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Abstract 
In this work, we extend our work on the Heisenberg model of the neutron 
formulated as a dwarf hydrogen-like atom under the influence of the More 
General Exponential Screened Coulomb Potential (MGESCP) to show that an 
atomic nucleus may possess a molecular structure made up of atoms bonding 
together by a potential used to describe the strong force associated with a ge-
neralised Yukawa MGESCP potential. We show that the neutrons and pro-
tons are arranged into narrow lattices therefore they may fold to form three- 
dimensional shells by bonding similar to hydrogen bonding. In particular, the 
nucleons may form stable structures such as that of fullerenes in which the 
vertices are occupied by the nucleons which are simply just protons. For ex-
ample, a nucleus with a total number of 60 nucleons may arrange itself into 
the topological structure of a buckminsterfullerene. We also apply Schrödin-
ger wave equation with central field approximation to describe the quantum 
dynamics of nuclei of atomic atoms that now possess the physical structure of 
a dwarf molecular ion. 
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1. Introduction 

In our work on quantum dynamics of Heisenberg model of the neutron asso-
ciated with beta decay, we showed that a neutron may have the structure of a 
dwarf hydrogen-like atom and the beta decay is a physical process that requires a 
sophisticated form of potential for its dynamical description, such as a genera-
lised Yukawa MGESCP potential. We also showed that this complicated process 
could be broken down into various consecutive stages of physical processes each 
of which requires a different form of potential for its mathematical formulation. 
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Now, it is anticipated that the view of the neutron as a dwarf hydrogen-like atom 
would lead to different perspectives on physical structures of an atomic nucleus. 
In this work, we will discuss one such implication and show that the view of the 
neutron as a dwarf hydrogen-like atom provides the construction of a new mod-
el for atomic nucleus in which the nucleus would possess the structure of a mo-
lecule made up of atoms bonding together and in particular the bonding can be 
described using the form of a potential that is used to describe the strong force. 
Specifically, we show that the molecular structure of an atomic nucleus can be 
constructed similarly to the molecular structure of the hydrogen molecule H2 
composed of two hydrogen atoms each of which has one proton and one elec-
tron, and the corresponding molecular ion 2H+  which has only one electron. 
Despite the neutral molecule H2 has two protons and two electrons, the pair 
electrons are shared between the two protons to form the covalent bonding in 
which the electrons orbit both protons. Then, if one electron is removed from 
the neutral atomic molecule H2 we obtain the molecular ion 2H+  which has only 
one electron which also orbits both protons. As discussed in Section 3, this pic-
ture of the molecular ion 2H+  is the representation of the molecular structure 
that we will apply to the deuteron which is the nucleus of a deuterium compos-
ing of one proton and one neutron. However, instead of the usual Coulomb po-
tential, we will assume that the electron and the two protons attract each other 
by a strong force which can be derived from a generalised Yukawa MGESCP po-
tential. In Section 4, we will then extend our discussion into nuclei composed of 
many protons and neutrons and show how these nuclei can be formed to possess 
a molecular structure if the neutrons are regarded as dwarf hydrogen atoms. 
With regards to mathematical formulation, we show that it is possible to apply 
the central field approximation to describe the quantum dynamics of these mo-
lecules. However, for its foundational basis and a more complete presentation of 
the view that an atomic nucleus can be described as a molecule, we will give a 
brief account in the next section, the Heisenberg model of the neutron as dwarf 
hydrogen-like atom. 

2. Heisenberg Model of the Neutron as a Dwarf Hydrogen  
Atom 

In this section we outline the Heisenberg model of the neutron as dwarf hydro-
gen-like atom in which the bound states of a dwarf hydrogen atom can be for-
mulated by using a general form of Yukawa potential known as the More Gener-
al Exponential Screened Coulomb Potential (MGESCP) given as follows 

