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Abstract 
We consider a Hamiltonian of a system of two fermions on a three-dimensional 

lattice 3  with special potential v̂ . The corresponding Shrödinger operator 

( )H k  of the system has an invariant subspace ( )3
123L−  , where we study 

the eigenvalues and eigenfunctions of its restriction ( )123H − k . Moreover, 

there are shown that ( )123 1 2, ,H k k π−  has also infinitely many invariant sub-

spaces ( )123 ,n n− ∈R , where the eigenvalues and eigenfunctions of eigenva-

lue problem 

( ) ( )1 2 123, , ,H k k f zf f nπ −= ∈R  

are explicitly found. 
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1. Introduction 

The nature of bound states of two-particle cluster operators for small parameter 
values was first studied in detail by Minlos and Mamatov [1] and then in a more 
general setting by Minlos and Mogilner [2]. In [3], Howland showed that the 
Rellich theorem on perturbations of eigenvalues does not extend to the reson-
ance theory. Studying bound states of a two-particle system Hamiltonian H on 
the d-dimensional lattice d  reduces to studying [2] [4] [5] [6] [7] the eigen-
values of a family of Shrödinger operators ( ) , dH ∈k k , where k  is the total 
quasi-momentum of a system. Moreover, eigenfunctions of ( )H k  are inter-
preted as bound states of the Hamiltonian H, and eigenvalues, as the bound state 
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energies. The bound states of H of a system of two fermions on a one-dimensional 
lattice were studied in [4], a system of two bosons on a two-dimensional lattice 
was studied in [6], and perturbations of the eigenvalues of a two-particle 
Shrödinger operator on a one-dimensional lattice were studied in [8]. The fi-
niteness of the number of eigenvalues of Shrödinger operator on a lattice was 
studied in the works [7] [9]. 

The discrete spectrum of the two-particle continuous Shrödinger operator 

h Vλ λ= −∆ +  
was studied by many authors, with the conditions for the potential V formulated 
in its coordinate representation. The condition for the finiteness of the set of 
negative elements of the spectrum and the absence of positive eigenvalues of hλ  
can be found in [10]. If 0V ≤ , then the number of negative eigenvalues ( )N λ  
is a nondecreasing function of ( )0,λ ∈ ∞ , and each eigenvalue ( )nz λ  de-
creases on the half-axis ( )0,∞ . It is known that when the coupling constant λ  
decreases, the bound state energies of hλ  tend to the boundary of the conti-
nuous spectrum (see [10]) and for some finite λ  are on the boundary. Two 
questions then arise: Does a bound or virtual state correspond to such a thre-
shold state (i.e., is the corresponding wave function square-integrable)? And 
where do the bound states “disappear to” as λ  decreases further? The study of 
the first question was the subject in [11] [12]. Regarding the second question, it 
turns out that the bound state disappears by being absorbed into the continuous 
spectrum and becomes a resonance [5]. 

Here, we consider bound states of the Hamiltonian Ĥ  (see (1)) of a system 
of two fermions on the three-dimensional lattice 3  with the special potential 
v̂  (see (5)). In other words, we study the discrete spectrum of a family of the 
Shrödinger operators ( )H k , ( ) 3

1 2 3, ,k k k= ∈k , (see (3)) corresponding to 
Ĥ  in the invariant subspace ( )3

123L−  . 
Restriction of the operator ( )H k  in the invariant subspace ( )3

123L−   is 
denoted by ( )123H − k . 

In the case ( ): , ,π π π π= =
k , the operator ( )H π  has an infinite number of 

eigenvalues of the form ( ) 3ˆ6 ,v− ∈n n  and the essential spectrum consists of 
the single point 6. Here, the potential v̂  is defined by (5) and :v →   is a 
decreasing function on   and ( )2v ∈   . These eigenvalues  

( ) ( )6 ,nz v n nπ = − ∈
   are arranged in ascending order,  

( ) ( )1 nz zπ π< < <
 

  , and the smallest eigenvalue ( ) ( )1 6 1z vπ = −
  is three-

fold, ( ) ( )2 6 2z vπ = −
  is sevenfold, and the other eigenvalues  

( ) ( )6 , 3nz v n nπ = − ≥
  are ninefold. All ninefold eigenvalues  

( ) ( )6 , 3nz v n nπ = − ≥
  of the operator ( )H π  are simple eigenvalues for the 

operator ( )123H π−  . 
Further, we investigate eigenvalues and eigenfunctions of the restriction oper-

ator ( )123H − k . 
In the case ( )1 2, ,k k π=k  the corresponding operator ( )123 1 2, ,H k k π−  has 

infinitely many invariant subspaces ( ) ( ) ( ) ( )123 2 2: ,n L L L n n− − − −= ⊗ ⊗ ∈  R . It 
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is proved that the restriction ( )123 1 2, ,nH k k π−  of the operator ( )123 1 2, ,H k k π−  in 
the invariant subspace ( )123 n−R  has no more than one eigenvalue. If exists, it 
can be calculated explicitly. For every ( ) ( )2

1 2, ,k k π π∈ −  the operator  
( )123 1 2, ,H k k π−  has only a finite number of eigenvalues. 

