇ =                         (6.8) 

with ( )T rλ  defined by (remind: 4α ≡ π  in CGS or Gauss system) 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

i .
2

ij
i j

ij
i j j i

L
T r E r E r

k

L
E r E r E r E r

k k

λ
λ

µ µ
λ µ

α
∂ 

= − ∂ 

 ∂
+ ∇ − ∇ +  ∂ ∂ 



  (6.9) 

In three-dimensional separation according to the definition 
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( ) ( ) ( )( ), , i , ,lT r T t cs tλ = r r                  (6.10) 

the local conservation theorem (6.8) takes on the form 

( ) ( ), , 0.l lT t s t
t
∂

∇ + =
∂

r r                   (6.11) 

From their dimensions, ( ),s tr  can be identified with the action density and 
( ),lT tr  with the vector field of action flow density. 
From (6.10) and (6.9) we find in three-dimensional representation up to ex-

plicitly given first-order derivatives of the slowly varying amplitudes ( )0 , tE r  
of the electric field which last take into account the diffraction of beams 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

2
* *
0, 0, 0, 0,

0

, , ,

i , , , ,
2

i , , , , ,
2

ij
l i j

l

ij
i m j j m i

l m

ij
i j j i

l

L
T t E t E t

k

L
E t E t E t E t

k k

L
E t E t E t E t

k t t

α

ω

∂ 
= − ∂ 

 ∂
+ ∇ − ∇  ∂ ∂ 

 ∂ ∂ ∂ − − +    ∂ ∂ ∂ ∂  

r r r

r r r r

r r r r 

 

( ) ( ) ( )

( ) ( ) ( ) ( )( )

( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

2
* *
0, 0, 0, 0,2

0

, , ,

i , , , ,
2

i , , , , .
2

ij
i j

ij
i m j j m i

m

ij
i j j i

L
s t E t E t

L
E t E t E t E t

k

L
E t E t E t E t

t t

α
ω

ω

ω

∂ 
=  ∂ 

 ∂
− ∇ − ∇  ∂ ∂ 

 ∂ ∂ ∂ + − +     ∂ ∂∂   

r r r

r r r r

r r r r 

(6.12) 

Before discussing these expressions we derive the local form of energy- 
momentum conservation. 

7. Local Energy and Momentum Conservation in Relativistic 
Covariant Form 

In analogy to (6.7) we consider the following combination which can be 
represented as the 4-divergence of a second-rank 4-tensor 

( )( ) ( ) ( ){
( )( ) ( ) ( )}

( )
( ) ( )

( )
( ) ( ) ( ) ( )( )

*
0, 0, 0 0,

*
0, 0, 0 0,

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

0 i i i

i i

i .
2

i ij j

j ij i

ij
i j

ij
i j j i

E r k L k E r

E r k L k E r

k L
E r E r

k

k L
E r E r E r E r

k k

κ κ

κ κ

κ
λ

λ

κ
µ µ

λ µ

= − − ∇ − ∇

− + ∇ + ∇

  ∂  = ∇ −  ∂  
 ∂  + ∇ − ∇ +  ∂ ∂   



   (7.1) 

Thus we obtained a local conservation theorem of the form 

( ) 0,T rλ κλ∇ =                         (7.2) 
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with a tensor function ( )T rκλ  which explicitly written down up to terms with 
first-order derivatives of the slowly varying amplitudes is given by 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

i .
2

ij
i j

ij
i j j i

k L
T r E r E r

k

k L
E r E r E r E r

k k

κ
κλ

λ

κ
µ µ

λ µ

α
 ∂
 = −
 ∂ 

 ∂
 + ∇ − ∇ +
 ∂ ∂ 



  (7.3) 

The four-dimensional covariance of ( )T rκλ  with respect to index λ  is the 
same as in the action 4-vector ( )T rλ  and the covariance with respect to index 
κ  is evident from construction (7.1) with 4-wave vector kκ . That this is con-
nected with homogeneity (or translation invariance) in space and time is easily 
seen since in case of absence of this symmetry it is impossible to have globally 
constant wave vectors and frequencies as used in the derivation. Thus we have 
the justification to call ( )T rκλ  the energy-momentum tensor of homogeneous 
anisotropic dispersive media in the approximation of quasiplane and quasimo-
nochromatic waves. In general, the tensor ( )T rκλ  is non-symmetric 

( ) ( ) ,T r T rκλ λκ≠                       (7.4) 

and is, in general, not equivalent to a symmetric one that means it is intrinsically 
non-symmetric. 

We now transform the energy-momentum tensor ( )T rκλ  to another form 
which is interesting for the physical interpretation. For this purpose we use the 
identities 

( ) ( )

( )

0, 0
00

2 2

0,
0 000

,

.

ij ij
ij

ij ij ij ij

k L L
k L

k k

k L L L L
k

k k k k k k

κ
κ κλ

λ λ

κ
κ κµ κλ

λ µ λ µ λ µ

δ

δ δ

 ∂ ∂ 
  = +  ∂ ∂  

 ∂    ∂ ∂ ∂ 
  = + +        ∂ ∂ ∂ ∂ ∂ ∂     

      (7.5) 

Inserting this into (7.3) and using the representation (6.9) of ( )T rλ  and the 
Equations (6.5) and (6.6) for the slowly varying amplitudes we obtain up to 
first-order derivatives of these amplitudes 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( )( )

*
0, 0, 0,0

* *
0, 0, 0, 0,

0

i .
2

ij i j

ij
i j j i

T r k T r L E r E r

L
E r E r E r E r

k

κλ κ λ κλ

κ κ
λ

α α δ= −

∂ 
+ ∇ − ∇ + ∂ 



   (7.6) 

In the limiting transition from the slowly varying amplitudes to constant ampli-
tudes the terms with derivatives of these amplitudes vanish and ( ) 0,0

0ij jL E =  
and we obtain the factorization 

( ) ( )0, ,T r k T rκλ κ λ=                      (7.7) 

of the energy-momentum tensor. This is in full analogy to a homogeneous par-
ticle flow as discussed in e.g. [3] [12] (see also [34] and below) where, however, 
macroscopic electrodynamics provides a greater variety of possible dependencies 
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of the momentum of one particle on the group velocity than classical mechanics. 
Taking seriously this analogy to a homogeneous particle flow this leads in a 
natural way to a quantization of the electrodynamic flow and to its interpreta-
tion as a flow of quasiparticles. The energy-momentum tensor ( )T rκλ  in high-
er approximations according to (7.6) does not fully factorize into the product 

( )0,k T rκ λ  and the remaining terms are important at such space-time points 
where the 4-gradient of the slowly varying amplitudes of the electric field com-
ponents is important. This may be interpreted as the tendency that energy and 
momentum flow at these points are forced to choose deviating directions in 
comparison to the homogeneous particle flow and expresses some interaction of 
the particles within the flow or some (direction-dependent) pressure or stress. 
This is in rough agreement with the diffraction of beams, for example, of Gaus-
sian beams which cannot remain to be focused over the whole length of the 
beam. 

8. Three-Dimensional Representation of Energy-Momentum 
Tensor 

We now make the transition to the three-dimensional separation of the terms in 
the local laws of momentum and of energy conservation. The 4-dimensional 
energy-momentum tensor can be separated into three-dimensional parts in the 
following way defining (in common sense) the introduced new quantities on the 
right-hand side 

( ) ( ) ( )
( ) ( )

( ) ( )

( ) ( )
4

4 44

, i ,
.i , ,

kl k
kl k

l l

T t cg tT r T r
T r

T r T r S t w t
c

κλ

    = ≡   −    

r r

r r
        (8.1) 

Then from (7.2) we find the following differential law of momentum conser-
vation 

( ) ( ) ( ) ( )4
1, , 0, , , 0,
il kl k l kl kT t T t T t g t
c t t
∂ ∂

∇ + = ⇔ ∇ + =
∂ ∂

r r r r    (8.2) 

where ( ),klT tr  is the (Maxwell) stress tensor and ( ),kg tr  the momentum 
density8. Furthermore, the following differential law of energy conservation 
holds 

( ) ( ) ( ) ( )4 44
1, , 0, , , 0,
il l l lT t T t S t w t
c t t
∂ ∂

∇ + = ⇔ ∇ + =
∂ ∂

r r r r     (8.3) 

where ( ),lS tr  is the energy flow density (Poynting vector) and ( ),w tr  the 
energy density. 

According to (7.3) and (7.6) taking into account (8.1) the stress tensor pos-
sesses the form 

 

 

8The three-dimensional stress tensor klT  is sometimes defined with opposite sign. Our sign of klT  

agrees with that in the same notation kl
klT T=  in Landau and Lifshits [3] (Ed. 1962) and with 

kl klT σ≡ −  in later editions (e.g., [45] from 1988). Apparently, the notation klσ  agrees also with re-
spect to sign to the same notation in [13] and in [10]. 
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( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

2
* *
0, 0, 0, 0,

0

, , ,

i , , , ,
2

i , , , , ,
2

k ij
kl i j

l

k ij
i m j j m i

l m

k ij
i j j i

l

k L
T t E t E t

k

k L
E t E t E t E t

k k

k L
E t E t E t E t

k t t

α

ω

 ∂
 = −
 ∂ 

 ∂
 + ∇ − ∇
 ∂ ∂ 

 ∂ ∂ ∂  − − +  ∂ ∂ ∂ ∂  

r r r

r r r r

r r r r 

(8.4) 

and the momentum density is 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0

2
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0, 0, 0, 0,2

0

, , ,

i , , , ,
2

i , , , , .
2

k ij
k i j

k ij
i m j j m i

m

k ij
i j j i

k L
g t E t E t

k L
E t E t E t E t

k

k L
E t E t E t E t

t t

α
ω

ω

ω

 ∂
 =
 ∂ 

 ∂
 − ∇ − ∇
 ∂ ∂ 

 ∂ ∂ ∂  + − +   ∂ ∂∂   

r r r

r r r r

r r r r 

(8.5) 

For the energy flow density we find from (7.3) and (7.6) taking into account 
(8.1) 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,
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0, 0, 0, 0,
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2

i , , , , ,
2
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L
S t E t E t

k

L
E t E t E t E t
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L
E t E t E t E t
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ω
α

ω

ω

ω

 ∂
 = −
 ∂ 

 ∂
 + ∇ − ∇
 ∂ ∂ 

 ∂ ∂ ∂  − − +  ∂ ∂ ∂ ∂  

r r r

r r r r

r r r r 

(8.6) 

and for the energy density 

( )
( )

( ) ( )

( )
( ) ( ) ( ) ( )( )

( )
( ) ( ) ( ) ( )

*
0, 0,

0

2
* *
0, 0, 0, 0,

0
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* *
0, 0, 0, 0,2
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, , ,

i , , , ,
2

i , , , , .
2

ij
i j

ij
i m j j m i

m

ij
i j j i

L
w t E t E t

L
E t E t E t E t

k

L
E t E t E t E t

t t

ω
α

ω

ω

ω

ω

ω

 ∂
 =
 ∂ 

 ∂
 − ∇ − ∇
 ∂ ∂ 

 ∂ ∂ ∂  + − +   ∂ ∂∂   

r r r

r r r r

r r r r 

(8.7) 

The terms with spatial and temporal derivatives of the slowly varying ampli-
tudes describe in addition to the stable form of propagation of a wave group its 
diffraction. 

Integral forms of the conservation of momentum and energy in time follow 
from integration of the conservation theorems within a volume V with surface S 
and normal unit-vector N  directed to the inside of the surface S by (Gauss 
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theorem) 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

d , d , d , ,

d , d , d , ,

k k l kl kl lV V S

l l l lV V S

P t V g t V T t S T t N
t t

E t V w t V S t S S t N
t t

∂ ∂
≡ = − ∇ = +

∂ ∂
∂ ∂

≡ = − ∇ = +
∂ ∂

∫ ∫ ∫

∫ ∫ ∫

r r r r r r r

r r r r r r r





(8.8) 

with 4, ik
EP P P
cκ

 ≡ = 
 

 the four-vector of momentum9. 

9. Limiting Transition to Plane Monochromatic Waves in 
Anisotropic Dispersive Media 

In the limiting transition from quasiplane and quasimonochromatic waves to 
plane monochromatic waves the slowly varying amplitudes become constant 
amplitudes ( )0 0, t →E r E  and the energy-momentum tensor becomes inde-
pendent on the space-time points ( ), tr  that means ( ),T t Tκλ κλ→r . The 
propagation of the wave as a wave packet with the group velocity in this limiting 
transition becomes the more invisible the nearer it comes to a plane monochro-
matic wave. 