( )
2

20 0
0 ,

e
e

r
rV V

V r V
r r

α
αα

−
−= − − −                 (1) 

where 0V  is the potential depth and the parameter α  is the strength coupling 
constant [1] [2] [3]. In particular, the MGESCP potential can be reduced to the 
potential that has been proposed for the interactions between the quarks for 
strong force in particle physics and this result leads to an unexpected implication 
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that a proton and an electron may also interact strongly at short distances. It is 
also worth mentioning here that there are prominent features that emerge from 
using the MGESCP potential to describe a neutron as a dwarf hydrogen atom, 
such as the energy spectrum of the bound states is continuous with respect to 
distance, and the Yukawa potential can be restrained to generate and determine 
mathematical structures of physical objects that may be identified with the 
quantum mediators associated with the weak and strong interactions. With this 
regard, it is reasonable to suggest that functional potentials in physics may have 
physical mechanisms to generate mediators of associated physical fields, and 
these mechanisms can be formulated in terms of differentiable manifolds and 
their corresponding direct sums of prime manifolds as discussed in our works 
on the possibility to formulate physics purely in terms of differential geometry 
and topology [4]. The time-independent Schrödinger equation of wave mechan-
ics for a neutron as a dwarf hydrogen-like atom can be written as follows [5] [6] 

( ) ( ) ( ) ( )
2

2 ,
2

V Eψ ψ ψ
µ

− ∇ + =r r r r�
               (2) 

in which ( )V r  is the MGESCP potential given in Equation (1). Since the MGESCP 
potential is spherically symmetric, Equation (2) can be written in the spherical 
polar coordinates as  

( ) ( )( ) ( ) ( )
2 2

2 20
2 2 2

1 1 1 e ,
2

rV
r r E

r r rr r
αψ α ψ ψ

µ
− ∂ ∂   − − + − + + =    ∂ ∂    
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where the orbital angular momentum operator 2L  is given by 
2

2 2
2 2

1 1sin .
sin sin

θ
θ θ θ θ φ

 ∂ ∂ ∂ = − +  ∂ ∂ ∂  
L �              (4) 

Solutions of Equation (3) can be found using the separable form 

( ) ( ) ( ), ,nl nl lmR r Yψ θ φ=r                      (5) 

where nlR  is a radial function and lmY  is the spherical harmonic. Then Equa-
tion (3) is reduced to the system of equations 

( ) ( ) ( )2 2, 1 , ,lm lmY l l Yθ φ θ φ= +L �                   (6) 
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It has been shown that the radial solution ( )nlR r  to Equation (7) can be ob-
tained as  

( ) ( )( ) ( ) ( )1 4 1 1 2 1 4 1 1e 2 ,
l l l lr

nl nl nR r N r L rβ β
− + + + + + +−=            (8) 

and the corresponding energy spectrum nlE  is given by 
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where ( ) ( )( )( )2
2 2 2

0 02 e 2 1 4 1 1rV V n l lαβ µ −= + + + + +� . Although this ener-

gy spectrum is discrete with respect to the quantum numbers n and l, it depends  
continuously on the radial distance r. In order to interpret the energy spectrum 
given in Equation (9) as some energy spectrum associated with the beta minus 
decay we need to apply the restraint condition applied to the Yukawa potential 
so that the MGESCP potential is reduced to the potential that is used to describe 
strong interaction at very short distances so that a proton and an electron can 
form a dwarf hydrogen-like atom. In fact, we showed in our work on a quantum 
dynamics of beta decay that if the Yukawa potential remains constant, i.e., 
e 2mr r kJ a− = , where m and kJ are parameters in the generalised Dirac equa-
tion given in the form [7] [8] 

im ikJµ
µγ ψ ψ∂ = − +                      (10) 

then the generalised Yukawa MGESCP potential given in Equation (2) is re-
duced to the potential that is used to describe the strong force. 

( ) ( )( )
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And from the energy spectrum given in Equation (9) we also obtain 

( )( ) 2

0
2

2
2 12

e
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V kJ rkJE r
n l

αµ  +
= − −   + + �

              (12) 

Now we may interpret this continuous spectrum of energy with respect to dis-
tance as the energy spectrum of massive mediators associated with strong force 
described by the potential given in Equation (11). When a physical particle is 
created it is being created continuously until it reaches the size that is required 
for the system. This process happens in a very short time therefore it seems like 
an instantaneous creation. In particle physics, the parameter α  of the expo-
nential term is expressed in terms of the mass m of a force carrier as 2mcα = � . 
Therefore when the mass of the force carrier is being continuously created the 
parameter α  is being getting larger, at the same time the radius r is also getting 
bigger, therefore the term 2e 0rα− →  and also the term 2e 0rαα − → . The mass 
that is accumulated by the force carrier should be supplied by the neutron. 
When the force carrier with required mass hits the electron, the latter will move 
further from the proton. On the other hand the MGESCP potential is reduced to 
the mixed Coulomb-Yukawa potential when the process of creation of the force 
carrier is complete. This form of potential provides a repulsive force to move the 
electron away. It is also noted that the form of the potential given in Equation (1) 
is a specific form of a more general form of potential which can be written as 