For any perturbation 0β > , the essential spectrum { }6  of ( )H π  becomes 
the essential spectrum ( )( ) [ ]2 , , 6 2sin ,6 2siness Hσ π β π π β β− = − + . If the 
potential v̂  is of the form (5), the Shrödinger equation  

( ) ( )123 1232 , , ,H f zf f nπ β π π− −− = ∈R  can be exactly solved (see Theorem 1). 
The Shrödinger equations ( )2 , ,H f zfπ β π π− =  and  
( ) ( )1232 , 2 , ,H f zf f nπ β π β π −− − = ∈R  with small β  are solved by using me- 

thods invariant subspaces and operator theory. 

2. Description of the Hamiltonian and Expansion  
in a Direct Integral 

The free Hamiltonian 0Ĥ  of a system of two fermions on a three-dimensional 
lattice 3  usually corresponds to a bounded self-adjoint operator acting in the 
Hilbert space ( ) ( ) ( ) ( ){ }3 3 3 3

2 2: : , ,as f f f× = ∈ × = −  x y y x     by the for- 
mula 

0 1 2
1 1ˆ .

2 2
H

m m
= − ∆ − ∆

 

Here, m is the fermion mass, which we assume to be equal to unity in what 
follows, 1 I∆ = ∆⊗  and 2 I∆ = ⊗∆ , where I is the identity operator, and the 
lattice Laplacian ∆  is a difference operator that describes a translation of a 
particle from a side to a neighboring side, 

( )( ) ( ) ( ) ( ) ( )
3

3 3
2

1

ˆ ˆ ˆ ˆ ˆ2 , , ,j j
j

ψ ψ ψ ψ ψ
=

 ∆ = + + − − ∈ ∈ ∑  x x e x e x x
 

where ( ) ( ) ( )1 2 31,0,0 , 0,1,0 , 0,0,1= = =e e e  are unit vectors in 3 . The total 
Hamiltonian Ĥ  acts in the Hilbert space ( )3 3

2
as ×    and is the difference of 

the free Hamiltonian 0Ĥ  and the interaction potential 2̂V  of the two fermions 
(see [8] [13]): 

0 2
ˆ ˆ ˆ ,H H V= −                          (1) 

where 

( )( ) ( ) ( ) ( )( ) ( )23 3 3
2 2 2
ˆ ˆ ˆ ˆˆ , , : .as asV vψ ψ ψ= − ∈ = ×   x,y x y x y

 

Hereafter, we assume that 

( ) ( ) ( )3 3
2ˆ ˆ ˆand 0 for all .v v v∈ = − ≥ ∈ x x x            (2) 

Under this condition, the Hamiltonian Ĥ  is a bounded self-adjoint operator 
in ( )( )23

2
as
  . 

We pass to momentum representation using the Fourier transform [2] [4] [7] 

( ) ( )3 3 3 3
2 2: .as asF L× → ×    
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The Hamiltonian 1
0

ˆH H V FHF −= − =  in the momentum representation co- 
mmutes with the unitary operators 3,U ∈s s  , given by 

( )( ) ( )( ) ( ) ( )3 3
1 2 1 2 1 2 2, exp , , , .asU f i f f L= − + ∈ × s k k s k k k k

 
It follows that there exist decompositions of ( )3 3

2
asL ×   and the operators 

Us  and H into direct integrals (see [7] [9] and [10]) 

( ) ( ) ( ) ( )3 3 3
3 3

2 2 d , d , d .as asL L F U U H H× = ⊕ = ⊕ = ⊕∫ ∫ ∫ 

  
  k s sk k k k k

 
Here, 

( ){ }3 3 3
1 2 1 2, : , ,F = ∈ × + = ∈  k k k k k k k

 
and ( )Us k  is an operator of multiplication by the function ( )( )exp ,i− s k  in 

( )2
asL Fk . The fiber operator ( )H k  of H also acts in ( )2

asL Fk  and is unitarly 
equivalent to ( ) ( )0:H H V= −k k , which is called the Shrödinger operator. This 
operator acts in the Hilbert space ( ) ( ) ( ) ( ){ }3 3

2 2: :oL f L f f= ∈ − = −q q   by 
the formula 

( )( )( ) ( ) ( ) ( ) ( ) ( )3

3
22 d .H f f v fε π −= − −∫kk q q q q s s s


        (3) 

The unperturbed operator ( )0H k  is an operator of multiplication by the 
function 

( )

31 2
1 2 3

2 2

6 2cos cos 2cos cos 2cos cos .
2 2 2

kk kq q q

ε ε ε   = + + −   
   

= − − −

k
k kq q q

       (4) 

From (3) and (4), it follows that 

( ) ( ) ( ) ( )1 2 3 1 2 3 1 2 3 1 2 3, , , , , , , , ,H k k k H k k k H k k k H k k k= − = − = −  
so we can assume [ ]1 2 3, , 0,k k k π∈ . 