From (7.3) together with (7.5) or from (7.6) follows in this limiting transition 
in relativistic covariant form 

( )* *
0, 0, 0, 0, 0, 0,

00

.ij ij
i j i j

k L L
T E E k E E k T

k k
κ

κλ κ κ λ
λ λ

α α
 ∂ ∂ 
 = − = − =  ∂ ∂  

    (9.1) 

In the three-dimensional separation expressed by the formulae (8.4), (8.5), 
(8.6) and (8.7) this limiting transition results in the relations 

( ) ( )

( ) ( )

* *
0, 0, 0, 0,

0, 0,
0 0

0 0
* *
0, 0, 0, 0,

0 0

i i
,i

i

k ij k ij
i j i j

k l kl

lij ij
i j i j

l

k L k L
E E cE E k T ck sk

T
T sL L cE E E E

c k

κλ

ω
α α

ω ωω ω

ω

    ∂ ∂
    −

      ∂ ∂      = =    −     ∂ ∂      − −
    ∂ ∂    

(9.2) 

where the action flow density lT  and the action density s according to (6.12) 
become 

* *
0, 0, 0, 0,

0 0

, .ij ij
l i j i j

l

L L
T E E s E E

k
α α

ω
∂ ∂   

= − =   ∂ ∂   
          (9.3) 

 

 

9The sign of ( )lN r  at the surface element dS can be verified from the derivative of the characteris-

tic function ( )
1,
0,V

V
V

θ
∈

≡  ∉

r
r

r
 of the volume V which is ( ) ( ) ( )l V l SNθ δ∇ =r r r  with normal unit 

vector ( )lN r  directed to the inside of ( )dS r  as generalization of the step function and of the 

delta function as its derivative according to 

( ) ( )( ) ( ) ( ) ( )( )
( ) ( ) ( )( ) ( ) ( ) ( )( )

( ) ( ) ( )
0

d d

d d

d ,

l l V l lV

l V l l l V

l lS

V A V A

V A V A

S A N

θ

θ θ
=

∇ = ∇

= ∇ − ∇

= −

∫ ∫
∫ ∫

∫

r r r r r

r r r r r r

r r r



  
where integrals without given boundaries go over the whole space. 
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We will show in the following that these expressions are not in contradiction 
to known expressions for the energy-momentum tensor (mostly more special or 
otherwise formulated ones). 

If we use the explicit form of ( ),ijL ωk  given in (5.5) we obtain from (9.2) 

( ) ( ){ }
( )

( )

( )

2
* 2
0, 0 0, 0, 0, 0, 0, 0, 0,2

0
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0, 0,
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* 2 *
0, 0, 0 0, 0, 0, 0, 0, 0,3

0 0
2
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,
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α δ δ δ
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= − +  ∂ 

= − −
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0
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,
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j i j

l
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i ij i j j i j

E E
k

cw E k k E E E

ε
ω

ωε
α δ

ωω

∂ 
−  ∂ 

 ∂
 = − +
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k

  (9.4) 

and from (9.3) for action flow density lT  and action density s 

( )

( )

2
* *
0, 0, 0, 0, 0, 0, 0,2

0 0

2
* 2 *
0, 0 0, 0, 0, 0, 0,3

0 0

2 ,
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l i l ij i jl j il j i j
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cT E k k k E E E
k

cs E k k E E E

ε
α δ δ δ
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ε
α δ

ωω

∂ 
= − − −  ∂ 

∂ 
= − +  ∂ 

k
     (9.5) 

As already discussed, in the transition to the factorized form in (9.1) and (9.2) 
we used the equations for the slowly varying amplitudes which after transition to 
plane monochromatic waves become the algebraic equations ( ) 0,0

0ij jL E =  and 
( )*

0, 0
0i ijE L = . Instead of these equations we can also directly use the equations 

of macroscopic electrodynamics (2.7) which for plane monochromatic waves 
with real wave vector 0k  and real frequency 0ω  take on the form10 

[ ] [ ]0 0 0 0 0 0 0 0 0 0
0 0

* * * * * *
0 0 0 0 0 0 0 0 0 0

0 0

, , , , 0,

, , , , 0.

c c

c c
ω ω

ω ω

= = − ⇒ = =

   = = − ⇒ = =   

B k E D k B k B k D

B k E D k B k B k D
   (9.6) 

Using these equations, we can transform (9.4) exactly to the following 
“mixed” forms of representation with the amplitudes of the electric and magnet-
ic field 0E  and 0B  and the electric induction 0D  which dominate in their 
kind in literature (compare also [7] [9] [10]). 

( ) ( )* * * * * * *
0 0 0 0 0 0 0, 0, 0, 0, 0, 0, 0, 0,

*
0, 0 0 0,

0

1
2

,

kl kl k l k l k l k l

k k l
l

T B B B B E D E D

k k T
k

α δ

α

 = + + − + + + 
 

 ∂
− = ∂ 

B B E D D E

E Eε
 

 

 

10We emphasize again that this restriction to real wave vectors and frequencies is not a principal re-
striction for lossless media but simplifies our derivations considerably since it does not introduce 
additional difficulties with inhomogeneous (evanescent) waves in lossless media which necessarily 
are to be discussed without this restriction. 
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ε

ε

ε

    (9.7) 

For the action flow density lT  and the action density s, we find 
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E B E B E

B B E D D E E E

k E B E B E E

ε

ε

ε

        (9.8) 

The appearance of 0ω  in the denominators for action flow density lT  and 
action density s shows that they are formed in nonlocal way by the fields that in 
the space-time picture is impossible to express by quadratic local field combina-
tions only and which, perhaps, is a reason that they did not find much attention 
(exception: similar considerations to adiabatic invariance). 

We see that all parts of the energy-momentum tensor in (9.7) contain a part 
with origin from the dispersion of the medium. The momentum density kg  
which possesses the direction of the mean wave vector 0,kk  and the energy density  

w are modified by terms 
0

ijε
ω

∂ 
 ∂ 

 with derivatives of the permittivity tensor  

( ),ijε ωk  with respect to frequency ω  (this goes back to Brillouin in 1921; see 
also [7] [9] but many other, in principle, excellent monographs on electrody-
namics and optics do not take this into account). The stress tensor klT  and the  

energy flow density lS  are modified by terms 
0

ij

lk
ε∂ 

 ∂ 
 with derivatives of the  

permittivity tensor with respect to the wave vector k  which are non-vanishing 
only in case of presence of spatial dispersion (see, e.g., [9] [10] [11]). The terms 
from frequency dispersion may become very important in the neighborhood of 
eigenfrequencies of the medium (e.g., such as used for laser transitions) and do 
not represent in this case only a small correction to the terms without disper-
sion. The terms with spatial dispersion are non-vanishing, for example, for me-
dia with natural optical activity or for hot gases and plasmas. If a medium pos-
sesses only frequency dispersion ( ) ( ),ij ijε ω ε ω≡k  in inertial system   then 
by transition to an inertial system ′  where this medium is moving the new 
permittivity tensor ( ),ijε ω′ ′ ′k  in ′  depends apart from transformed fre-
quency ω′  also on transformed wave vector ′k  and appears there as medium 
with “unnatural” spatial dispersion (see Appendix A). 

The trace of the energy-momentum tensor which is a relativistic invariant is 
non-vanishing taking into account the dispersion. From the limiting case of 
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plane monochromatic waves in (9.7) we find 

( ) * *
0, 0, 0, 0 0, 0,

0 0

T .ij ij
k i j i j

k

w k E E E E
k
ε ε

α ω
ω

∂ ∂   
− = − −   ∂ ∂   

       (9.9) 

If we neglect dispersion the trace of the energy-momentum tensor becomes 
vanishing as it is seen from this expression. Due to factorization of the stress 
tensor 0,kl k lT k T=  and of the whole energy-momentum tensor Tκλ  they possess  

only one non-vanishing eigenvalue and the quantity [ ] ( )2 21 T T
2

T ≡ −   

involved in the second invariant [ ] [ ]T TT w≡ − + Sg  of the four-dimensional 
tensor T (see (B.8) in Appendix B) is vanishing. Therefore, using the form (9.7) 
in considered approximation one can check the vanishing of the second inva-
riant of the energy-momentum tensor 

[ ] [ ]


( )
0

T T 0,T w
=

= − − =Sg                  (9.10) 

which is a Lorentz-invariant and thus this relation is true in arbitrary inertial 
systems. Due to factorization (9.1) of the energy-momentum tensor in consi-
dered approximation we find 

T 0,w− =Sg                       (9.11) 

remaining true after Lorentz transformation. 
The energy-momentum tensor (9.7) is intrinsically non-symmetric expressed 

by relation (7.4) also under neglect of dispersion. In general, for anisotropic me-
dia the momentum density kg  and the energy flow density lS  possess differ-
ent directions and there is no way to remove this but also the stress tensor klT  is 
non-symmetric for anisotropic media. From the two old proposals for this ten-
sor which are the Minkowski tensor and the Abraham tensor (see, e.g., [5] [10]) 
the tensor (9.2) is nearer to the Minkowski tensor and makes the transition to it 
in case of neglected dispersion. However, this problem of the correct tensor did 
not genuinely exist in our derivations since under the condition (3.9) that the 
medium is lossless the local form of the conservation laws could be formulated 
as exact vanishing of a 4-divergence of an energy-momentum tensor. 

We can subdivide the energy-momentum tensor Tκλ  in (9.7) in additive way 
into a pure electromagnetic field tensor ( )FTκλ  which contains only the electric 
field E  and magnetic field B  and a field-matter interaction tensor ( )ITκλ   

which contains in addition the polarization ( )1
4

= −
π

P D E  and derivatives of  

the permittivity tensor ( ),ijε ωk . The field part which is quadratic in the elec-
tromagnetic field is then a symmetric tensor ( ) ( )F FT Tκλ λκ=  and equal in form to 
the tensor for vacuum. The interaction part ( )ITκλ  which is bilinear in field and 
polarization or contains derivatives of the permittivity tensor is non-symmetric. 
Their explicit forms may be taken from (9.7). It should be emphasized that such 
a subdivision remains to be formally since each of the two parts does not sepa-
rately obey a local conservation law. 
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In the transition to vacuum ( ),ij ijε ω δ→k  from (9.7) we obtain a symme-
tric energy-momentum tensor and it possesses at the same time the most simple 
form in comparison to equivalent ones since it does not contain parts with the 
rapidly varying phase factors ( )0 0i2e tω± −k r  and admits a direct physical interpre-
tation by considerations about the group velocity. 

10. Group Velocity in Energy-Momentum Tensor for  
Anisotropic Dispersive Media and Its Calculation 

A wave packet in a homogeneous medium propagates in first approximation 
with shape stability and without diffraction with the group velocity and therefore 
energy and momentum of this wave packet should propagate also with the group 
velocity. The introduction of the group velocity into the energy-momentum 
tensor in the limiting case of plane monochromatic wave reveals a simple basic 
structure of this tensor (see also, [7] [9] [10]). 

Plane monochromatic waves with real wave vector and real frequency satisfy 
Equation (5.4) and together with the condition (5.13) for absent losses this can 
be written in operator form (i.e. without vectorial indices ( ) ( ), L ,ijL ω ω→k k ) 
as the following eigenvalue equations for right-hand and left-hand eigenvectors 
of ( )L ,ωk  to eigenvalue zero 

( ) ( ) ( ) ( )*L , , , , L , ,ω ω ω ω= =k E k E k k0 0           (10.1) 

with the operator ( )L ,ωk  defined by (5.5) ( ⋅a b  is dyadic product of vectors 
a  and b ) 

( ) ( ) ( )
2

2
2L , I , .cω ω

ω
≡ ⋅ − +k k k k kε              (10.2) 

The necessary condition for solutions of the operator Equations (10.1) is the 
vanishing of the determinant ( )L ,ωk  of the operator ( )L ,ωk  

( )L , 0,ω =k                       (10.3) 

which in coordinate-invariant notation is explicitly given by [27] [28] [31]11 

( ) ( ) ( )

( ) ( ) ( )

4 2
2 2

4 2

4 2
2 2

4 2

L ,

, , ,

c c

c c

ω
ω ω

ω
ω ω

= − − +

= − − + ≡

k k k k k k k k

k k k k k k k

ε ε ε ε ε

ε ε ε ε ε ε
   (10.4) 

where ε  denotes the trace and ε  the determinant of the permittivity 
tensor and where i ij jk kε≡k kε  and 2

i ij jk kk kε ε≡k kε  in notation with 
three-dimensional vector indices. The vanishing of the determinant (10.4) de-

 

 

11Fyodorov [27], Eq. (17.21) expresses the second sum term in round brackets by the inverse permit-
tivity tensor 1−ε  or, more precisely, by the related complementary tensor  

[ ]1 2 I−≡ = − +ε ε ε ε ε ε ε  to ε  with the identity [ ] ( )2 21
2

= ≡ −ε ε ε ε  as here addition-

ally given. Other (historically older) formulations of vanishing of this determinant in the form of the 
Fresnel equation in coordinates of the principal axes of the permittivity tensor are known (e.g., Szi-
vessy [46] (Eqs. (47) and (48)) or Born and Wolf [47] (chap. XV.2.2, Eq. (21)) which correspond to 
(3) and (4) in coordinates of the principal axes and the same is true for Eq. (97.10) in [7]). 
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scribes a three-dimensional (hyper-)surface in the four-dimensional space of va-
riables ( ),ωk  which is called dispersion surface. 