( ) e e
r

rQV r K
r r

β
γα

−
−= − + +                   (13) 
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where , , ,K Q α β  and γ  are physical parameters that will need to be deter-
mined. This potential would describe a more complete physical process of beta 
decay when it is applied to the Schrödinger wave equation given in Equation (2). 
However, whether the Schrödinger wave equation with the form of potential 
given in Equation (13) could be solved to obtain exact solutions similar to solu-
tions given in Equation (8) requires more rigorous mathematical investigations. 

3. Molecular Structure of the Nucleus of a Deuterium 

In this section we discuss a molecular structure for the nucleus of a deuterium 
with regard to the view that a neutron is formulated as a dwarf hydrogen-like 
atom. We have two different formations that can be applied to the physical 
structure of the deuterium described as follows. If the Coulomb potential is ap-
plied, then a deuterium is an isotope of the normal hydrogen atom with a neu-
tron in the nucleus besides the proton, as shown in Figure 1. However, if a ge-
neralised Yukawa MGESCP potential is applied then a deuterium may be viewed 
as an isotope of the helium atom without neutrons at the nucleus but only two 
protons and two electrons one of which can be supposed to be orbiting very 
close to the two protons, as shown in Figure 2. 

In the following we will examine how the two different formations of the deu-
teron and the deuterium, as depicted above, and their corresponding quantum 
dynamics can be formulated using Schrödinger wave equation in quantum me-
chanics. For the case of the deuteron, which is the nucleus of the deuterium as 
shown in Figure 1, it has been shown from experiments that the bound state of 
the deuteron exists in a triplet state that can be described by the Schrödinger 
wave equation in the centre-of-mass system as 

( ) ( )
2

2 0
2

V r E ψ
µ

 
− ∇ + − = 
 

r�
                (14) 

where ( )p n p nm m m mµ = +  and the potential ( )V r  can be taken as a square 
well potential { ( ) 0V r V= −  for r a<  and ( ) 0V r =  for r a> }, or a Yukawa po- 
tential ( ) ( ){ }1

0 expV r V r r a−= − − , or an exponential potential  
( ) ( ){ }0 expV r V r a= − −  [9].  

However, if the deuteron has a physical structure as shown in Figure 2 then it can 
also be viewed as a molecular ion which is composed of two protons and one elec-
tron, and the physical system is described by using a generalised Yukawa potential 
rather than the usual Coulomb potential as for the case of the hydrogen molecular 
ion 2H+ . If we assume the generalised Yukawa potential to be the MGESCP poten-
tial given in Equation (1), i.e., ( ) 2 2

0 0 0e er rV r V r V r Vα αα− −= − − − , and using the 
centre-of-mass coordinates for the deuteron molecular ion, as shown in Figure 3, 
where R  is the relative position vector of the two protons positioned at A and 
B; r  is the position vector of the electron at C; Ar  and Br  are the distances of 
the electron from the protons, then the Schrödinger wave equation for the deu-
teron molecular ion can be written as 
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Figure 1. Deuterium with Coulomb potential. 

 

 
Figure 2. Deuterium with generalised Yukawa 
potential. 

 

 
Figure 3. The centre-of-mass coordinate sys-
tem for deuteron molecular ion. 
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where 2AB pmµ =  and pm  is the mass of the proton; and the reduced mass 

eµ  of the electron is given as ( )2 2e p pmm m m mµ = + ≈  where m is the mass 
of the electron. In the Born-Oppenheimer approximation the wave motion of 
the electron described by a new wavefunction ( ),jχ r R  that satisfies the fol-
lowing equation [10] 
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If the wave equation given in Equation (16) could be solved exactly then the 
wavefunctions ( ),jχ r R  would become the molecular orbitals of the deuteron 
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in analogy with the atomic orbitals. In this case the eigenenergies ( )jE R  that 
correspond to the wavefunction ( ),jχ r R  would be found for each value of the 
distance R.  