The perturbation operator V is an integral operator in ( )3
2
oL   with the ker-

nel 

( ) ( ) ( ) ( )( )
3 3
2 2 ˆ2 2 ,v Fvπ π− −− = −q s q s  

and belongs to the class of Hilbert-Schmidt operators 2Σ . 
In this work, we consider the operator ( )H k  with the potential v̂  of the 

form 

( ) ( ) ( ) 1 2
1 2 3

1 2

, 1
ˆ ˆ , ,

0, 2

v n n
v v n n n

n n

 + ≤= = 
+ ≥

n
n              (5) 

where 1 2 3n n n= + +n . Supporter is in the cylinder: 

( ){ }3
1 2 3 3 1 2, , : , 1 .D n n n n n n= = ∈ ∈ + ≤ n

 
Since for every function ( )( )23

2ˆ asψ ∈    the equality ( ) 3ˆ , 0,ψ = ∈x x x   
holds, then the value of the potential v̂  at the origin can be set arbitrary, since 
it does not affect the result, for simplicity, we assume that ( )ˆ 0 0v = . 
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The function :v →   in (5) is decreasing in   i.e., 

( ) ( )1 2v v> >                         (6) 

and belongs to ( )2  . The kernel v , of the integral operator V, i.e., the Fouri-
er transform ( ) ( )( )ˆv Fv=p p , of the potential v̂ , has the form 

( ) ( )( )
( )

( ) ( )

( )
( )( )

( )( )

( ) ( ) ( ) ( )(

)

3
3 2

1 2 33 2

3 1 2 1 3 2 3

3 3 1 2
1

1 2 3

1ˆ ˆ: e
2

1 2 1 cos cos cos
2

2 2 cos 2 2cos cos 2cos cos 2cos cos

2 2 cos 2 2cos 1 cos cos

4cos cos cos .

i

n

v Fv v

v p p p

v p p p p p p p

v n n p n p p p

p p np

π

π

∈

∞

=

= =

= + +

+ + + +

+ + + + + +

+ 

∑

∑

n,p

n

p p n


   (7) 

Eigenvalues of the operator ( )H k . We note that the spectra of the opera-
tors ( )0H k  and V are known. The operator ( )0H k  does not have eigenva-
lues, its spectrum is continuous and coincides with the range of the function εk : 

( )( ) ( ) ( ) ( ) ( ) ( ) ( )
3 30 , , where min , max .H m M m Mσ ε ε

∈ ∈
= = =    

k k
q q

k k k k q k q
 

The spectrum of V consists of the set ( ){ }0, ,v n n∈ . Under condition (2), 
the operator V is a Hilbert-Schmidt operator and is hence compact. By the Weyl 
theorem [10], the essential spectrum of ( )H k  coincides with the spectrum of 

( )0H k : 

( )( ) ( ) ( ), .ess H m Mσ =   k k k
 

If π= k , then the spectrum of ( ) 6H I Vπ = −
  consists of eigenvalues of the 

form ( )6 ,v n n− ∈  and the essential spectrum is { }6 . If jk π=  (for some 
{ }1,2,3j∈ ), then there exists a potential v̂  such that ( )H k  has an infinite 

number of eigenvalues outside the continuous spectrum (see [4] [14]). 
We recall some notations and known facts. For any self-adjoint operator B 

acting in a Hilbert space H  without an essential spectrum to the right of µ ∈ , 
we let ( ),n Bµ  denote the number of its eigenvalues to the right of µ . We let 

( ),N zk  denote the number of eigenvalues of ( )H k  to the left of ( )z m≤ k , i.e., 
( ) ( )( ), ,N z n z H= − −k k . The number ( )( ),N mk k  in fact coincides with the 

number of eigenvalues outside the continuous spectrum of ( )H k . It follows from 
the self-adjointness of ( ) ( )0H H V= −k k  and positivity of V that 

( )( ) ( )( ), ,H Mσ ∞ = ∅k k
 

and hence ( )( ) ( )( ),disc H mσ ⊂ −∞k k . Therefore we seek only eigenvalues z 
less than ( )m k . 

For any 3∈k   and ( )z m< k , we define the integral operator 

( ) ( )
1 1
2 2

0, , ,G z V r z V=k k  
where ( )0 ,r zk  is the resolvent of the unperturbed operator ( )0H k . Under 
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condition (2), the operator V is positive, and we let 
1
2V  denote the positive 

square root of the positive operator V. A solution f  of the Schrödinger equation 

( )H f zf=k  
and the fixed points ϕ  of ( ),G zk  are connected by the relations 

( )
1 1
2 2

0 , and .f r z V V fϕ ϕ= =k  
The following proposition (the Birman-Schwinger principle) holds [9]. 
Lemma 1. The number of eigenvalues of ( )H k  to the left of ( )z m< k  

coincides with the number of eigenvalues of ( ),G zk  greater than unity, i.e., 
the equality 

( ) ( )( ), 1, ,N z n G z=k k  

holds. 
Lemma 2. If for some 3∈k   the limit operator  

( )
( ) ( )( )lim , ,

z m
G z G m

→ −
=

k
k k k  exists and is compact, then the equality 

( )( ) ( )( )( ), 1, ,N m n G m=k k k k                  (8) 

holds. 
Equality (8) states that the number of eigenvalues of ( )H k , to the left of 
( )m k  is equal to the number of eigenvalues of ( )( ),G mk k  greater than unity. 