The dispersion Equation (10.3) can be resolved with respect to one of the 4 
components of ( ),ωk , for example, in the form of the frequency ω  as func-
tion of the wave vector k  that means 

( ).ω ω= k                         (10.5) 

The group velocity v  is then defined by 

( ) ( ).ω∂
≡ =
∂

v k v k
k

                    (10.6) 

It is a “regular” velocity also in the relativistic theorem of addition of veloci-
ties. Inserting ( )ω ω= k  in the dispersion Equation (10.3) we get a scalar iden-
tity as a function of the wave vector k  from which after differentiation with 
respect to the wave vector follows a vector identity 

( )( )
( )( ) ( )( )

( )
, ,

L L
L , 0, ,

ω ω

ωω
ω

 ∂   ∂  ∂
= ⇒ + =   

∂ ∂ ∂   k k k k

k k k
k k

0    (10.7) 

with arguments of involved functions of ( ),ωk  taken at ( )( ),ωk k  and we 

obtain for the group velocity (vectorial indices of v  and of ∂
∂k

 correspond to 

each other on left- and right-hand sides) 

( ) ( )( )

( )( )

( )( )

( )( )

( )( )

( )( )

*

, , ,

*

, ,,

L L LL

.
L LL L

k ω ω ω

ω ωω
ω ωω

 ∂  ∂ ∂    ∂ ∂ ∂   
= − = − = −

∂ ∂ ∂   
   ∂ ∂ ∂ 

k k k k k k

k k k kk k

E Ek k k
v

E E
  (10.8) 

We applied here the relation 
A AA
λ λ

∂ ∂
=

∂ ∂
 for the differentiation of the 

determinant A  of an arbitrary operator A  with respect to a variable λ  
where A  denotes the complementary operator to the operator A  which satis-
fies the relations AA AA A I= = . The complementary operator A  to A  is 

determined in components by 1
2!li ijk lmn jm knA A Aε ε=  or due to Hamilton-Cayley 

identity [ ]3 2A A A A A A I 0− + − =  in operator form by  

[ ]2A A A A A I≡ − +  where [ ] ( )2 21A A A A
2

≡ − =  denotes the second 

invariant of A  and I  is the identity operator. 
The explicit form of the complementary operator ( )L ,ωk  to ( )L ,ωk  

which by its vanishing determines the optic axes is (with ( ) ik ki kε≡kε  and 
( ) l ljj k ε≡kε  in coordinates) 

( ) ( ) ( )( )
4 2

2
4 2L , I ,c cω

ω ω
= ⋅ − ⋅ − ⋅ − ⋅ + +k k k k k k k k k k k kε ε ε ε ε   (10.9) 

with trace equal to ( [ ]A A=  is a three-dimensional operators identity for ar-
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bitrary A ) 

( ) ( ) ( ) ( ) [ ]
4 222 2
4 2L , L , .c cω ω

ω ω
= = − + +  k k k k k kε ε ε    (10.10) 

From the Hamilton-Cayley identity in the form LL LL L I= =  it becomes 
clear that on the dispersion surface L 0=  each non-vanishing vector L ≠a 0  
with appropriately chosen vector a  is right-hand eigenvector of L  to eigen-
value 0 and thus a solution E  of Equation (10.1) and each non-vanishing vec-
tor L ≠b 0  is left-hand eigenvector of L  to eigenvalue 0 and thus a solution 

*E  of second Equation (10.1). Therefore, the normalized operator L  in case 
of L 0=  as follows by applying the Hamilton-Cayley identity is the norma-
lized dyadic product * *⋅ ∝ ⋅e e E E  and 

( ) [ ]
* 2 *L LL 0 , , , 1,

LL
= Π ≡ = = ⋅ Π = Π Π = =e e e e    (10.11) 

is projection operator for the determination of non-degenerate solutions of Equ-
ations (10.1). This explains the last part of the formulae (10.8) for the group ve-
locity (taking into account the general identity ( )A A⋅ =a b b a ). In case of 
L 0= , ( [ ]L 0⇒ = ), the first and second part of relations (10.8) become inde-
terminate due to vanishing numerator and denominator but the last part with 
representation by the electric field amplitudes remains true. This singular case is 
the case of optic axes or binormals which we do not further discuss here since it 
leads us far from our proper aim. 

With the first or second part of formulae (10.8), one can find explicit formulae 
for the group velocity which express it as a function of wave vector k , fre-
quency ω  and medium properties involved in the permittivity tensor 

( ),ω≡ kε ε . Although not difficult to obtain, however, they are long taking into 
account the dispersion and, therefore, we will not write them down (we give 
them in next Section under neglect of dispersion). Instead of this we will use last 
part of (10.8) which reveals interesting relations to the action 4-vector and to the 
energy-momentum tensor. According to (10.8), the group velocity 0v  at the 
considered point ( )( )0 0 0,ω ω ω= = ≡k k k  of the dispersion surface (10.5) is 
determined by 

*
0 0

0
0,

*
0 0

0

L

,
L

l l
l

k T
v

s
ω

 ∂
 ∂ = − =
∂ 

 ∂ 

E E

E E
                (10.12) 

where we used the representation (6.12) for action flow density T  and action 
density s in the limiting case of plane monochromatic waves. The energy- 
momentum tensor for this limiting case of plane monochromatic waves can now 
be represented in the form (see also next Section) 

0, 0, 0,
0, 0, 0,

0 0, 0 0 0, 0

i, ,
.i, ,

k l k
kl k l k k

l l l

k v ckT sk v g sk
T s

S s v w s v
c

κλω ω ω ω

 = =  ⇔ =  = = − 
 

    (10.13) 
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From this it can be easily seen for this limiting case 

0 0 0,T , , ,kl l
l

k

T S
w v

g w
= ⋅ = ⇒ = =g v S v           (10.14) 

which means that the three-dimensional stress tensor T  which in considered 
case is a dyadic product is proportional to the momentum density g  and the 
energy flow density S  to the energy density w with the group velocity 0v  as 
the proportionality factor in analogy to (10.12). 

As it is well known [3], the velocity 0v  is not spatial part of a relativistic co-
variant 4-vector but with following modification by the factor 

0 2
0
2

1 ,

1
c

γ ≡

−
v

                     (10.15) 

one obtains the relativistic covariant 4-vector of velocity 0,u λ  

( ) ( ) 2 2
0, 0, 0,4 0 0, 0 0, 0,, , i , .l lu u u v c u u u cλ λ λγ≡ = ⇒ ≡ = −      (10.16) 

Using it the energy-momentum tensor (10.13) may be represented in the fol-
lowing relativistic covariant form 

20, 0, 0 0,
0

0 0, 0, 0 0 2
00 0, 0 0

i
, 1 ,i

k l k

l

k u ck
sT s k u s s s

u c
c

κλ κ λ

γ

γω γ ω

 
 = = = − ≡ − 
 

v
  (10.17) 

where 0s  is the action density in the inertial system where the wave packet is 
resting. This is in analogy to a homogeneous particle flow in classical hydrody-
namics without interaction of the particles (or without inner pressure) for which 
the energy-momentum tensor possesses the form 

2
0

0 0, 0, 0, 0 0, 0 2
0

, , 1 ,nT n p u p m u n n
cκλ κ λ κ κ γ

= = = − ≡
v

      (10.18) 

where 0, 0 0,p m uκ κ=  is the momentum of one particle, 0m  its rest mass and 

0n  the particle density in the inertial system where the particles rest (e.g., [12]). 
The analogy of (10.17) to (10.18) for a homogeneous particle flow suggests (with 
knowledge of quantum theory) to interpret the first as homogeneous flow of qu-
asiparticles and to introduce an abbreviation   according to 

0

0

,
s s
n n

≡ =                       (10.19) 

as action of one particle independently of the considered inertial system (i.e., as 
a Lorentz invariant and, moreover, even as adiabatic Lorentz invariant as may be 
shown) and we may write 

0
0, 0, 0,

0

,
s

p k k
nκ κ κ= =                     (10.20) 

as 4-vector of the momentum of quasiparticles in agreement with quantum 
theory. Then we have analogous expressions for the energy-momentum tensors 
of a homogeneous flow without pressure in classical hydrodynamics on one side 
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and in macroscopic electrodynamics on the other side where the last provides a 
richer variety of possible functional dependencies ( )≡v v k  (or ( )≡v v p ) or 
of their inversion ( )≡k k v  (or ( )≡p p v ) than (relativistic) classical me-
chanics which considers only 



0 02 2

2 2
,i

, i , i ,

1 1k

c

E cp m m u
c

c cω
=

 =  
 

 
 

   ≡ = ≡    
 − − 
 k

vp
v v







        (10.21) 

with 0m  the rest mass of one particle. Usually, the relation between 4-vectors p 
and u in macroscopic electrodynamics is a 4-tensorial one with tensor compo-
nents depending on components of v  separately where this cannot be ex-
pressed by only relativistic scalars such as 0m . A certain exception is formed by 
transverse waves in a cold isotropic plasma (Section 12). 

It was mentioned but not explicitly shown that the local action conservation (6.8) 
or (6.11) is a more general conservation law than the local energy-momentum 
conservation (7.2) or (8.2) together with (8.3) and holds also for inhomogeneous 
media (in general, spatially and temporarily inhomogeneous). If we suppose that 
the action conservation is true for an inhomogeneous medium that means 

( ) 0T rλ λ∇ =  it is informative to see how the energy-momentum conservation is 
lost for such a medium in case of propagation of almost plane monochromatic 
waves as here considered. We may assume that in a weakly inhomogeneous me-
dium as main effect the 4-wave vector 0k  becomes dependent on the consi-
dered space-time point ( ),r t≡ r  within the medium that means ( )0 0k k r= . 
Then we find for the 4-divergence of the energy-momentum tensor under the 
supposition that local action conservation ( ) 0T rλ λ∇ =  holds 

( ) ( ) ( )( )

( ) ( )
( ) ( )


( ) ( )

( ) ( )

0 0,

0,

0,
0,

0

0, .

s r u r

T r k r T r

k
r T r k r T r

r

k
r T r

r

λ

λ κλ λ κ λ

κ
λ κ λ λ

λ

κ
λ

λ

= =

∇ = ∇

∂
= + ∇

∂

∂
=

∂



        (10.22) 

The right-hand side is non-vanishing that corresponds to local non-conservation 
of energy-momentum and the 4-divergence of the energy-momentum tensor (if 
we overtake its formula from the homogeneous medium) becomes a linear com-
bination of the components of the action vector ( )T rλ . 

11. Neglect of Spatial and Frequency Dispersion and Group 
Velocity 

In the considerations of Section 10 about the group velocity and the representa-
tion of the energy-momentum tensor in the limiting case of plane monochro-
matic waves in analogy to that for a homogeneous particle flow we did not use 
the explicit form of the determinant ( )L ,ωk  of the wave-equation operator 
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( )L ,ωk . In the following, we will make some explicit calculations of the group 
velocity under neglect of the dispersion (spatial and frequency one). 

Neglecting spatial and temporal dispersion of the medium means that we con-
sider 

( ) 0,ω ≡kε ε                        (11.1) 

as a constant permittivity tensor 0ε  in the inertial system of the resting me-
dium or, at least, as a good approximation for a neighborhood of the considered 
mean wave vector 0k  and mean frequency 0ω . Using the first of the relations 
for the group velocity in (10.8) and a transformation of the denominator by 
means of the dispersion equation ( )L , 0ω =k , we find 

( ) ( ) ( ) ( )( )
( ) ( )

2
2 2 2

0 0 0 0 0 0 0 02

2
2 2

0 0 0 02

2
,

4 2

c

c

ω

ω
ω

+ + − + − +
=

− −

k k k k k k k k k k
v

k k k k k k k

ε ε ε ε ε ε ε ε

ε ε ε ε
 (11.2) 

where we emphasize that the permittivity tensor 0ε  herein is, in general, not a 
symmetric tensor that includes gyrotropy of the medium (see also (4.5)). Fur-
thermore, in general, the directions of k  and v  in anisotropic media are dif-
ferent. From (11.2) follows immediately for the scalar product of wave vector 
with group velocity 

,ω=kv                          (11.3) 

that proves to be equivalent to vanishing of the trace of the energy-momentum 
tensor under neglect of dispersion (see (9.9) in connection with (9.7) and 
(10.12)). According to (15) this also means that the frequency ω′  in the inertial 
system 0′ =   which moves with the group velocity v  in the inertial system 
  of the resting medium (i.e. =V v ) vanishes and due to (A.17) that the wave  

vector is transformed in the following way 
12

2
21

c
γ

−  
 ≡ −    

v  

[ ] [ ]
2 2

0 0 0 2 20, , , , 1 .
c c

ωω γ ω γω
γ

   
′ ′ ′= = = − = − =   

   

v vk v k v k v kv   (11.4) 

However, already the presence of frequency dispersion (and, moreover, of 
spatial dispersion) destroys these relations since we have then additional terms 
in the denominator of the right-hand side in (11.2) which contain the derivatives  

ω
∂
∂
ε  of the permittivity tensor ( )ω≡ε ε . 