Now, it is also seen from Figure 2 that the physical structure of a deuterium 
also looks similar to that of a helium except there are no neutrons inside the 
nucleus and the quantum dynamics of the two electrons are described by two 
different potentials in which the inner electron is described by a generalised Yu-
kawa MGESCP potential and the outer electron simply by the Coulomb poten-
tial. In the following we will formulate this atomic structure of the deuterium 
using also the Schrödinger wave equation in quantum mechanics. 

As shown in Figure 4, the Hamiltonian for a helium atom in which the two 
electrons under the influence of the Coulomb potential due to the two protons in 
the nucleus can be found to be of the form 

( )
2 2 2 2

2 2
1 2

0 1 0 2 0 12

2 2
2 4 4 4e

q q qH
r r rµ ε ε ε

= − ∇ +∇ − − +
π π π

�            (17) 

where 1r  and 2r  are the positions of the two electrons and 12 1 2r = −r r . Since 
the distance 12r  between the two electrons in assumed to be short therefore the 
term 2

0 124q rεπ  is not negligible and the Schrödinger wave equation that is 
obtained from the Hamiltonian given in Equation (17) cannot be solved to ob-
tain exact solutions. On the other hand, if we refer again to Figure 2 for the case 
of the deuterium in which the neutron is instead regarded as a dwarf hydrogen 
atom then the deuterium also has the atomic structure similar to the helium given 
in Figure 4, except the quantum dynamics of the outer electron is described by the 
Coulomb potential but the inner electron by the generalised Yukawa MGESCP 
potential given in Equation (1). The Hamiltonian in this case takes the form 

( )
2

2

22 2 2
22 2 0 0

1 2 0
0 1 2 2 0 12

2 e 22 2 e
2 4 4

r
r

e

V Vq qH V
r r r r

α
αα

µ ε ε

−
−= − ∇ +∇ − − − − +

π π
�    (18) 

It is observed now that for the case to the deuterium as shown in Figure 2 the 
two electrons are on different orbits which are far away from each other there-
fore the last term in the Hamiltonian given in Equation (18) that involves the 
interaction between them is negligible due to large distance. In this case the Ha-
miltonian given in Equation (18) is reduced to 

 

 
Figure 4. Helium with Coulomb 
potential. 
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The corresponding Schrödinger wave equation is written as 

( )
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Since the Hamiltonian given in Equation (19) is the sum of two separate Ha-
miltonians therefore the corresponding wavefuntion that describes the system is 
separable and can be written as ( ) ( ) ( )1 2 1 1 2 2,ψ ψ ψ=r r r r . Using the separable 
wavefunction ( ) ( ) ( )1 2 1 1 2 2,ψ ψ ψ=r r r r  the Schrödinger wave equation given in 
Equation (20) can now be written as a system of two separate Schrödinger wave 
equations as follows 
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where 1 2E E E= + . Solutions to Equation (21) are the normalised radial eigen-
functions of the bound states that can be found and given as 

( ) ( )
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where ( )2 1 2
8 e E rρ µ= − �  and ( )2 1l

n lL ρ+
+  is the associated Laguerre poly-

nomial. The bound state energy eigenvalues are given by  
2 4

2 2

1
2
e

n
k q

E
n

µ
= −

�
                     (24) 

On the other hand, solutions to Equation (22) are the radial eigenfunctions of 
the bound states which can also be obtained and given in Equation (8), and the 
corresponding energy spectrum nlE  is given in Equations (9) and (12) in Sec-
tion 2. 

4. Molecular Structure of Nuclei Composed of Many Protons  
and Neutrons 

In this section we further discuss how a nucleus which is composed of many 
protons and neutrons can be formed to also possess a molecular structure if the 
neutrons are regarded as dwarf hydrogen atoms. In order to be able construct 
nuclei with many nucleons as molecules from the assumption that the neutron 
has the structure of a dwarf hydrogen atom we now assume further that the 
protons and the neutrons are arranged so that they will have the physical struc-
ture similar to that of a hydrogen molecule 2H  or that of a hydrogen molecular 
ion 

2
H+ . This means that they are arranged in a manner in which they can share 

electrons so that each of the nucleons is seen to have one or two electrons orbit-
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ing around it. As illustrations, in the following we give such possible structures 
for the first few nuclei, where  representing a neutron and  a proton. 
For nuclei with even numbers of protons and neutrons, first consider the case of 
the alpha particle which is the nucleus of the helium atom as shown in Figure 5. 