3. Invariant Subspaces of ( )H k  

In this section, we study the invariant subspaces with respect to the operator 
( )H k . 
Let ( ) ( ) ( ) ( ){ }2 2 :L f L f p f p− = ∈ − = −   be a subspace of the space  
( )2L  , consisting of odd functions on [ ],π π= − , and  
( ) ( ) ( ) ( ){ }2 2 :L f L f p f p+ = ∈ − =   be a subspace of ( )2L  , consisting of 

even functions on  . In addition, we use the notation 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )3 3
123 2 2 2 123 2 2 2: , : .L L L L L L L L− − − − + + + += ⊗ ⊗ = ⊗ ⊗         

Note that ( )3
123L−   is a subspace of the space ( )3

2
oL  . It is natural to expect 

the invariance of the subspace ( )3
123L−   with respect to the operator ( )H k . It 

turns out that this subspace is invariant under the operator ( )H k , i.e. the fol-
lowing statement holds. 

Lemma 3. Let the potential v̂  have the form (5). Then the subspace ( )3
123L−   

is invariant under the action of ( )H k .  
Proof. We prove that this subspace is invariant first with respect to ( )0H k , 

and then with respect to V. It follows from representation (4) that the function 
εk  belongs to the subspace ( )3

123L+  , and it follows from the inclusion  

( )3
123f L−∈   that ( )3

123f Lε −∈k  . This proves that ( )3
123L−   is invariant with 

respect to ( )0H k . 
Simple calculations show that the function (see (7)) 
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( )( )
( )

( ) ( )
3

1 2 3 1 1 2 2 3 3 1 2 3 1 2 33
2

1, , , , , , d d d
2

Vf p p p v p s p s p s f s s s s s s
π

= − − −∫


 
belongs to the subspace ( )3

123L−   for ( )3
123f L−∈  . Hence, we prove the inva-

riance of ( )3
123L−   with respect to V, and it follows that ( )3

123L−   is invariant 
with respect to ( ) ( )0H H V= −k k . 

( )123H − k  denotes the restriction of ( )H k  to the respective subspace  

( )3
123L−  . The action of ( ) ( ) ( )00 123 :H H− =k k  is unchanged, the unperturbed 

operator ( )0H k  is an operator of multiplication by the function εk . We present 
the formula for ( )3

123123 LV V −
− =   operator V acts on the element ( )3

123f L−∈   ac-
cording to the formula 

( )( ) ( ) ( )3123 1 2 3 1 2 33
1

1 2 sin sin sin sin sin sin d .
n

V f v n p p np q q nq f
π

∞
−

=

= +∑ ∫p q q
 

Note that for π= k , the spectrum of ( ) 6H I Vπ = −
  consists only of the 

eigenvalues ( )6,6 ,v n n− ∈  and the essential spectrum { }6 . Under condi-
tion (6) the number ( ) ( )1 6 1z vπ = −

  is a threefold eigenvalue of ( )H π , with 
the corresponding eigenfunctions 

1 2 3sin ,sin ,sin ,p p p  
the number ( ) ( )2 6 2z vπ = −

  is a sevenfold eigenvalue with the corresponding 
eigenfunctions 

3 1 2 1 2 1 3

1 3 2 3 2 3

sin 2 ,cos sin ,sin cos ,cos sin ,
sin cos ,cos sin ,sin cos ,

p p p p p p p
p p p p p p

 

for each 3n ≥ , the number ( ) ( )6nz v nπ = −
  is a ninefold eigenvalue, and the 

corresponding eigenfunctions are 

( ) ( ) ( )
( ) ( )

3 1 3 2 3

3 1 3 2 3 1 2

2 1 3 1 2 3 1 2 3

sin 2 ,sin cos 1 ,sin cos 1 ,

sin 1 cos ,sin 1 cos ,sin cos cos ,
sin cos cos ,sin cos cos ,sin sin sin .

n p p n p p n p

n p p n p p np p p
p p np p p np p p np

+ + +

+ +

 

The number ( ) 6z π∞ =
  is an eigenvalue of an infinite multiplicity, and the 

corresponding eigenfunctions are 

( ) ( )
1 2 3 1 1 2 2 3 3 3 1 2, , sin sin sin , , 3.n n n n p n p n p n n nψ −−− = ∈ + ≥p

 
All ninefold eigenvalues ( ) ( )6 , 3nz v n nπ = − ≥

  of the operator ( )H π  are 
simple eigenvalues for the operator ( )123H π−  , and the number ( ) 6z π∞ =

  is an 
eigenvalue of an infinite multiplicity. 

If the third coordinate 3k  of the total quasimomentum k  is equal to π , 
then the operator ( )1 2, ,H k k π  has infinitely many invariant subspaces  

( )123 ,n n− ∈R . 
Next, we give a description of the invariant subspace ( )123 ,n n− ∈R . 
The system of functions 

( ) 1 sinn
n

q nqψ −

∈

 
= 

 π   
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is an orthonormal basis in the space ( )2L−  . Let us denote by ( ) ,L n n− ∈  the 
one-dimensional subspace spanned by the vector nψ − . The space ( )2L−   can be 
decomposed into the direct sum 

( ) ( )2
1

.
n

L L n
∞

− −

=

= ⊕∑
 

This decomposition produces another decomposition 

( ) ( ) ( ) ( ){ }

( ) ( ){ } ( )