In case of neglected dispersion, the operator ( )L ,ωk  becomes a function of 
only a vector n  which is called refraction vector (and, clearly, of medium 
properties contained in 0ε ) according to 

( ) ( ) 2
0L , L I , .cω

ω
→ ≡ ⋅ − + ≡k n n n n n kε           (11.5) 

The dispersion equation ( )L 0=n  leads to the following fourth-order equa-
tion in the components of the refraction vector n  (e.g., [9], Eq. (2.22)) 
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( ) ( )2 2
0 0 0 0L 0.= − + + =n n n n n nε ε ε ε            (11.6) 

The dispersion surface describes now a two-dimensional surface in the 
three-dimensional space of refraction vectors n  which is better accessible for 
visualization than the three-dimensional (hyper-) surface in four-dimensional 
( ),ωk -space described by Equation (10.3). 

Under neglect of the dispersion, the group velocity v  depends only on the 

quotient 
ω
k  as one can explicitly see from (11.2) and, therefore, on the refrac-

tion vector c
ω

≡k n . It is favorable to normalize the group velocity by the light  

velocity c and to introduce together with the refraction vector n  a ray vector s  
by (our notations agree with that of Landau and Lifshits, Vol. VIII [7])12 

, , , ,c c
c c

ω
ω

≡ ≡ ⇔ ≡ ≡
k vn s k n v s            (11.7) 

and from (11.3) follows 

1.=ns                          (11.8) 

If we substitute now the operator ( )L ,ωk  by the operator ( )L n  according 
to ( ) ( )L , Lω →k n , then we have to substitute derivatives of these operators 

and of their functions according to k

l l k l

n c
k k n nω

∂∂ ∂ ∂
→ =

∂ ∂ ∂ ∂
,  

k k

k k

n n
n nω ω ω

∂∂ ∂ ∂
→ = −

∂ ∂ ∂ ∂
. Applied to the ray vector 

c
≡

vs  this means that 

formula (10.8) can now be substituted by 

*
0 0

*
0 0

LL LL
.

LL LL kk k
kk k

nn n nn n

∂∂ ∂
∂∂ ∂= = =

∂∂ ∂
∂∂ ∂

E Enn ns
E E

            (11.9) 

where vectorial indices of s  and of ∂
∂n

 in numerator correspond to each oth-

er (or 

*
0 0

*
0 0

L

L
l

l

k
k

n
s

n
n

∂
∂

=
∂
∂

E E

E E
 and * *

0 0 0, 0,
L ij

i j
l l

L
E E

n n
∂∂

≡
∂ ∂

E E ). The first part of this 

equation shows the well-known property that in case of neglected dispersion the 

ray vector is proportional to the gradient 
L∂
∂n

 of the dispersion surface  

( )L 0=n  at the considered point and the denominator determines its norma-

 

 

12Many authors, however, denote with n  a unit vector in direction of k , for example, Fyodorov 
[37] [38], the initiator of coordinate-invariant methods, who denotes refraction vectors by m  and 
ray vectors by p  and, furthermore, denotes with s  a unit vector in direction of the ray vector. 
Born and Wolf [47] denote with s  a unit vector in direction of the wave vector k  and with t  a 
unit vector in direction of the ray vector. In our notation we have conveniently 2 2n=n  where 
n ≡ n  is the index of refraction of the wave. 
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lization according to 1=ns . With the explicit form of the determinant ( )L n  
given in (11.6) from which we easily calculate its derivatives with respect to the 
refraction vector n  we find for the ray vector 

( ) ( )( )
( )( ) ( )

2 2 2
0 0 0 0 0 0

2 2
0 0 0

2
,

2 2

+ − + + +
= ≡

− +

n n n n n n n n
s s n

n n n n n

ε ε ε ε ε ε

ε ε ε
   (11.10) 

confirmed by the calculation from (11.2) using the definition of the ray vector. 
However, the main purpose of these calculations was to establish the algebraic 
structure of the ray vectors s  that means its connection to the invariants of 

( )L L≡ n  and to its complementary operator L . The inversion of the vectorial 
function ( )=s s n  to a vectorial function ( )=n n s  by means of duality rela-
tions between ray and refraction quantities or otherwise is up to now only solved 
under the restriction T

0 0=ε ε  that means to nongyrotropy of the medium. 
Using the refraction vector n  and the ray vector s , the 4-wave vector k and 

the 4-vector of velocity u (see (10.16)) can be represented as follows 

( ) ( )
2 2

2 2 2
2 2

2 2

2 2 2 2

2 2

, i , i , 1 ,

1, i , i , .
1 11 1

k k
c c c c

cu c u c

c c

ω ω ω ω ≡ = ⇒ = − = − 
 
 
    ≡ = ⇒ = −    − −  − − 
 

k n k n

v s

v v s s

  (11.11) 

The scalar product of 4-wave vector and 4-velocity becomes vanishing in case 
of neglected dispersion 

2 2

2

1 0.
11

ku

c

ω ω− −
= = =

−
−

kv ns

v s
               (11.12) 

The scalar products of 4-vectors 2 2,k u  and ku  are Lorentz invariants and 
values for them which are calculated in one inertial system such as here in the 
inertial system of the resting medium remain the same in arbitrary other inertial 
systems. 

If we apply this to the mean wave vector 0k  and mean frequency 0ω  in the 
expressions for the energy-momentum tensor in first approximation in (9.7), we 
find for neglected dispersion 

0, T ,kk kkT T w T wκκ = − = ⇔ ≡ =             (11.13) 

which means that the trace of the energy-momentum tensor Tκλ  is vanishing in 
such approximation. This is well known for the general energy-momentum ten-
sor in vacuum electrodynamics [3]. Using this together with (9.11) we find for 
neglected dispersion 

2 2T , T T 0.w w w= = ⇒ = = ≥Sg Sg         (11.14) 

This means, in particular, that the scalar product of energy flow density S  
with momentum density g  is equal to the square of the energy density w. 
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Furthermore, under neglect of dispersion and in approximation of plane mo-
nochromatic waves, we find from (9.8) 

0, 0, 0 0, 0 0, 00, , ,l l l kl k l lk T k T s k T g k S wλ λ ω ω ω= − = ⇒ = =    (11.15) 

that, however, is no more true taking into account the dispersion of the medium. 
First relation in (11.15) states that the scalar product 0,k Tλ λ  of mean 4-wave 
vector 0,k λ  with action 4-vector Tλ  vanishes meaning that they are mutually 
orthogonal in Minkowski space. Last relation in (11.14) suggests that the scalar 
product of energy flow density S  with momentum density g  should be  

greater than zero or otherwise these two vectors form an angle greater than 
2
π . 

As a special case we consider now transversal waves in a resting isotropic me-
dium under neglect of dispersion with the constant permittivity tensor 

0, 0ij ijε ε δ=  for which we find the following relations between wave vector k  
and group velocity v  

2 2
2

0 02
0 0

, , , 0,c cI
c
ωε ε ω

ωε ε
= ⇒ = = = − =

kk v k kv
k

ε   (11.16) 

and between ray vector s  and refraction vector n  

0
2

0 0 0

, , , .c ck i i
c c c

ωεω
ωε ε ε

  ≡ = ≡ ⇔ ≡ =   
   

v k ns k v       (11.17) 

For the energy-momentum tensor then follows according to (10.13) 

( ) ( )

( ) ( ) 00 0

00

T i i
i i

i, i
,

ii 1

c c
T r s r

w
c c

s r s r

ω ω

εε ε ωω
εε

⋅   
   ≡ =   − −   
   

⋅⋅   
= =    −−   

g k v k

S v

n n ns s s
ns

      (11.18) 

where ( )s r  is the action density in the system of the resting medium (in con-
trast to ray vector s ). This tensor is non-symmetric but its spatial part 

( )T s r= ⋅k v  is symmetric since the vectors k  and v  possess the same di-
rection (for the necessity of this symmetry for isotropic media see Section 14). 
The trace T  of the four-dimensional tensor T is vanishing 

( ) ( )( ) 0,T r s r ω= − =kv                 (11.19) 

that is only true under neglect of the dispersion. In the next Section we discuss 
the energy-momentum tensor for a special isotropic medium but without neg-
lect of the dispersion. 

12. Energy-Momentum Tensor of a Cold Isotropic Plasma 
and Transverse Photons with Scalar Rest Mass 

As one of the simplest models including frequency dispersion in explicit form 
we now consider a cold isotropic plasma. Its energy-momentum tensor shows 
the peculiarity that it is symmetric. Without an external magnetic field it pos-
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sesses the following permittivity tensor, e.g., [7] [11] 

( ) ( ) ( )
2 2

2

4
, , 1 , ,p e

ij ij p
e

n e
m

ω
ε ω ε ω δ ε ω ω

ω
π

= = − ≡k       (12.1) 

where pω  denotes the plasma frequency which, e.g., for an electron plasma is 
expressed expressed by the plasma parameters , ,e en e m  (electron density, elec-
tron charge and electron mass). 

The dispersion equation ( ) 0ε ω =  for longitudinal waves with its resolution 

pω ω=  does not include the wave vector k  and therefore the group velocity 
v  vanishes. This means that longitudinal localized excitations cannot propagate 
or decay in the approximation of absent spatial dispersion and absent losses. The 
energy-momentum tensor for these excitations can be obtained from (10.13) by 
setting 0 =v 0  for the group velocity and using relation (10.19) between action 
and particle (excitation) density. 

The dispersion equation for transverse waves ( )2 2 2c ω ε ω=k  with real wave 
vector *=k k  is 

2 2 2
2 2 2 2 0, 1.p

p
p p

c
c

ωωω ω
ω ω

+
− + = ⇒ = ≥

k
k          (12.2) 

From (12.2) follows for the group velocity v  of transverse waves or of their 
quasiparticles 

( )
2 2 2 2 2

2 2 2 2 2 2, 1,
p p

c c cc
cc c

ω
ω ω ω

∂
≡ = = ≡ ⇒ = ≤
∂ + +

vk k k kv v k
k kk k

  (12.3) 

with 2≡k k  and 2≡v v . Due to isotropy, the group velocity v  pos-
sesses the direction of the wave vector k  and ( )≡v v k  can be converted to 
the vectorial function ( )≡k k v  according to 

( )

2

2 2 2 2

2 2 2 22

22

, , .
11

p

p

c c
c c

cc

ω
ω

ω
= = ≡ ⇒ = =

−−

v
v v v kk k k v kv
v vv

  (12.4) 

We introduce an abbreviation γ  in analogy to the procedure for special Lo-
rentz transformations by 

2 2 2 2 2

2 22

2

1 11, , .

1

p p

p

c

c
c

ω ωγγ ω
ω γγ

+ −
≡ = ≥ ⇒ = − = −

−

k v kv
v

 (12.5) 

which is equivalent to pω γω=  with pω  the minimal possible frequency for 
velocity =v 0 . 

The second-order derivatives of ( )ω ω≡ k  for transverse waves in a cold 

plasma consist of a transverse part proportional to 
2

k l
kl

k k
δ −

k
 and a longitudin-

al part proportional to 
2

k lk k
k

 given by 
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22 2

2 2 2 .pk l k l
kl

k l

k k k kc
k k

ωω δ
ω ω

 ∂  = − +
 ∂ ∂  k k

              (12.6) 

They are responsible for diffraction perpendicular and parallel to the direction 

of propagation and we call 
2

k lk k
ω∂

∂ ∂
 the diffraction tensor. 