In Figure 5, the two neutrons are assumed to share a pair of electrons de-
scribed by the form of covalent bonding. On the other hand, each proton is as-
sumed to receive an electron from each neutron. Overall, the two electrons from 
two neutrons are shared by the four protons in the nucleus. In this case the nuc-
leus of the helium behaves like a solid in which the four protons are kept in place 
by the force of attraction between them and the electrons. The force of attraction 
in this case can be assumed to be the strong force between the electrons and the 
protons rather than the Coulomb force as in the case of a normal solid. 

We will now formulate an approximate quantum description for this molecu-
lar structure of the atomic nucleus of a helium atom, as shown in Figure 6, using 
also the Schrödinger wave equation in quantum mechanics. 

The Hamiltonian for a helium nucleus in which the two electrons are under 
the influence of the generalised Yukawa MGESCP potential given in Equation (1) 
due to the four protons in the nucleus can be written in the form 
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where 1r  and 2r  are the positions of the two electrons and 12 1 2r = −r r . We 
may now argue that under the influence of the generalised Yukawa MGESCP 
potential given in Equation (1) the electrons are attracted strongly to the protons 
in the nucleus therefore the attraction between the two electrons under the 
Coulomb force is much weaker therefore the last term in the Hamiltonian given 
in Equation (25) that involves the interaction between the two electrons is neg-
ligible, then we obtain  
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Since the Hamiltonian given in Equation (26) is the sum of two separate Ha-
miltonians therefore the corresponding wavefuntion that describes the system is 
separable and can be written as ( ) ( ) ( )1 2 1 1 2 2,ψ ψ ψ=r r r r . The corresponding 
Schrödinger wave equation applied to the system takes the form 

( )

( )

1
1

2
2

22
22 2 0 0

1 2 0
1 1

2
20 0

0 1 2
2 2

2 e 2
2 e

2

2 e 2
2 e , 0

r
r

e

r
r

V V
V

r r

V V
V E

r r

α
α

α
α

α
µ

α ψ

−
−

−
−


− ∇ +∇ − − −


− − − −




=r r

�

           (27) 

https://doi.org/10.4236/jmp.2020.119087


V. B. Ho 
 

 

DOI: 10.4236/jmp.2020.119087 1404 Journal of Modern Physics 
 

 
Figure 5. Helium nucleus with two 
protons and two neutrons. 

 

 
Figure 6. Helium nucleus with a 
generalised Yukawa potential. 

 
Using the separable wavefunction ( ) ( ) ( )1 2 1 1 2 2,ψ ψ ψ=r r r r  the Schrödinger 

wave equation given in Equation (27) can now be written as a system of two 
separate Schrödinger wave equations 

( ) ( )
1

1

22
22 0 0

1 0 1 1 1 1 1
1 1

2 e 2
2 e

2

r
r

e

V V
V E

r r

α
αα ψ ψ

µ

−
− 

− ∇ − − − = 
 

r r�
      (28) 

( ) ( )
2

2

22
22 0 0

2 0 2 2 2 2 2
2 2

2 e 2
2 e

2

r
r

e

V V
V E

r r

α
αα ψ ψ

µ

−
− 

− ∇ − − − = 
 

r r�
     (29) 

where 1 2E E E= + . Solutions to Equations (28) and (29) are the radial eigen-
functions of the bound states which can also be obtained as  

( ) ( )( ) ( ) ( )1 4 1 1 12 4 1 1e 2 , 1,2
l l l lr

nl i nl i n iR r N r L r iβ β
− + + + + + +−= =        (30) 

where ( ) ( )( )( )2
22 2

0 02 e 2 1 4 1 1ir
e V V n l lαβ µ −= + + + + +� . The corresponding 

energy spectrum i
nlE  is given by 

( ) 22
0 02

0 2

e
e , 1, 2

12

i

i

r
ri e
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V V
E V i

n l

α
α µ

α
−

−
 +
 = − − =
 + +
 

�
           (31) 