3
123 2 2

1

2
12 123

1 1
,

n

n n

L L L L n

L L n n

∞
− − − −

=

∞ ∞
− − −

= =

= ⊕ ⊗ ⊗

= ⊕ ⊗ = ⊕

∑

∑ ∑

  

 R
 

where 

( ) ( ) ( ) ( ) ( ) ( )2 2
123 12 12 2 2: , .n L L n L L L− − − − − −= ⊗ = ⊗   R

 
Lemma 4. Let the potential v̂  have the form (5). Then the subspace  

( )123 n−R  is invariant under ( )123 1 2, ,H k k π−  for any n∈ . 
Proof. Let ( )( ) ( ) ( )1 2 3 1 2 3, , : ,n nf p p p f p p pψ ψ− −= , where ( )2

12f L−∈  ,  
( )n L nψ − −∈  is an arbitrary element of ( )123 n−R . We consider the action of  

( ) ( )123 1 2 0 1 2 123, , , ,H k k H k k Vπ π− −= −  on nfψ − : 

( )( )

( ) ( )

0 1 2

1 2
1 2 1 2 3

( , , )

6 2cos cos 2cos cos , ,
2 2

n

n

H k k f

k kp p f p p p

π ψ

ψ

−

−  = − −  
  

p
       (9) 

( )( )
( ) ( ) ( )2

123

1 1 2 2 1 2 1 2 32

2
sin sin sin sin , d d .

n

n

V f

v n
p q p q f q q q q p

ψ

ψ
π

− −

−+ 
=  
 

∫

p



    (10) 

To obtain the last formula (10), we use the orthogonality of the system of 
functions { }n n

ψ −

∈
 in ( )2L−  . Relations (9) and (10) imply the equality 

( )( )( )
( )( )( ) ( )( )

( ) ( )

( ) ( ) ( )
2

123 1 2 1 2 3

0 1 2 1 2 3 123 1 2 3

1 2
1 2 1 2 3

1 1 2 2 1 2 1 2 32

, , , ,

, , , , , ,

6 2cos cos 2cos cos ,
2 2

2
sin sin sin sin , d d

n

n n

n

n

H k k f p p p

H k k f p p p V f p p p

k kp p f p p p

v n
p q p q f q q q q p

π ψ

π ψ ψ

ψ

ψ
π

− −

− − −

−

−

= −

  = − −  
  
 +

−  
  

∫


    (11) 

which completes the proof of the lemma. 
We denote by ( )123 1 2, ,nH k k π−  restriction of the operator ( )123 1 2, ,H k k π−  in 

the invariant subspace ( )123 n−R . Formula (11) shows that the restriction  
( )123 1 2, ,nH k k π−  to the subspace ( ) ( ) ( )2

123 12n L L n− − −= ⊗R  has the form 

( ) ( ) ( )123 1 2 0 1 2 11, , 2 , 2 ,nH k k I H k k v n V Iπ− = + − + ⊗           (12) 

where I is the identity operator and ( ) ( ) ( ) ( )123 0 11: 2 2nH I H v n V= + − +k k ,  
( )1 2,k k=k , is a two-dimensional two-particle operator acting in ( )2

12L−   by 
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the formula 
( ) ( )( )( )

( )( ) ( ) ( ) ( )
2

123

1 2 1 22

2
2 sin sin sin sin d ,

nH f

v n
f p p q q fε

π
+

= + − ∫


k

k p

p p q q
 

where ( ) 1 2
1 24 2cos cos 2cos cos

2 2
k kp pε = − −k p , and 11V  is a one-dimensional 

integral operator in ( )2
12L−   with the kernel 

( ) 1 2 1 22

1, sin sin sin sin .v p p q q
π

=p q
 

Studying the eigenvalues of ( )123 1 2, ,nH k k π−  by representations (12) reduces 
to studying the eigenvalues of 

( ) ( ) ( ) ( ) ( )123 0 11 1 22 2 , ,nH I H v n V k k= + − + =k k k  
i.e. the three-dimensional problem reduces to the two-dimensional problem. 

4. Eigenvalues of the Operator ( )H123 k−  

Our main goal in this section is to study the behavior of the nondegenerate ei-
genvalue ( ) ( )2 6 2 ,nz v n nπ+ = − + ∈

   of ( )123H π−   at small perturbations β  
( 1 2k π β= −  or 2 2k π β= − ), i.e. the eigenvalues of ( )123 2 , ,H π β π π− −  (or 

( )123 , 2 ,H π π β π− − ) at small perturbations β . The studying of the eigenvalues 
of ( )123 2 , ,H π β π π− −  is reduced to study the eigenvalues of the operator 

( )123 2 , ,nH π β π π− −  for each fixed n∈ . In turn, the problem of studying the 
eigenvalues of the operator ( )123 2 , ,nH π β π π− −  by virtue of (12) is reduced to 
study of the discrete spectrum of the operator 

( ) ( ) ( ) ( )123 0 112 , 2 2 , 2 .nH I H v n Vπ β π π β π− = + − − +  
Studying the eigenvalues of ( ) ( )123 2 ,nH π β π−  and ( ) ( )123 , 2nH π π β−  reduces 

to studying the eigenvalues of ( )H kλ  acting in ( )2L−   by the formula 

( )( )( ) ( ) ( ) ( )

( )

sin sin d ,

2 2cos cos .
2

k

k

H k f p p f p p q f q q

kp p

λ
λε
π

ε

= −

= −

∫
         (13) 

It is known that the essential spectrum of  

( ) ( )0 12 2 , 0,
2

H H Vλ
ππ β π β λ β  − = − − ∈  

 consists of a segment  

( ) ( ),m Mβ β   , where ( ) 2 2sinm β β= − , ( ) 2 2sinM β β= + . 