For the 4-wave vector k we find from (12.4) the following proportionality to 
the 4-velocity u 

( ) ( )2 2, i , i , i ,p p pm
k c c u

c c c
ω ωω γ γ ≡ = = ≡ 

 
k v u



         (12.7) 

where we defined a “rest” mass pm  which is independent on the velocity v  of 
the moving particles (plasmons) and depends beside physical constants only on 
the plasma frequency pω  by 

2 .p pm c ω≡                         (12.8) 

From (12.7) follows for the squared modulus 2k  of the 4-wave vector k 
which is a Lorentz-invariant 

2 2 22
2 2

2 2 2 ,p pm c
k

c c
ωω

= − = − = −k


                (12.9) 

independently of the frequency ω  in the resting plasma. Therefore, it can also 
serve as a model for only one kind of transverse photons with the same rest mass 
independently on the frequency and it seems to be clear that it is the only case of 
a medium which provide this. Furthermore, we find 

( )
2

,p
p

m c
ku γ ω ω= − = − = −kv



              (12.10) 

in contrast to its vanishing (11.12) in case of neglected dispersion. 
For the energy-momentum tensor in three-dimensional representation and 

written in coordinate-invariant way, i.e., without indices (see Appendix B) and fur-
thermore if we omit the indices “0” at k  and 0ω  we find from (12.3) the relation  

2 2
p

c c
ωω

= =k v u  and using the definition of pm  by (12.8) 

0 0 2

T i i i
,i i ip

c c c
T s n m

c cw
c c

ω ω

⋅    ⋅    ≡ = =      −− −        

g k v k u u u
uS v

     (12.11) 

where 0 0s n=   is the action density and 0n  the particle density with mass 

pm  defined in (12.8) in the inertial system 0  of the resting plasma. The 
four-dimensional energy-momentum tensor (12.11) is completely symmetric 
and can be represented in the factorized form 

20
0 ,p

p

n
T n m u u k k T

mκλ κ λ κ λ λκ= = =              (12.12) 

Its trace is is represented by (see Appendix B) 
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( )
2

0 0 0T 0.p pm c
T w s s n

ω
ω

γ γ
= − = − = − = − ≤kv       (12.13) 

with the trace of the three-dimensional part of the stress tensor T  

( )2

0 0 0T 0, 0.ps n m w sγ ω= = ≥ = ≥kv v          (12.14) 

Since the four-dimension tensor (or operator) T as well as its spatial part T  
factorize they possess only one non-vanishing eigenvalue and we have 

[ ] [ ]0, 0, 0, T 0, T 0,T T T= = = = =          (12.15) 

From (B.8) follows then 
2 32T 0, T T 0, T T 0.w w w= ≥ = ≥ = ≥Sg S g S g     (12.16) 

The derivations were made for real wave vector k  and since S  and g  
are proportional to k  in this case the positivity of Sg  is also understandable 
from this side. 

In the inertial system ′  where the excitation rests that means which moves 
with group velocity v  in 0  and thus where ′→ =v v 0  we have the energy 
momentum tensor 

20 0

0 00 0 0 0
,

00 0 p
T s n

m cw ω
    ′ ′ ′= = =      −′ ′− −       

2
0 0 0 0 0, , .p p pw n m c n s n n T wω ω γ′ ′ ′ ′= = = = = −       (12.17) 

In the transition 0′→ =    to this system, we have to transform (see trans-
formation formulae in Appendix A with =V v ): ′→ =k k 0 , pω ω ω′→ = , 

2

0 0 021
c

→ = −
vE E E . Therefore, the phase factor ( ){ }0 0exp i tω−k r  trans-

forms according to 

( ){ } ( ){ } ( )exp i exp i exp i ,pt t tω ω ω′ ′ ′ ′ ′− → − = −kr k r       (12.18) 

and the excitation appears in ′  as a pure oscillation of the electric field in time 
with plasma frequency pω  which due to vanishing wave vector cannot be clas-
sified as transverse or longitudinal one but is its unification. The specialized 
formula (A.20) for the susceptibility in the system 0  which moves with group 
velocity 0v  of a certain excitation in   is relatively complicated. The trans-
formation to this system makes only one considered wave to a resting excitation, 
whereas all other ones are not resting. Therefore, in the system 0′ =   only 
the excitation with 0 00, pk ω ω′ ′= =  is simple, whereas all others remain com-
plicated and propagate with some group velocity. 

The action of a cold plasma onto a flow of light particles propagating in va-
cuum is that it makes them to a flow of transverse quasiparticles and equips the  

last with a rest mass 2
p

pm
c
ω

=


. Therefore, it may serve as a concrete model for  

the transition from massless particles to particles with rest mass. A well-known 
model for equipping massless particles with a rest mass is the Higgs mechanism 
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by symmetry breaking in gauge field theories and this model is similar. The re-
sult for the energy-momentum tensor in the limiting case of plane monochro-
matic waves (12.12) is formulated in Lorentz-covariant form and contains only 
Lorentz invariants ( 0 0,n s  are relativistic scalars and pm  an invariant). It 
agrees with the energy-momentum tensor for a homogeneous flow of relativistic 
point-like particles in classical mechanics (e.g., [3] [5] [12] [15]). In the transi-
tion to vacuum 0 0, 0e p pn mω→ ⇒ → → , the rest mass pm  goes to zero. In 
this case we do not have an inertial system where the excitation is resting and the 
4-velocity 0,u λ  is diverging due to 2 2c→v  and the action density 0s  in the 
transition to a resting system goes to zero, i.e. 0 0 0s Ss′→ =  (see (10.17) and 
(10.18)). Formula (10.17) for the energy-momentum tensor is then no more appli-
cable but it can be substituted by (10.13) together with the relation 2

0 0 0c ω=k v  
from (12.3) that leads to the energy-momentum tensor for quasiplane and qua-
simonochromatic waves in vacuum. The appearance of a rest mass for the ele-
mentary transverse excitations in a plasma is a collective effect of the interaction 
of the charged particles and it vanishes in the transition to vacuum (Lorentz in-
variance). The cold plasma may serve as orientation for a relativistic covariant 
electromagnetic theory which provides transverse photons with a certain rest 

If we combine formula (12.8) for the rest mass of the quasiparticles with the 
expression for the plasma frequency of a cold electron plasma in (12.1) then we 
find 

2 2

2 2 2

4
4 , ,p e

p e e e
e e

n e em n r r
m cc c m c

ω π
π

 
= = = ≡ 

 



 

      (12.19) 

where 132.82 10 cmer
−≈ ×  denotes the classical electron radius. Thus the mass 

pm  is proportional to the square root of the electron density en  but is not in a 
simple relation to the electron mass em  without taking into account the elec-
tron charge e. It is proportional to the reciprocal square root of em  if we fix the 
charge e. For plasma frequencies pω  in the visible region of about  

145 10 Hz
2

p
p

ω
ν ≡ ≈ ×

π
 ( )1sec−


 (for alkali metals they are a little higher and are 

much higher for most other metals) we find according to (12.8) a mass of about 
2

33 33
2

erg sec4 10 4 10 g
cmpm − −⋅

≈ × = ×  that is by a factor ≈ 2 × 105 smaller than the  

rest mass of an electron which is of about 2710 gem −≈  corresponding to a rest 
energy of about ≈ 0.5 MeV. Since the appearance of a rest mass is a collective ef-
fect (quasi-particles), we cannot separate different parts of energy and momen-
tum from the pure field and from the moving particles (electrons) on the back-
ground of the heavier ions considered as resting and making the medium (plas-
ma) macroscopically neutral. 

We mention that an energy momentum tensor of the form (12.17) with only 
one nonvanishing component 44T  in the energy density part for a point-like 
resting particle is the starting point for establishing the direct connection of 
Newton’s gravitation law with Einstein’s equations of general relativity (see, e.g., 
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[3], section 99, Eq. (99.1)). 
A warm plasma with spatial inversion as symmetry element possesses a trans-

versal and a longitudinal part of the permittivity tensor proportional to 

2
i j

ij

k k
δ −

k
 and to 2

i jk k
k

 with parameters ( ),tε ωk  and ( ),lε ωk  and in 

case of gyrotropy a further term. 

13. Angular Momentum Conservation in Resting Isotropic 
Media 

The most prominent supporter of the Abraham tensor in old time was Pauli [5] 
in his younger years. He considers explicitly only isotropic non-dispersive media 
and it is not clear how these results may be generalized to anisotropic media 
since no proposal for this exists. In his encyclopedic article published in the age 
of 21, Pauli [5] sees in electron-theoretical considerations of Abraham a weighty 
argument in favor of the symmetric Abraham tensor but he discusses also ad-
vantages and disadvantages of the Minkowski tensor. Since Pauli’s article is 
about Special and General relativity theory and since the last requires a symme-
tric energy-momentum tensor as source term in Einstein’s equations it is un-
derstandable that Pauli looked mainly for arguments in favor of the symmetric 
Abraham tensor. However, in his late years, apparently, he changed his opinion 
and favored the non-symmetric Minkowski tensor as the correct one. This can 
be seen from the supplementary notes made by Pauli in 1956, two years before 
his death, to the re-edition of his encyclopedic article [5]. In Note 11 with refer-
ence to von Laue [14] Pauli praised emphatically the Minkowski tensor as the 
right one and it seems that he wants to correct his earlier opinion13. For aniso-
tropic media which were never explicitly considered by Pauli in this regard it is 
clear that the energy-momentum tensor cannot be symmetric since the mo-
mentum density is in direction of the mean wave vector and the energy-flow 
density (Poynting vector) in direction of the ray vector which, in general, are not 
parallel to each other as it is well known from experimental and theoretical crys-
tal optics. 

In recent time the Abraham tensor was declared in papers of Leonhardt and 
coworkers [32] [33] as the correct one. It is easily to conjecture that the same as 
the young Pauli they want to have a symmetric energy-momentum tensor be-
cause the General Relativity theory requires such but they should ask themselves 
how it can be generalized as such symmetric tensor to general anisotropic media. 
As mentioned most authors favor the Minkowski tensor as the correct one also 
for its relativistic covariance but many of them do not consider anisotropic me-

 

 

13The full text of Note 11 in [5] is:”M. v. Laue [see his Relativitätstheorie, Vol. 1 (6th edn., 1955) § 
19] has shown that only the unsymmetric energy-momentum tensor of Minkowski is correct for a 
phenomenological description of moving bodies (just as it is in crystals at rest). His argument also 
emphasizes the validity of the addition theorem of velocities for the ray-velocity (see Eq. (312) of the 
text), which is in agreement only with this unsymmetric tensor.”. The Editors of the Russ. Transl. 
V.L. Ginzburg and V.P. Frolov make further remarks to this problem with four additional citations, 
in particular, [16] [17]. 
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dia where the problem becomes more clear though more difficult. The reason for 
different views to this tensor is different separations of ponderomotive forces in 
the conservation theorems which in this case do not possess the exact form of 
local conservation laws. This is discussed in detail by Ginzburg [10]. The discus-
sion of the relations between the Abraham and the Minkowski tensor is usually 
restricted to isotropic media and we do not know an explicit more general form 
of the symmetric Abraham tensor for anisotropic dispersive media. For aniso-
tropic media it is evident that the momentum density should possess the direc-
tion of the mean wave vector and the energy flow density should be in direction 
of the group velocity of quasiplane and quasimonochromatic waves which, in 
general, are different for anisotropic media or, in other case, essential parts of 
crystal optics would be wrong. This is provided if the momentum density is 
proportional to [ ],D B  and the energy flow density proportional to [ ],E B  as 
in the Minkowski tensor. Taking into account the dispersion both expression 
have to be modified as was shown ([9] and Section 9 of present article). In the 
case of taking into account the dispersion the constitutive relations bring into 
play additional derivatives of the electric (and in certain cases of the magnetic) 
field which have to be taken into account in the derivation of conservation laws. 
Our strategy is to formulate the differential conservation laws without taking 
into account absorption (dissipation or absorption or even amplification, open 
system) as exact vanishing of 4-divergences. With dissipation this is impossible. 
The condition for the permittivity tensor to describe a dissipation-less medium 
was discussed in Section 3. 

Even in the special case of an isotropic medium and under neglect of disper-
sion (spatial and temporal ones) that means in case of the constitutive relations 

* *
0 0 0 0 0 0,ε ε= =D E D E  with constant scalar 0ε  the energy-momentum tensor 

Tκλ  remains, in general, non-symmetric, in particular (see next Section) 

4 0 0 4 4i i ,k
k k k k

S
T cg T T

c
ε ε= = = ≠                (13.1) 

that is nonsymmetric for 0 1ε ≠ . However, the stress tensor klT  is symmetric in 
this case in the inertial system where the isotropic medium is resting (in moving 
systems it is no more isotropic) 

.kl lkT T=                          (13.2) 

Moreover, this symmetry remains to be true also in the general case of taking in-
to account the dispersion as can be seen from (10.13) and (10.8) since for isotropic 
media the group velocity v  and the wave vector k  possess in general case the 
same direction (see below). This partial symmetry of the three-dimensional part 

klT  (and only this) of the full four-dimensional energy-momentum tensor Tκλ  
is necessary for the existence of a local law of angular-momentum conservation 
in isotropic media due to invariance with respect to the three-dimensional rota-
tion group in this inertial system where the medium rests. 

Multiplying the differential momentum conservation (8.2) by ijk jrε  ( ijkε  is 
three-dimensional Levi-Civita pseudo-tensor) we may transform this according 
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to 

( ) ( )
0

0

0 ,ijk j l kl k l ijk j kl ijk j k ijk kjr T g r T r g T
t t

ε ε ε ε
=

=

∂ ∂ = ∇ + = ∇ + − ∂ ∂  



    (13.3) 

and obtain 

[ ]0, , , ,l il i il ijk j kl i ijk j k iS m S r T m r g
t

ε ε∂
∇ + = ≡ ≡ =

∂
r g       (13.4) 

where we used the symmetry (13.2) and where this last symmetry is evidently re-
quired for the vanishing of ijk kjTε . Herein, ( ) ( ), , ,i im m t t≡ =   r r g r  means the 
angular momentum density and ( ) ( ), ,il il ijk j kS S t r g tε≡ =r r  a non-symmetric 
tensor which is the analogue to the stress tensor for momentum conservation 
(angular-momentum flow density). Since the momentum density takes into ac-
count the polarization of the electromagnetic field the angular momentum den-
sity comprises both the orbital and the spin angular momentum. 