Similar to the case discussed in Section 2, the generalised Yukawa MGESCP 
potential given in Equation (1) is reduced to the potential that is used to describe 
the strong force 

( ) ( )( )

( )

20

0

0

1 1 e

1
2

2 2

r
i i

i

i
i

i
i

V
V r r

r
V kJ r
r

V kJ kJr
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αα

α
α

α

−= − + +
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= − + +

                  (32) 
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And the corresponding energy spectrum can be obtained as 

( )( ) 2

0
2

2
, 1, 2

2 12
ii e

nl i

V kJ rkJE r i
n l

αµ  +
= − − =  + + �

         (33) 

Now, we extend our discussion on molecular structure of atomic nucleus to 
nuclei of higher number of protons and neutrons. Such possible molecular struc-
tures are shown in the following figures for nuclei with even numbers of protons 
and neutrons, respectively. There is a new feature in these figures representing 
by the symbol , which is a speculative neutral element that may help keep the 
nuclei in a more stable structure. In this work we only investigate possible mo-
lecular structures formed by protons and neutrons therefore the questions about 
the existence as well as the nature of these neutral particles are not essential and 
required further investigations.  

In Figures 7-9, each pair of neutrons next to each other share a pair of elec-
trons and each proton shares a pair of electrons given by the two neutrons next 
to it. They may be considered as the net of a polyhedron. As shown in Figure 8 
and Figure 9, despite both nuclei have the same number of protons and neu-
trons, they may have different net polyhedrons due to the existence of different 
neutral particles inside the nuclei. With regard to rigorous mathematical formu-
lation, it is worth mentioning here that the above molecular structures of atomic 
nuclei may also be determined geometrically and topologically by moduli spaces 
of circle packings [11] [12] [13]. 

For the case of nuclei with odd numbers of protons and neutrons, we suggest 
that they would have a molecular structure which is a coupling of a deuteron and 
another nucleus of even numbers of protons and neutrons. For example, in Fig-
ure 10 the nucleus is a coupling of the nucleus a beryllium and a deuteron. 
Therefore, in the case of nuclei with odd numbers of protons and neutrons, be-
sides atomic bonding we also have molecular bonding between the nuclei which 
are now have molecular structures. 

 

 
Figure 7. Nucleus with four protons and 
four neutrons. 

 

 
Figure 8. Nucleus with six protons and 
six neutrons. 
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Figure 9. Nucleus with six protons and 
six neutrons. 

 

 
Figure 10. Nucleus with five protons and 
five neutrons. 

 
The molecular structures of nuclei with many protons and neutrons that are 

depicted in the above suggestive figures are long and narrow lattices therefore in 
order to form spherical shapes, that they are assumed to possess, they should 
fold to form three-dimensional spherical structures by internal bonding similar 
to hydrogen bonding. On the other hand, even though it may seem highly spe-
culative, it is possible to suggest that the three-dimensional molecular structures 
may also form layers of shells with the characteristics that have been studied in 
nuclear physics, such as the nucleons of an atomic nucleus may form shells sim-
ilar to the shell model of an atom [14] [15] [16]. However, the nuclear shell 
model is based on an informative experimental observation that a nucleus is 
more stable if it has the so-called magic numbers of nucleons, which are 2, 8, 20, 
28, 50, 82 and 126. What is the physical, as well as mathematical, basis for these 
magic numbers? Do they reflect a physical pattern that is geometrically asso-
ciated with the distribution? In the following we will discuss how these numbers 
may in fact be associated with a more subtle structure of the nucleons based on 
the Heisenberg model of the neutron. As in the case of solid formed by normal 
atoms, it is assumed that the valence electrons can move freely around all atoms. 
We now also assume that the valence electrons released from the neutrons can 
also move freely around all protons in the lattice. In this case when a nucleus is 
formed it can be formed in the shape of spherical objects. Furthermore, we may 
also suggest that the structures formed by the nucleons have stable mathematical 
structures such as that of fullerenes [17] [18], in which the vertices are occupied 
by the nucleons which are now simply just protons. For example, for the case of 
nuclei with many neutrons and protons they may arrange themselves into the 
structures of buckminsterfullerene as follows. 