Further we give some information about the eigenvalues and eigenfunctions 
of the operator ( )H kλ . Combining Theorem 6.3 in [6], Theorem 5.10 in [15] 
and Lemmas 1 and 2 we obtain the following statement about eigenvalues of the 
operator ( )H kλ . 

Lemma 5. Let 0,
2
πβ  ∈  

. 
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a) If sinλ β< , then the operator ( )2Hλ π β−  has no eigenvalues lying 
outside of the essential spectrum. 

b) If sinλ β= , then the left edge ( )m β  of essential spectrum of the opera-
tor ( )2Hλ π β−  is a resonance. 

c) If sinλ β> , then the operator ( )2Hλ π β−  has a unique nondegenerate 
eigenvalue 

( ) 212 sinzλ β λ β
λ

= − −
 

which lying in the left of the essential spectrum with corresponding normalized 
eigenfunction 

( ) ( ) ( )2
sin

.
2 2sin cos

C p
f p L

p z
λ

λ
λβ β

− −= ∈
− −

             (14) 

Here Cλ  is the normalizing multiplicity. 
d) The operator ( )2Hλ π β−  has no embedded eigenvalues in the interval 
( ) ( )( ),m Mβ β . 

Hilbert space ( ) ( ) ( )2
12 2 2L L L− − −= ⊗    can be written as a direct sum: 

( ) ( ) ( ) ( ) ( ) ( )( )2 2 2 21 1 .L L L L L L
⊥− − − − − −⊗ = ⊗ ⊕ ⊗   

 
The following lemma establishes a connection between the operators  
( ) ( )123 2 ,nH π β π−  and ( )H kλ . 
Lemma 6. Let the potential v̂  have the form (5). Then: 
a) the subspace ( ) ( )2 1L L− −⊗  and its orthogonal complement  
( ) ( )( )2 1L L

⊥− −⊗  are invariant under ( ) ( )123 2 ,nH π β π− . 
b) restriction of the operator ( ) ( )123 2 ,nH π β π−  to the invariant subspace  
( ) ( )( )2 1L L

⊥− −⊗  coinsides with the unperturbed operator ( )0 2 ,H π β π− . 
c) restriction of the operator ( ) ( )123 2 ,nH π β π−  to the invariant subspace  
( ) ( )2 1L L− −⊗  can be represented as a tensor product: 

( ) ( ) ( ) ( )123 0 12 , 4 2 2 .nH I H v n V Iπ β π π β− = + − − + ⊗          (15) 

Here, I is the identity operator, and ( ) ( ) ( ) ( )0 12 : 2nH H n Vλ π β π β λ− = − − , 
( ) ( )2n v nλ = +  is a one-dimensional two-particle operator acting in ( )2L−   

by the formula (13). 
This lemma is proved in the same way as the Lemma 4. In particular, part b) 

of the lemma implies that the operator ( ) ( )123 2 ,nH π β π−  has no eigenfunctions  
in ( ) ( )( )2 1L L

⊥− −⊗ . Thus, studying the eigenvalues of the operator  
( ) ( )123 2 ,nH π β π−  is reduced to studying eigenvalues of the operator  

( ) ( ) ( ) ( )0 12 2nH H n Vλ π β π β λ− = − − . 
From Lemmas 5 - 6 and tensor product (15) implies the following statement 

regarding operator ( ) ( )123 2 ,nH π β π− . 

Theorem 1. Let 0,
2
πβ  ∈  

 and n∈ . 

a) If ( )2 sinv n β+ < , then the operator ( ) ( )123 2 ,nH π β π−  has no eigenvalues 
lying outside of the essential spectrum. 
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b) If ( )2 sinv n β+ = , then the left edge ( )m β  of essential spectrum of the 
operator ( ) ( )123 2 ,nH π β π−  is a resonance. 

c) If ( )2 sinv n β+ > , then the operator ( ) ( )123 2 ,nH π β π−  has a unique non-
degenerate eigenvalue 

( ) ( ) ( ) ( ) ( ) ( )
2

123
12 , 4 6 2 sin ,

2
n

nz z v n
v nλπ β π β β− = + = − + −

+
    (16) 

which lies in the left of the essential spectrum and with the corresponding nor-
malized eigenfunction 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )2
1 2 1 1 1 2 2

sin
, 1 ,n n n

pf p p f p f p p L Lλ λ λ ψ
π

−− − − − − −= = ∈ ⊗
 

where ( )nfλ
−  is the normalized eigenfunction of the operator ( ) ( )2nHλ π β−  

corresponding to the eigenvalue ( ) ( )nzλ β , the operator ( ) ( )nH kλ  is defined by 
the formula (13). 

d) The operator ( ) ( )123 2 ,nH π β π−  has no embedded eigenvalues in the inter-
val ( ) ( )( ),m Mβ β . 