The vanishing of the right-hand side of (13.4) possesses the form of a diffe-
rential or local conservation theorem. We also see that a pure translation 

′→ = +r r r a  with a constant vector a  (displacement of coordinate origin) 
does not disturb the local conservation theorem (13.4) although this changes im  
and ilS . Despite the symmetry (13.2) the whole tensor Tκλ  is non-symmetric 
( T Tκλ λκ≠ ) due to (13.1) and under Lorentz transformations the spatial part klT  
becomes also nonsymmetric ( kl lkT T′ ′≠ ) as consequence that isotropy of a me-
dium resting in the inertial system   is lost in inertial systems ′  of the 
moving medium (see Appendix B, in particular, (B.3)). Due to 0ijk kjTε ′ ≠  a lo-
cal law of angular-momentum conservation cannot be formulated then in anal-
ogy to (13.4) for such inertial systems. One can convert this conclusion. If the 
four-dimensional energy-momentum tensor Tκλ  would be symmetric in the 
inertial system of the resting isotropic medium then it remains to be symmetric 
also in arbitrary other inertial systems and one would be able to prove a local 
conservation law of angular momentum for an arbitrary inertial system that is 
evidently wrong (with exception of vacuum). This excludes the symmetric Ab-
raham tensor as candidate for the energy-momentum tensor from the beginning 
in contradiction to confusing remarks in [5]. We did not find explicit expres-
sions in literature for a symmetric Abraham tensor in the general anisotropic 
case without or with dispersion where already the same directions of momentum 
density and energy flow density would be in striking contradiction to known 
experimental facts. 

With exception of the vacuum the angular momentum conservation in iso-
tropic media at rest cannot be extended to a more general four-dimensional 
conservation theorem such as it was possible for energy and momentum con-
servation. The reason is that invariance with respect to Lorentz transformations 
requires a permittivity tensor ( ),ij ijε ω δ=k  of the medium which determines 
the electrodynamic vacuum. We mention that our derivation (13.3) of the ne-
cessary symmetry kl lkT T=  for local angular momentum conservation for iso-
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tropic media corresponds to the derivation of the necessary symmetry of the 
four-dimensional tensor T Tκλ λκ=  for the local conversation of the four-angular 
momentum given in [3] (section 32, Eq. 32.10 in Russ. Ed. from 1988). 

14. Non-Uniqueness of the Energy-Momentum Tensor and 
Its Role for Finding the Simplest One 

As is known the energy-momentum tensor in the local conservation law of 
energy and momentum (and, similarly, the action 4-vector in local action con-
servation) is not unique [3]. However, we will suggest that this is not a very 
strong problem, in particular, not in the approximation of quasiplane and qua-
simonochromatic waves. We do not strive in this Section for high generality of 
our considerations and try to illuminate the problems of non-uniqueness only by 
some remarks. 

The general form of non-uniqueness of the energy momentum tensor 
( ) ( )T r T rκλ κλ′

 in the local conservation theorem is described by an arbitrary 
third-rank four-tensor function ( )rκλµψ  which is antisymmetric in the last two 
indices in the following form [3] 

( ) ( ) ( ) ( ) ( ), ,T r T r r r rκλ κλ µ κλµ κλµ κµλψ ψ ψ′ = +∇ = −        (14.1) 

from which immediately follows 

( ) ( ) 0.T r T rλ κλ λ κλ′∇ = ∇ =                   (14.2) 

In three-dimensional separation this means for the stress tensor ( ),klT tr  
and the momentum density ( ),kg tr  and for the energy flow density ( ),lS tr  
and the energy density ( ),w tr  

( ) ( ) ( ) ( )
( ) ( ) ( )

( ) ( ) ( ) ( )
( ) ( ) ( )

, , , , ,

, , , ,

, , , , ,

, , , ,

kl kl lmn m kn kl

k k l kl

l l lmn m n l

l l

T t T t t t
t

g t g t t

S t S t t t
t

w t w t t

ε ψ χ

χ

ε ψ χ

χ

∂′ = + ∇ +
∂

′ = −∇
∂′ = + ∇ +
∂

′ = −∇

r r r r

r r r

r r r r

r r r

        (14.3) 

with the following separation of ( )rκλµψ  into arbitrary three-dimensional ten-
sor or pseudo-tensor functions, respectively 

( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( )

4 4

4 4 4 44

1 i i, , , , , , ,
2

, i , , , , , .
2

kn lmn klm kl kl k l

n lmn lm l l l

t t t t t
c c

ct t t t t

ψ ε ψ χ ψ ψ

ψ ε ψ χ ψ ψ

≡ ≡ − =

≡ − ≡ − =

r r r r r

r r r r r
  (14.4) 

For neglected dispersion ( 0ε  constant permittivity tensor in 0,i ij jD Eε= ) 
and without losses ( *

0, 0,ij jiε ε= ) one can derive the following well-known general 
expressions for the parts of the energy-momentum tensor here denoted by Tκλ′  
in contrast to our Tκλ  ( 4α = π  in Gauss system) 

( ) ( )

[ ]

1 ,
2
1 1 , ,

kl kl k l k l

k kmn m n k

T B B E D

g D B
c c

α δ

α ε

′ = + − +

′ = =

BB DE

D B
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[ ]

( ) ( )2
0

, ,

1 1 ,
2 2

l lmn m n lS c E B c

w

α ε

α

′ = =

′ = + = +

E B

BB DE B E Eε
             (14.5) 

where E  and B  mean here the full electric and magnetic field and D  the 
full electric induction which depend on ( ), tr . If we insert into these expressions 
plane monochromatic waves of the form ( ) ( )0 0 0 0i i*

0 0e et tω ω− − −= +k r k rE E E  with 
real 0k  and 0ω  and constant vector amplitudes 0E  and analogously for B  
and D  we get besides constant terms in the energy-momentum tensor also terms 
with the rapidly varying phase factors ( )0 0i2e tω± −k r . It is not possible to generalize in 
some simple way the form (14.5) of the energy-momentum tensor containing the 
full fields to the case of taking into account the dispersion. In particular, the cor-
responding expressions cannot be local in the fields that means cannot be taken 
only at the same space-time points ( ), tr  (see Section 3). Therefore, we have to re-
strict us in the following discussion of the non-uniqueness concerning the terms 
with rapidly varying phase factors ( )0 0i2e tω± −k r  to the neglect of dispersion. 

The suppression of terms with rapidly varying phase factors was made in [34] 
for local energy conservation (and analogously possible for momentum conser-
vation) in noncovariant form. Here we will show that it can be made also in rela-
tivistic covariant form. Under neglect of dispersion and in the limiting case of 
constant amplitudes 0E  we can add to our Tκλ  terms with rapidly varying 
phase factors possessing the form of a four-divergence of a function ( )rκλµψ  
with antisymmetry in last two indices as shown in (14.1) in the following way 
(recall 2

0 0, 0, 0 0,,k k k k r k rµ µ ν ν≡ ≡ ) 

0

0

i2
0, 0, 0, 0, 0,2

0 0 0

i22
0, 0 0, 0, 0, 0,2

0 0 0

0,

i e . .
4

1 e . .
2

1
2

ij ij k r
i j

ij ij k r
i j

ij

L L
T T k k k E E c c

k kk

L L
T k k k k E E c c

k kk

L
T k

k

κλ κλ µ κ µ λ
λ µ

κλ κ λ µ
λ µ

κλ κ

α α

α

α

   ∂ ∂   ′ = +∇ − +      ∂ ∂     
  ∂ ∂ 
 = − − +     ∂ ∂    
∂

= −
∂

0i2
0, 0,

0

e . .,k r
i jE E c c

λ

 
+ 

 

(14.6) 

with Tκλ  denoting the energy-momentum tensor in (9.1) without terms with 
rapidly varying phase factors and represented by the slowly varying amplitudes 

*
0, 0, 0,

0

,ij
i j

L
T k E E

kκλ κ
λ

α
∂ 

= −  ∂ 
                 (14.7) 

and, in addition, neglecting derivatives 
0

ij

kλ

ε∂ 
 ∂ 

 in it corresponding to neglect 

of dispersion. We used in (14.6) the vanishing of the following expression 

( ) ( )

0
0, 0,

0 00
2 2

2
0, 0, 0, 0, 0, 0, 02 3

0 0

i i

2 2

0,

ij ij ij
m

m

i jm im j m ij m i j ij

L L L
k k c

k k c
c ck k k k k k

µ
µ

ω
ω

δ δ δ δ ω
ω ω

 ∂ ∂ ∂     = −        ∂ ∂ ∂      

= + − − −

=

k (14.8) 
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which is true for the special form of ijL  given in (5.5) only under neglect of 
dispersion and is related to (11.12) or also to (11.3). Thus we have represented 
terms with rapidly varying phase factors in the energy-momentum tensor (14.6) 
by a four-divergence ( )rµ κλµψ∇  with explicitly given ( ) ( )r rκλµ κµλψ ψ= −  and 
comparison of (14.6) with the noncovariant form in [30] shows that the choice of 

( )rκλµψ  itself for removing one and the same terms is to certain extent also not 
fully unique. Evidently, substitutions ( ) ( ) ( ) ( )r r r rκλµ κλµ κλµ ν κλµνψ ψ ψ ψ′→ = +∇  
in (14.1) with arbitrary ( )rκλµνψ  which is fully antisymmetric in last three in-
dices ( ), ,λ µ ν  provide equivalent possibilities. 

Taking into account the dispersion, the expressions (14.5) for the parts of the 
energy-momentum tensor are no more true. However, one can find from Max-
well equations vanishing quadratic expressions in the field which do not possess 
the form of local conservation of energy and momentum but are related to it and 
by averaging these expressions over space and time, we get local conservation 
laws of energy and momentum which take into account the dispersion in some 
approximation of quasiplane and quasimonochromatic waves that is demon-
strated in [7] for frequency dispersion in the energy density w and energy flow 
density S  where there is obtained the expression for w in (9.7) ( S  is not al-
tered in comparison to the usual one due to neglected spatial dispersion). In the 
derivations of local conservation theorems one cannot work with constant am-
plitudes and the amplitudes 0 0,E B  and 0D  are, at least, slowly varying am-
plitudes. If we take expressions of the kind in (14.6) for removing the terms with 
rapidly varying phase factors proportional to ( )0 0i2e tω± −k r  then one has also to 
differentiate the slowly varying amplitudes and there remain some new terms 
with these phase factors which, however, are small compared with the main 
terms with these phase factors before. In a second step and successively in higher 
steps one can try to remove also these smaller terms. However, there is no possi-
bility to remove any parts in the energy-momentum tensor (9.7) which do not 
contain such rapidly varying phase factors without creating new terms with ra-
pidly varying phase factors or terms which grow in space and time in unreason-
able way (e.g., linearly). Clearly, we can derive higher-order approximations of 
the energy-momentum tensor than in (9.7) (see sections 5-7) and can try to  

express them not only by the group velocity l
l

v
k
ω∂

≡
∂

 as done but also by the 

higher derivatives 
2 3

,
l m l m nk k k k k
ω ω∂ ∂

∂ ∂ ∂ ∂ ∂
 and so on (this is not yet done) but they  

also do not contain such rapidly varying phase factors. Therefore, the non- 
uniqueness cannot be used to make energy-momentum tensors without rapidly 
varying phase factors to symmetric ones and nonsymmetric energy-momentum 
tensors of such kind remain intrinsically nonsymmetric. This suggests also that 
expressions of the kind (9.7) or (9.4) and of their generalization possess some 
distinguished position with the possibility of direct physical interpretation 
among all other equivalent energy-momentum tensors in local conservation 
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theorems. Our derivations provided these expressions directly without the ne-
cessity of suppression of terms by the discussed non-uniqueness. 

There is another case where the non-uniqueness of the energy-momentum 
tensor seems to be of great importance. These are evanescent or inhomogeneous 
waves with complex wave vector 0 0 0ik k′ ′′= +k  and (or) complex frequency 

0 0 0iω ω ω′ ′′= +  leading besides the periodic phase factors ( )i2e tω′ ′± −k r  to expo-
nential factors ( )0 02e tω′′ ′′− −k r  in the energy-momentum tensor. Such waves are 
present, for example, under total reflection in the optically thinner medium and 
in surface waves to both sides of a boundary plane. The exact generalization of the 
local energy-momentum conservation to such cases is possible. Using the addi-
tional factors ( )0 02e tω′′ ′′− −k r  in such waves provides further possibilities to remove 
terms in the energy-momentum tensor which are difficult to interpret and to get 
equivalent tensors but this makes the problems of non-uniqueness more complex. 

Summarizing, it seems to us that the non-uniqueness of the energy-momentum 
tensor can mainly be used to remove or to change terms with periodically or 
exponentially rapidly changing phase factors, whereas the others are hardly to 
touch. This problem of non-uniqueness has little to do with the discussion of the 
correctness of the Minkowski or the Abraham tensor which in absence of dis-
persion was decided in favor of the Minkowski tensor. 