The buckminsterfullerene structure of a nucleus given in Figure 11 can be 
identified with that of germanium if we assume it has the magic number of 28 
neutrons and 32 protons. We now raise the question of what force would be re-
quired for the nucleons to be arranged in such shape. As in the case of normal  
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Figure 11. Buckminsterfullerene 
structure of a nucleus. 

 
metals, we may assume that the nucleons are held together by delocalised bonds 
and the electrons are shared by all protons resulting positive ions being sur-
rounded by a cloud of electrons.  

Similar to the case of the nucleus of a helium atom discussed above, if we as-
sume the protons to be arranged into a spherical structure such as that given in 
the Figure 11 so that the electron cloud can form shells just above the surface of 
the protons. The quantum dynamics of such physical system can be described by 
the Schrödinger wave equation using the central field approximation. Consider a 
nucleus of charge Zq and N electrons. Assume the part of the nucleus composed 
of the protons to be point-like and infinitely massive. If we only consider the 
electrostatic Coulomb repulsion between the electrons, the generalised Yukawa 
interaction between the electrons and the protons then the Hamiltonian of the 
N-neutron atomic nucleus can be written as 

22 2
22 0 0

0
1 1 0

2 e 2
2 e

2 4

i
i

i

rN N
r

r
i i je i i ij

V V qH V
r r r

α
αα

µ ε

−
−

= < =

 
= − ∇ − − − + 

π 
∑ ∑

�
     (34) 

Again, if we assume the term associated with the Coulomb force between the 
electrons can be neglected then the Schrödinger wave equation for the spatial 
part of the N electrons can be written as 

( )
22

22 0 0
0 1

1

2 e 2
2 e , , 0

2

i
i

i

rN
r

r N
i e i i

V V
V E

r r

α
αα ψ

µ

−
−

=

  
− ∇ − − − − =     

∑ r r�
�     (35) 

This equation is separable into N equations each of which describes the dy-
namics of one electron. In this case the solution ( )1, , Nψ r r�  may be written as  
( ) ( ) ( ) ( )1 1 1 2 2, , N n Nψ ψ ψ ψ=r r r r r� �  and each wavefunction ( )i iψ r  satisfies 

the equation 

( ) ( )
22

22 0 0
0

2 e 2
2 e

2

i
i

r
r

i i i i i
e i i

V V
V E

r r

α
αα ψ ψ

µ

−
− 

− ∇ − − − = 
 

ir r�
       (36) 

where 1 2 NE E E E= + + +� . Solutions to Equation (36) and the corresponding 
generalised Yukawa MGESCP potential and energy spectrum can be obtained 
similar to those given in Equations (30-33) with 1,2, ,i N= � .  

5. Conclusion 

We have investigated and shown in this work that it is possible to apply the Hei-
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senberg model of the neutron formulated as a dwarf hydrogen-like atom into the 
construction of molecular structure for an atomic nucleus in which the nucleus 
would possess the structure of a molecule made up of atoms bonding together by 
a generalised Yukawa MGESCP potential used to describe the strong force. First, 
we construct the molecular structure for the atomic nucleus of the deuterium and 
show that such molecular structure would possess similar formation to that of 
the hydrogen molecular ion 2H+  which has only one electron orbiting two pro-
tons under a Yukawa MGESCP potential instead of the Coulomb potential. From 
this foundational approach, we then extend our discussion into the construction 
of molecular structure for nuclei composed of many protons and neutrons, and 
we show that the protons and neutrons of these nuclei can also be assembled to 
possess a molecular structure if the neutrons are regarded as dwarf hydrogen 
atoms. We also show that it is possible to apply Schrödinger wave equation with 
central field approximation to describe the quantum dynamics of nuclei of atomic 
atoms that now possess the physical structure of dwarf molecular ions under a 
Yukawa MGESCP potential. As a further discussion, we then suggest that the 
structures formed by the nucleons may have stable mathematical structures such 
as that of fullerenes in which the vertices are occupied by just protons. For ex-
ample, a nucleus with a total number of 60 nucleons may arrange itself into the 
topological structure of a buckminsterfullerene. 
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