Similar statement is true for the operator ( ) ( )123 , 2nH π π β− . The eigenvalues of 
the operators ( ) ( )123 , 2nH π π β−  and ( ) ( )123 2 ,nH π β π−  are same, but eigenfunc-
tions differ with variable replacement 1p  and 2p . In other words, the opera-
tors ( ) ( )123 1 2,nH k k  and ( ) ( )123 2 1,nH k k  are unitary equivalent. Therefore, the op-
erators ( )123 1 2, ,nH k k π−  and ( )123 2 1, ,nH k k π−  are unitary equivalent too. 

Similar statement can relatively be formulated for the operator  
( ) ( )123 2 , 2nH π β π β− − . For this purpose, we introduce the following notation. 

Through 

( ) ( )
( )2

2 2
1 2 1 2

2
1 2

2 sin sin d d
, 1

2 2 2 sin cos sin cosn

v n p p p pz
p p z

β
β βπ

+
∆ = −

+ − − −∫
 

we denote the Fredholm determinant of the operator ( ) ( )11 02 ,I v n V r zβ− + , 
where ( )0 ,r zβ  is the resolvent of the operator ( )02 2 , 2I H π β π β+ − − , and 

11V  is an integral operator with the kernel 

( ) 1 2 1 22

1, sin sin sin sin .v p p q q
π

=p q
 

Through 11C−−  denote the value of the following integral: 

( )
( ) ( )

( )2 2

2 2
2 2

1 1 1 2 1 21 2 1 2
11 2

1 2

d dsin sin d d1 .
2 2 cos cos 2

p p p pp p p pC
p p

ψ ψ

επ

− −
−− = =

− −∫ ∫  p  
Simple calculations reveal the following approximate value 11 0.302347C−− ≈ . 

Theorem 2. Let 0,
2
πβ  ∈  

, n∈ . 

a) If ( )
11

sin2v n
C

β
−−+ < , then the operator ( ) ( )123 2 , 2nH π β π β− −  has no ei-

genvalues lying outside of the essential spectrum. 

b) If ( )
11

sin2v n
C

β
−−+ = , then the left edge ( ) 6 4sinm β β= −  of the spectrum 
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of the operator ( ) ( )123 2 , 2nH π β π β− −  is an eigenvalue. 

c) If ( )
11

sin2v n
C

β
−−+ > , then the operator ( ) ( )123 2 , 2nH π β π β− −  has a unique 

nondegenerate eigenvalue ( ) ( )123 2 , 2nz π β π β− −  below the essential spectrum. 

d) The operator ( ) ( )123 2 , 2nH π β π β− −  has no embedded eigenvalues in the 
interval ( ) ( )( ),m Mβ β . 

This theorem is proved in similar way as Lemma 5. There are some differenc-
es: 

1) In the Theorem 2, the eigenvalue ( ) ( )123 2 , 2nz π β π β− −  was calculated with 
the accuracy of 2β : 

( ) ( ) ( ) ( ) ( )2 4
123

22 , 2 6 2 sin
2

nz v n O
v n

π β π β β β− − = − + − +
+  

and corresponding normalized eigenfunction has the form 
( ) ( )

( )
( ) ( )

( )
123 1 2

1 2 2
12

1 2 123

,

sin sin
,

6 2sin cos 2sin cos 2 , 2

n

n
n

f p p

C p p
L

p p z
β

β β π β π β
−= ∈

− − − − −


  (17) 

where ( )nC β  is the normalizing multiplicity. 
2) Left edge ( ) 6 2sinm β β= −  of the essential spectrum is a resonance for 

the operator ( ) ( )123 2 ,nH π β π− , but for the operator ( ) ( )123 2 , 2nH π β π β− −  the 
left edge ( ) 6 4sinm β β= −  of the essential spectrum is the eigenvalue, i.e. the 
equation ( ) ( ) ( )123 2 , 2nH f m fπ β π β β− − =  has a non-trivial solution 

( ) 1 2
1 2

1 2

sin sin
,

2 cos cos
C p pf p p

p p
=

− −  
and it belongs to ( )2

12L−  . 

5. Conclusions 

1) We have shown that the operator ( )123 1 2, ,H k k π−  has infinitely many in-
variant subspaces ( )123 ,n n− ∈R . It has been proved that if condition  
( )2 sinv n β+ >  holds then the operator ( )123 2 , ,nH π β π π− −  has a unique 

simple eigenvalue ( ) ( )123 2 ,nz π β π−  of the form (16), otherwise, the operator has 
no eigenvalues outside of the essential spectrum. A similar statement holds for 
the operator ( )123 2 , 2 ,nH π β π β π− − − . 

2) Without loss of generality it can be assumed that ( )3 1v ≤ . Since, if 

( )3 1v >  then it follows from ( )lim 0
n

v n
→∞

=  that there exists a number m∈  

such that ( )2 1v m + ≤  and monotonicity of v  implies that ( ) 1v n >  for  

3,4, , 1n m= + , and in this case, the eigenvalues ( ) ( )123 2 , , 1, 2, , 1nz n mπ β π− = −
 

of ( )123 2 , ,H π β π π− −  exist for all [ ]0, 2β π∈ . 