15. Difficulties for General Relativity Theory Connected with 
General Asymmetry of Energy-Momentum Tensor in 
Media 

The energy-momentum tensor Tκλ  forms the source term in Einstein’s gravita-
tion equations which determine the metric tensor gκλ  and thus also the curva-
ture of a Riemannian space-time as a generalization of Minkowski’s space-time. 
Ricci tensor and thus Einstein tensor in these equations are symmetric ones and, 
consequently, the energy-momentum tensor has also to be symmetric. Since 
macroscopic electrodynamics is an averaged microscopic electrodynamics it can 
be assumed that its energy-momentum tensor provides the source term for a 
correspondingly averaged gravitation field in the medium and requires boun-
dary conditions in case of transition to vacuum with a sharp boundary. The 
connection of the classical energy-momentum tensor in Minkowski space as 
source of a curvature in Einstein’s equations is patchwork since it starts from a 
pseudo-Euclidian space but it cannot be fully wrong concerning its symmetry. 
We will shortly discuss some difficulties which result from this for General rela-
tivity theory. 

If it would be possible to extend the Ricci tensor in Einstein’s equations to a 
possible non-symmetric one that up to now did not be achieved then, neverthe-
less, there remain some serious problems. The energy-momentum tensor in the 
local conservation laws is not uniquely defined (see Section 14) and there arises 
the problem which of these tensors provides the right source term in Einstein’s 
equations of General relativity theory. Moreover, in spatially and (or) temporally 
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inhomogeneous media such a tensor in local conservation laws does not exist at 
all. In these cases only the local conservation theorem of action remains with a 
four-dimensional vector of action and action-flow density. One may expect that 
then this four-vector must be involved in some way as source in generalized 
Einstein equation but this to our knowledge was also not found up to now. 

The unification of the basic laws of physics is a steady desire of physicists. Af-
ter Einstein’s General relativity theory in 1916 it was the problem of its unifica-
tion with the experimentally well established Maxwell theory of electromagnet-
ism. First successful trials in this direction with extension of the dimensionality 
of the space-time to 5 dimensions were the Kaluza-Klein theories from about 
1920 on. With the foundation of the rigorous quantum theory in about 1925 it 
became the problem of unification of quantum theory with electromagnetism 
and gravity from which only the first part found a satisfactory solution in quan-
tum electrodynamics and from this more or less only the microscopic quantum 
electrodynamics of charged particles is well elaborated. In the sixties and seven-
ties the standard model of elementary particles and fields was established which 
unified the electromagnetic and the weak with the strong interactions in satis-
factory way but with the new problem of symmetry breaking and of the experi-
mental proof of the theoretical Higgs particles. Thus the problem as it represents 
to us at this time became already the unification of the standard model with a 
quantum theory of gravitation where great but up to now not fulfilled hopes 
were set in the development of string theories. The non-symmetry of the ener-
gy-momentum tensor for electromagnetic excitations in anisotropic dispersive 
and, in general, not even homogeneous media in classical electrodynamics as 
represented here adds a further serious problem because already Einstein’s gra-
vitation theory in existing form is not consistent with the electrodynamics of 
continuous media since first requires a symmetric energy-momentum tensor. 
This non-symmetry of the energy-momentum tensor is intrinsic and cannot be 
removed by considering the current and charge distributions of media on the 
background of the vacuum. Since in the principal correctness of the existing 
classical electrodynamics of continuous media cannot be doubt the least which is 
required is some extension or generalization of the General relativity theory if 
not a more basically new theory. As it seems to us this problem has to be solved 
before a successful unification with the other fundamental forces of nature can 
be accomplished. 

The General relativity theory has great success for explanation of astronomical 
observations and for cosmology. It is a beautiful theory which is considered as ex-
perimentally verified. It must not be incorrect due to some of the shown classical 
difficulties and we hope that they can be overcome in the course of time by gene-
ralization or somehow in other way and that it remains true as an approximation. 

16. Possible Additions and Generalizations 

The preceding theory of the energy-momentum tensor can be extended in dif-
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ferent directions. In particular, the following possibilities seem to be interesting 
(partially already elaborated): 

1) Statistical model for permittivity tensor for gases and (warm) plasmas with 
spatial dispersion. 

2) Non-statistical permittivity tensor for solids with spatial dispersion (but 
averaged over the space). 

3) Inclusion of inhomogeneous (evanescent) waves in lossless media that 
means solutions of the wave equations where both the mean wave vector 0k  
and, possibly, the mean frequency 0ω  are complex quantities (is more a tech-
nical than a principal problem). 

4) For homogeneous media with losses one cannot derive exact differential 
conservation theorems but one can derive (not in fully unique way) equations of 
the kind 

( ) ( ) ,T r f rλ κλ κ∇ =                     (16.1) 

or in three-dimensional separation with ( ) ( ) ( )i, , ,kf r f t q t
cκ

 =  
 

r r  

( ) ( ) ( ) ( ) ( ) ( ), , , , , , , ,l kl k k l lT t g t f t S t w t q t
t t
∂ ∂

∇ + = ∇ + =
∂ ∂

r r r r r r   (16.2) 

where ( ), tf r  can be interpreted as a force density and ( ),q tr  as a density of 
loss or gain of electromagnetic energy. 

5) Derivation of a local conservation theorem for inhomogeneous media with 
( )ˆ ˆ , , ,ij ij t tε ε ′ ′≡ r r . In this case local conservation of energy and momentum is 

not possible but the action conservation is possible (adiabatic invariants). 
6) Specialization of permittivity tensor, for example, to polaritons with 

( )
2 2

2 2, l
ij ij

t

ω ω
ε ω δ

ω ω
−

=
−

k . 

7) Taking into account higher-order derivatives of the slowly varying electric 
field amplitudes. 

8) Quantum-mechanical generalization. 

17. Conclusion 

In present article, we developed a relativistically covariant approach to the local 
conservation theorems for homogeneous anisotropic media with dispersion of gen-
eral permittivity tensor ( ),ijε ωk  and to the calculation of the four-dimensional 
energy-momentum tensor14. The limiting case to plane monochromatic waves is 
discussed and the results, in particular, are demonstrated for the special case of 
cold plasma. In the usual approach for such problems, the starting point is a La-
grange function, but this approach is hardly applicable with inclusion of the dis-
persion. Our calculations are made in a coordinate-invariant operator approach 

 

 

14I used my unpublished paper in German from about 1979 (see Remark) which I translated in 
preparation to a Conference in 2004 into English (see [34]) and to which I added since this time new 
material not fully included here and I am convinced that the content contains elements worth to be 
published also now. 
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with an operator equation only for the electric field and therefore with results 
which are basically expressed by the electric field. 

Remark 

A shorter paper of this theme (in particular, without any statements to difficul-
ties for General relativity theory due to asymmetry of the energy-momentum 
tensor and to application of a plasma) written in German with nearly all basic 
formulae as now was made in about 1979 but was rejected from Editor of Anna-
len der Physik in GDR Professor Gustav Richter with wrong arguments. His 
main wrong argument was that in my formulae for the limiting case to plane 
monochromatic waves stands the derivative of the permittivity with respect to 
the frequency that he declared as wrong “for physical reason”. However, the 
correctness of these formulae was already known from cited monographs and 
papers, in particular, of Landau and Lifshits and of Agranovich and Ginzburg. 
When I wanted to explain G. Richter who was also Member of our Institute at 
that time (in age of a few years below 65) in personal talk why mentioned for-
mulae are correct for beams in limiting case he became very angry. Similar 
things happened shortly before when I wanted to publish my paper about gene-
ralized boundary conditions which, finally, was published after intervention by a 
prominent physicist of GDR from Editorial Board of “Annalen” and recently I 
published a continuation of this topic. When I tried to send the mentioned paper 
about boundary conditions to a Western journal I never got an answer. One 
could not check whether or not it was really sent since mail to Western countries 
went before this in an open couvert to the Chief and through Security or was a 
response withheld. I found now the hand-written comments of G. Richter and 
will pose them into my Home-page. 
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Appendix A 

Derivations to relativistic-covariant treatment of macroscopic electrody-
namics of anisotropic dispersive media 

Macroscopic electrodynamics is relativistically invariant only for the vacuum 
that means for permittivity tensor ( ) ( ),ij ijε ω ε ω δ=k  with ( ) 1ε ω = . Howev-
er, for general ( ),ijε ωk  it can be formulated in relativistic covariant form ac-
cording to Minkowski (1908) [7] (Eqs. (76.9)-(76.11)) and many others. This 
form was less appropriate for our derivations of the energy-momentum tensor. 
Our derivation rests more on the invariance of 

2 2−B E  after Fourier trans-
formationation from space-time to wavevector-frequency representation, e.g., 
[3] [13] [15]. 

The starting point is Equation (5.4) for the electric field of plane monochro-
matic waves with the definition (5.5) of the wave-equation operator that means 

( ) ( ) ( ) ( ) ( )
2

2
2, , 0, , , .ij j ij i j ij ij

cL E L k kω ω ω δ ε ω
ω

= ≡ − +k k k k k    (A.1) 

As discussed, it contains the full information of the macroscopic electromagnetic 
field together with linear constitutive equations for homogeneous anisotropic dis-
persive media expressed by the permittivity tensor ( ) ( ), 4 ,ij ij ijε ω δ χ ωπ≡ +k k  
with ( ),ijχ ωk  the general susceptibility tensor. 

We consider an arbitrary special Lorentz transformation Λ  which trans-

forms a space-time vector 
4 i

r
r ct
 

=  = 

r
 in inertial system16   into a new 

space-time vector 
4 i

r
r ct

′ ′ =  ′ = 

r
 in inertial system ′  according to 

( )
( ) ( )

1

1

, ,

, , .

r r r r rµ µν ν ν µ µ µννµ

µ µν ν ν µ µ µν µλ νλ µννµ
δ

−

−

′ ′ ′= Λ = Λ = Λ

′ ′∇ = Λ ∇ ∇ = Λ ∇ = ∇ Λ Λ Λ =
    (A.2) 

where ( )µνΛ V  with V  as the relative velocity of ′  in   possesses the 
well-known form 

( )
( ) 2

2

2

1
1, 1,

1

m n m
mn

n

V V V
i

c
V

i
c c

µν

δ γ γ
γ

γ γ

 + − 
 Λ = ≡ ≥
 −  − 

VV
V

     (A.3) 

with ( ) ( )1
µν µν
−Λ = Λ −V V . For the 4-wave vector , ik

c
ω ≡  

 
k  the analogous 

transformation formula 

( )1, ,k k k k kµ µν ν ν µ µ µννµ

−′ ′ ′= Λ = Λ = Λ              (A.4) 

holds. The antisymmetric electromagnetic field tensor ( )F r F Fµν µν νµ≡ = −  in 
space-time representation and separated in three-dimensional form together with 
the transformation relations is ( lmnε  three-dimensional Levi-Civita pseudo-tensor) 

 

 

16Einstein denotes “inertial systems” with letter K, likely, from the German “Koordinatensystem”. 
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i
, ,

i 0
mnl l m

n

B E
F F F

Eµν κλ κµ λν µν

ε − 
′= = Λ Λ 

 
           (A.5) 

and the basic equations of macroscopic electrodynamics in arbitrary inertial sys-
tems can be written ( κλµνε  four-dimensional Levi-Civita pseudo-tensor) 

0, 4 ,F F jκλµν λ µν ν µν µε ∇ = ∇ π=                 (A.6) 

where ( )j j rµ µ=  is the 4-vector of current density in space-time representa-
tion. We now make the transition to the Fourier transforms of the field func-
tions (definitions see (3.4)). 