For a fixed ( ]0, 2β π∈  there exists m∈  such that  
( ) ( )( )sin 3 , 2v m v mβ ∈ + +  and the operator ( )123 2 , ,H π β π π− −  has m non-

degenerate eigenvalues outside of the essential spectrum (see Theorem 1): 
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( ) ( ) ( ) ( ) ( ) ( )
1 1 2

123 123
12 , , : 2 , 6 3 sin ,
3

z z v
v

π β π π π β π β− = − = − −
 

( ) ( ) ( ) ( ) ( ) ( )
2 2 2

123 123
12 , , : 2 , 6 4 sin ,
4

z z v
v

π β π π π β π β− = − = − −
 

  
( ) ( ) ( ) ( ) ( ) ( )

2
123 123

12 , , : 2 , 6 2 sin .
2

m mz z v m
v m

π β π π π β π β− = − = − + −
+  

The corresponding normalized eigenfunctions are of the forms: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 1 2 1 3 2123 1 1, , 1 1 ,f p p p f p p p L L Lλ λ ψ ψ−−− − − − − − −= ∈ ⊗ ⊗
 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 1 2 2 3 2123 2 2, , 1 2 ,f p p p f p p p L L Lλ λ ψ ψ−−− − − − − − −= ∈ ⊗ ⊗
 

  

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )1 2 3 1 1 2 3 2123 , , 1 ,mm mf p p p f p p p L L L mλ λ ψ ψ−−− − − − − − −= ∈ ⊗ ⊗
 

where, ( )mfλ
−  is the normalized eigenfunction of the operator ( ) ( )2mHλ π β−  

corresponding to the eigenvalue ( ) ( )mzλ β  and the operator ( ) ( )mH kλ  is de-
fined by the formula (13), ( ) ( )2m v mλ = + . 

The eigenvalues of the operators ( )123 2 , ,H π β π π− −  and ( )123 , 2 ,H π π β π− −  
are same but eigenfunctions differ with variable replacement 1p  and 2p . In 
other words, the operators ( )123 2 , ,H π β π π− −  and ( )123 , 2 ,H π π β π− −  are un-
itary equivalent. 

In the case ( )sin 2v mβ = + , the left edge ( ) 6 2sinm β β= −  of the essential 
spectrum is a resonance of the operator ( )123 2 , ,H π β π π− −  (see Theorem 1). 

3) Let for some m∈  the relation ( ) ( )( )11 11sin 3 , 2v m C v m Cβ −− −−∈ + +  
hold then the operator ( )123 2 , 2 ,H π β π β π− − −  has m nondegenerate eigenva-
lues outside the essential spectrum (see Theorem 2) and for small β : 

( ) ( ) ( ) ( )

( ) ( ) ( )

1 1
123 123

2 4

2 , 2 , : 2 , 2
26 3 sin ,
3

z z

v O
v

π β π β π π β π β

β β

− − = − −

= − − +
 

( ) ( ) ( ) ( )

( ) ( ) ( )

2 2
123 123

2 4

2 , 2 , : 2 , 2
26 4 sin ,
4

z z

v O
v

π β π β π π β π β

β β

− − = − −

= − − +
 

  
( ) ( ) ( ) ( )

( ) ( ) ( )
123 123

2 4

2 , 2 , : 2 , 2
26 2 sin .

2

m mz z

v m O
v m

π β π β π π β π β

β β

− − = − −

= − + − +
+  

The corresponding normalized eigenfunctions are of the forms: 
( ) ( ) ( ) ( ) ( ) ( ) ( )1 1 2

123 1 2 3 123 1 2 1 3 12, , , 1 ,f p p p f p p p L Lψ− − − −= ∈ ⊗
 

( ) ( ) ( ) ( ) ( ) ( ) ( )2 2 2
123 1 2 3 123 1 2 2 3 12, , , 2 ,f p p p f p p p L Lψ− − − −= ∈ ⊗
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  
( ) ( ) ( ) ( ) ( ) ( ) ( )2

123 1 2 3 123 1 2 3 12, , , ,m m
mf p p p f p p p L L mψ− − − −= ∈ ⊗

 
where, ( )

123
mf  is the normalized eigenfunction of the operator  

( ) ( )123 2 , 2mH π β π β− −  corresponding to the eigenvalue ( ) ( )123 2 , 2mz π β π β− −  
defined by the formula (17). 

In the case ( ) 11sin 2v m Cβ −−= + , the left edge ( ) 6 4sinm β β= −  of the es-
sential spectrum is the eigenvalue of ( )123 2 , 2 ,H π β π β π− − −  (see Theorem 2) 
with the corresponding eigenfunction 

( ) ( ) ( )21 2
3 12

1 2

sin sin
sin .

2 cos cos
C p pf mp L L m

p p
− −= ⋅ ∈ ⊗

− −
p

 
Remark 1. If the potential v̂  is even in all arguments 1 2 3, ,p p p  and the 

condition ( )3
2v̂∈    holds, then the statements of Lemmas 3 - 4 remain valid. 

Remark 2. If 3k π≠ , then the subspaces ( )123 ,n n− ∈R  are not invariant 
under the operator ( )123 1 2 3, ,H k k k− . 
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