From the transformation formula for the 4-vector of current density 
( ) ( ) ( )( ), , i ,j k cω ρ ω= j k k  using the definition (2.3) which leads to  
( ) ( ) ( )( )i , , ,j k cω ω ω= − P k kP k , we obtain the following transformation for-

mula for the polarization ( ( ) ( ) ( ) ( ), , ,k k i iP k P P k Pω ω′ ′ ′ ′ ′≡ ≡k k ) 

( ) ( ) ( ) ( )1
4 4 4i i .i ik i k k ik i k k

c cP k k P k k P kµ µ µ
ω
ω ω ω

− ′ ′ ′ ′= Λ + Λ = − Λ Λ −Λ Λ Λ ′ ′ 
(A.7) 

After transformation of the known formula for the tensor of the electromag-
netic field into a corresponding formula for the Fourier components and then 
after the elimination of the magnetic field by means of the first vectorial equation 
in (2.7) we arrive after some intermediate calculations to the following transfor-
mation formula for the electric field ( ( ) ( ) ( ) ( ), , ,l l j ijE k E E k Eω ω′ ′ ′ ′ ′≡ ≡k k ) 

( ) ( ) ( ) ( )1
4 4i .l l jl l j j

cE k E k k E kν ν νω
− ′ ′ ′ ′= Λ = − Λ Λ −Λ Λ

′
      (A.8) 

An analogous formula which connects alone the components of the magnetic 
field before and after the Lorentz transformation does not exist without using the 
permittivity tensor but one may calculate the magnetic field from the electric field in  

each system via the Fourier-transformed Maxwell equation ( ) ( )j jkl k l
cB k k E kε
ω

=  

and one can widely work with the electric field alone. 
From the definition of the susceptibility tensor before and after the Lorentz 

transformation 

( ) ( ) ( ) ( ) ( ) ( ), ,k kl l i ik jP k k E k P k k E kχ χ′ ′ ′ ′ ′ ′= =          (A.9) 

using (A.7) and (A.8) we obtain the following transformation formula 

( ) ( )( ) ( )
2

1
4 4 4 42 .ij ik k i jl l j kl

ck k k kµ ν µ µ ν νχ χ
ω

−′ ′ ′ ′ ′= − Λ Λ −Λ Λ Λ Λ −Λ Λ Λ
′

 (A.10) 

Using the definition of the permittivity tensor before and after the Lorentz 
transformation, we obtain from (A.10) the corresponding transformation for-
mula for the permittivity tensor 

( ) ( ) ( ) ( )4 , 4 .kl kl kl ij ij ijk k k kε δ χ ε δ χ′ ′ π ′ ′≡ + ≡ +π        (A.11) 

Thus in the inertial system ′  the medium appears as a homogeneous ani-
sotropic and dispersive one with the permittivity tensor ( ) ( ),ij ijkε ε ω′ ′ ′ ′ ′≡ k . 

For a three-dimensional orthogonal transformation 
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( )4

4 44

0
, ,

0 1
mn m mn

ml nl mn
n

R
R Rµν δ

Λ Λ   
Λ = = =   Λ Λ   

       (A.12) 

we find the usual transformation formula of a second-rank tensor function 

( ) ( )1, R , ,ij ik jl klR Rχ ω χ ω−′ ′ ′ ′ ′=k k               (A.13) 

where ( ) 1TR R
−

=  denotes the three-dimensional rotation operator. 
The transformation of space-time vectors after separation of a part parallel 

and perpendicular of r  to the velocity V  can be written 

( ) 2 21 , ,V t t t
c

γ γ γ   ′ ′= + − − = −   
   

Vr Vrr r
V

          (A.14) 

and, correspondingly, of wave vector and frequency according to (see (A.4) to-
gether with (A.3)) 

( ) ( )2 21 , ,
c
ωγ γ ω γ ω ′ ′= + − − = − 

 

kVk k V kV
V

        (A.15) 

with relativistic invariants 
2 2

2 2 2 2 2 2 2 2
2 2, , .c t c t t t

c c
ω ω ω ω
′

′ ′ ′ ′ ′ ′ ′− = − − = − − = −r r k k k r kr   (A.16) 

Furthermore from (A.15) follows, in particular 

[ ] [ ] ( )
2

2, , , .
c

ωγ ω γ ω
γ

 
′ ′= = − = − + 

 

Vk V k V k V kV kV     (A.17) 

As expected this shows that the components of the wave vector k  perpen-
dicular to the velocity V  of the inertial system ′  in   is not influenced by 
the transformation that, clearly, is known. The transformation formulae (A.7) 
and (A.8) in three-dimensional separation take on the form 

( ) ( )2 2, , ,i k i k ik i k
i ik k

VV VV V k
P P

δ
ω γ δ ω

ω
′ ′ −  ′ ′ ′ = + − +  ′  

k V
k k

V V
   (A.18) 

and using ( ) ( ), , ,cω ω
ω

′ ′ ′ ′ ′ ′ ′=   ′
B k k E k  (cf. also with formulae (8.2) in [42]) 

( ) ( )2 2, , ,l j l j lj l j
l lj j

V V V V k V
E E

δ
ω γ δ ω

ω

′ ′ −    ′ ′ ′= + − +  ′   

k V
k k

V V
   (A.19) 

where, in addition, the transformations (A.15) for the arguments have to be 
used. For the general susceptibilities defined by (A.9) using (A.18) and A.19) this 
leads finally to the transformation formula to the moving medium 

( )

( ) ( )

2 2

2 2

2 2

,

1 , .

i k i k ik i k
ij ik

j l j l jl j l
jl

kl

VV VV V k

V V V V V k

c
ω

δ
χ ω γ δ

ω

δ
γ δ

ω

ωχ γ γ γ ω
=

=

′ ′ −  ′ ′ ′ = + − +  ′  
′ ′ −   ⋅ + − +  ′   

 
′ ′ ′ ′ ′⋅ + − + + 

 
 k

k V
k

V V

k V
V V

k Vk V V k V
V 



    (A.20) 
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The transformation of the corresponding permittivity tensors follow from 

( ) ( ) ( ) ( ), 4 , , , 4 , .ij ij ij kl kl klε ω δ χ ω ε ω δ χ ω′ ′ ′ ′ ′ ′π≡ + ≡ + πk k k k    (A.21) 

If ( ),ijχ ωk  is a symmetric tensor then ( ),ijχ ω′ ′ ′k  is also a symmetric 
tensor. Furthermore, we see that both indices of these tensors are independently 
transformed by exactly the same tensorial factors in (A.20) written on first and 
second lines. 

From the transformation formulae we find then the formal Lorentz covariance 
of the expression 

( ) ( ) ( ) ( ) ( ) ( ) ( )
2

1 2 ,i i i i i i j ij j
cI E k E k B k B k E k k k E kµ ν µ ν µνδ δ δ δ
ω

≡ ± − ± = ± − (A.22) 

and the formal covariance of 

( ) ( ) ( )2 4 .i ij jI E k k E kχ±π≡                 (A.23) 

The sum of both these covariant expressions can be written by means of the 
operator ( )ijL k  introduced in (2.7) as follows 

( ) ( ) ( )1 2 .i ij jI I I E k L k E k≡ + = ±               (A.24) 

Thus the basis of the presented concept of relativistic-covariant treatment of 
electrodynamics and optics of homogeneous dispersive media is formed by the 
vectorial wave equation for the electric field (5.4) in the form ( ) ( ) 0ij jL k E k =  
together with one of the two equivalent representations 

( ) ( ) ( ) ( ) ( )
2 2

2
2 24 , ,ij i j ij ij i j ij ij

c cL k k k k k kµ ν µ ν µνδ δ δ δ χ δ ε ω
ω ω

π≡ − + = − +k k (A.25) 

in connection with the transformation formulae (A.8) for the electric field and 
for the tensor of susceptibility (A.10) as well as the use of the formal Lorentz in-
variance of the quantities considered in (A.22) and (A.24). The material proper-
ties are described by only one susceptibility tensor which depends on wave vec-
tor k  and frequency ω  before and after transformation from systems   to 
′ . 
One has to pay attention that for reason of consideration of the susceptibility 

tensor the transformation (A.18) is given in direction ′→   and the trans-
formation (A.19) in inverse direction ′ →   and that the transformation op-
erators are almost but not fully equal where both are represented using ′k  and 
ω′  in system ′ . These formulae describe the relativistic Doppler effect. The 
inverse formulae to (A.18), (A.19) and (A.15) and of transformation formulae in 
further text are obtained by substituting → −V V  and by interchanging all 
quantities with and without primes. In contrast to (A.19) and (A.18) the 
well-known transformation formulae of Minkowski (e.g., [7], § 76 or, e.g., [5] 
[18]) are mixed transformations between electric and magnetic field which, fur-
thermore, neglect the dispersion and are not made for the Fourier transforms of 
the fields. 
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Appendix B 

Special Lorentz transformation of the energy-momentum tensor 
In the transition from inertial system   to inertial system ′  moving with 

velocity V  in   the energy-momentum tensor transforms written in tensori-
al and in matrix form and as similarity transformation (upper index T  means 
transposed) 

T 1 , 1,T T T Tκλ κµ λν µν κµ µν νλ κµ µν νλ
−′ = Λ Λ = Λ Λ = Λ Λ Λ =         (B.1) 

that for the special Lorentz transformation (A.3) in space-time separation ac-
cording to (8.1) is 

( ) ( )

( )

( )

( ) ( )

2 2

2 2

2 2 2 2

2

1 1

1 ,

1 ,

1

k m l n
kl km ln mn l m

k l n
ln n l

k m n k n
k km mn m n

l n
l ln m mn n

V V V V
T T V g

V V V
S V w

c

V V V V V
g T g S w

c c c

V V
S V T S

δ γ δ γ γ

γ δ γ γ

γ δ γ γ

γ δ γ γ

    ′ = + − + − −    
    

  − + − −  
  

     ′ = − + − − + −     
     

 ′ = − + − − + 
 

V V

V

V

V
( )

( ) ( )2
2

,

.

l m m

n
m mn n m m

V V g w

V
w V T S V g w

c
γ

 
− 

 
 ′ = − − − 
 

   (B.2) 

From this follows 

( ) ( ) ( )

( )

2 2

2 2

2 2 2 2

1 1

1 1 ,

1 1 ,

k m l n
kl lk km ln mn nm

k l l l k k

m k m
k k mk km km m m

V V V V
T T T T

V g S V g S
c c

V V V
g S T T g S

c c c

δ γ δ γ

γ

γ δ

  ′ ′− = + − + − −  
  

    + − − −    
    

   ′ ′− = − + − −      

V V

V

    (B.3) 

showing that symmetric and anti-symmetric parts of the energy-momentum 
tensor transforms independently on each other. 

If we denote the energy-momentum tensor by a four-dimensional matrix T 
and the Lorentz transformation by a matrix Λ  then the transformation (B.1) 
with T 1−Λ = Λ  (Minkowski metrics gµν µνδ= ) can be written as a similarity 
transformation as follows 

1.T T −′ = Λ Λ                         (B.4) 

This shows that the real-valued independent invariants of the energy-momentum 
tensor with respect to Lorentz transformations are the invariants of the similari-
ty transformations (B.4) which can be chosen as the coefficients in the four- 
dimensional Hamilton-Cayley identity for T 

[ ]4 3 2 0,T T T T T T T T I− + − + =               (B.5) 

where the first three invariants with respect to similarity transformations 
[ ], ,T T T  are formally given by the same formulae as for three-dimensional 
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operators but, e.g., with T  the four-dimensional trace of T and, in addition, 
we have to consider the four-dimensional determinant T  that means 

[ ] ( ) ( )
( )

2 32 2 3

24 2 2 2 3 4

1 1, , 3 2
2 6

1 6 3 8 6 .
24

T T T T T T T T T T

T T T T T T T T

µ
µ≡ = − = − +

= − + + −
 (B.6) 

We now use an index-less representation of the energy-momentum tensor T 
of the form17 

T i
,i

c
T

w
c

 
 ≡  − 
 

g

S
                      (B.7) 

with T  the stress tensor T  (or its matrix) as a three-dimensional operator and 
find for the four-dimensional invariants of T expressed by the three-dimensional 
invariants formed from the three-dimensional operator T , from the vectors g  
and S  and from the scalar w in (B.7) 

[ ] [ ]
[ ]

[ ] 2

T ,

T T ,

T T T T ,

T T T T T ,

T w

T w

T w

T w

= −

= − +

= − + −

= − + − +

Sg

Sg S g

Sg S g S g

             (B.8) 

where A  denotes the trace of an arbitrary three-dimensional operator A , 
[ ]A  its second invariant and A  its determinant according to  

[ ] ( )
( )

2 2

3 2 3

1 1 1A , A A A ,
2 2 2

1 1A A 3 A A 2 A ,
6 6

ijk ljk il kk ijk lmk il jm

ijk lmn il jm kn

A A A A

A A A

ε ε ε ε

ε ε

≡ = ≡ = −

≡ = − +
   (B.9) 

and where n nx y≡xy  is the scalar product of three-dimensional vectors x  
with y  and A m mn nx A y≡x y  a three-dimensional bilinear form. The first in-
variant T  is the already mentioned trace of T and the invariant T  the de-
terminant of the 4-dimensional energy-momentum tensor. All are also relativis-
tic invariants due to (B.4). Among the invariants (B.8) one has only one inva-
riant which is linear in the components of the energy-momentum tensor T, 
namely, the trace TT w= − . 

According to (9.9) the trace T  does not vanish in general but it vanishes in 
case of neglected dispersion. The second invariant [ ]T  and the higher invariants 
vanish for energy-momentum tensors which factorize in the form of dyadic 
products of two vectors. This means that one has only one non-vanishing eigen-
value of this tensor also if one takes into account the dispersion as it is shown for 
the second invariant in (12.15). One has to expect that the second and the higher 
invariants of the energy-momentum tensor do not vanish in higher approximations 
of the slowly varying amplitudes as it is suggested by considerations in Section 9. 

 

 

17We remind that the spatial part T  and T  itself are not uniquely defined in literature with re-
spect to sign and also to their notation. 
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