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Abstract 
Christoffel connection (or Levi-Civita affine connection) did not enter gravity 
as an axiom of minimal length for the free fall of particles (where anyway 
length action is not defined for massless particles), nor out of economy, but 
from the weak equivalence principle (gravitational force is equivalent to ac-
celeration according to Einstein) together with the identification of the local 
inertial frame with the local Lorentz one. This identification implies that the 
orbits of all particles are given by the geodesics of the Christoffel connection. 
Here, we show that in the presence of only massless particles (absence of 
massive particles), the above identification is inconsistent and does not lead 
to any connection. The proof is based on the existence of projectively equiva-
lent connections and the absence of proper time for null particles. If a con-
nection derived by some kinematical principles for the particles is to be ap-
plied in the world, it is better for these principles to be valid in all relevant 
spacetime rather than different principles to give different connections in 
different spacetime regions. Therefore, our result stated above may imply a 
conceptual insufficiency of the use of the Christoffel connection in the early 
universe where only massless particles are expected to be present (whenever 
at least some notions, like orbits, are meaningful), and thus of the total use of 
this connection. If in the early universe, the notion of a massive particle, 
which appears latter in time, cannot be used, in an analogous way in a cau-
sally disconnected high-energy region (maybe deep interior of astrophysical 
objects or black holes), the same conclusions could be extracted if only mass-
less particles are present. 
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1. Introduction 

Christoffel connection (also known as Levi-Civita connection) is undoubtedly 
the dominant affine connection in gravitational physics. Einstein’s General 
theory of Relativity is the leading paradigm of gravitational theories and is con-
structed out of this connection. In recent years, there was a renewed interest and 
activity in generalizations or modifications of Einstein gravity. In one direction, 
various functions of the Ricci scalar acted as Lagrangians, instead of merely the 
Ricci scalar itself ([1] [2] [3] [4] and references therein). Alternative gravitational 
theories built up from higher-order curvature corrections, other than the Ricci 
scalar, have also appeared. Namely, using scalar quantities of the Riemann ten-
sor, new theories were constructed [5] [6] [7] [8]. The Gauss-Bonnet term is a 
particular combination of such curvature invariants and appears in low-energy 
effective action of string theory [9] [10]; when this term is coupled to a scalar 
field, non-singular cosmological solutions arise [11] [12] [13]; a function of 
Gauss-Bonnet term can also serve as Lagrangian to construct viable models [14] 
[15] [16]. Greater-than-fourth-order theories, containing derivatives of curva-
ture invariants, were another option [17] [18]. Non-relativistic toy model theo-
ries of quantum gravity were also proposed [19] [20]. Scalar fields were included 
in various scalar-tensor theories [21] [22] [23]. In addition, higher-dimensional 
gravity theories of the Kaluza-Klein form [24] [25] or of the braneworld scenario 
[26] [27] have attracted much interest over the years. In all the above theories, 
the standard approach for deriving the field equations is the metric formalism, 
where the Christoffel connection is used (the Palatini formalism, where the 
connection is treated as independent variable, is another approach which is also 
adopted sometimes). 

For positive-definite metrics of Riemannian geometry, the geodesics of the 
Christoffel connection provide the curves of minimal (sometimes maximal) length  

as is manifested by the variation of the length action d dd
d d
x xg
µ ν

µνσ
σ σ∫  for some 

parameter σ  along the orbits ( )xµ σ . Similarly, in spacetime physics, the action 

d dd
d d
x xg
µ ν

µνσ
σ σ

−∫  extremizes the proper time (or the length in some sense) of  

timelike curves, which are the curves of massive particles, and provides the geodes-
ics of the Christoffel connection as the corresponding orbits. However, for massless 
particles the proper time is zero, a photon orbit on the null cone has zero length, so 
a similar action is not defined. Therefore, the axiom of minimum length for mas-
sive particles is accomplished by another axiom, that of continuation of the geodes-
ic equation of massive particles to be also valid in the massless case. This fact 
does not mean that the geodesic equation for all particles does not arise from an  

action. It arises e.g. from the action 1 2d dd
d d
x xeg e m
µ ν

µνσ
σ σ

− 
− 

 
∫ , where m is 

the particle mass and e a one-dimensional vierbein. This last action is meaning-
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ful even in the massless case, where now the nullity constraint d d 0
d d
x xg
µ ν

µν σ σ
=   

provides through multiplication with the Lagrange multiplier e a meaningful 
(off-shell) Lagrangian to be varied (actually in agreement with the method of the 
theory of constraints). However, this last action is still an axiom with purpose to 
get the geodesic equation of the Christoffel connection as providing the orbits of 
all particles. In a similar way the minimal surface action of string theory is as-
sumed. The fact that the Christoffel connection is the simplest one, which only 
contains the metric part and not extra degrees due to torsion or non-metricity, 
does not necessarily declare it as the physical connection to describe the universe 
(anyway, our job is not topography to stick to the notion of minimal length). A 
lot of modifications of General Relativity contain various extra fields in the ac-
tion without enriching the Christoffel connection with extra fields, therefore the 
economy argument of the Christoffel connection is immediately canceled. 
Moreover, people today are more concerned about the particle content of gravity 
theories built up from the Christoffel or other connections and rarely follow 
Einstein’s spirit that principles on particle kinematics could provide a connec-
tion to build up a theory. In a sense, string theory is closer to this spirit since it 
starts with the motion of the string to construct the theory. At the opposite end 
is the first order formulation of various gravity theories, where the metric (or the 
vierbein) and the connection are considered quite independent; the cost however 
from this approach is that the connection (or equivalently the torsion or 
non-metricity) carry in general a large number of new components and it is dif-
ficult to believe that all of them have some physical meaning. An intermediate 
situation probably looks more promising. 

Christoffel connection entered physics through Einstein, who certainly did 
not adopt it axiomatically or in a geometric manner, but he had to be convinced 
for its virtue out of physical arguments. Of course, one can still keep on using 
the Christoffel connection even without any justification, but our aim here is to 
try to reduce its physical significance out of theoretical reasons which invalidate 
Einstein’s arguments in some probably realistic spacetime regions. To be more 
precise, the geodesics of the Christoffel connection as the orbits of all particles 
arise by the identification of the local inertial frame/freely falling frame (inge-
niously discovered by Einstein refining the notion of weak equivalence prin-
ciple) with the local Lorentz frame/local Minkowski frame (today the existence 
of such a frame probably does not need any justification since the notion of a 
spacetime metric which generalizes the Minkowski metric is considered funda-
mental, but it seems as well that it can consistently be introduced through what 
is called Einstein equivalence principle concerning the non-gravitational laws of 
physics). 

In this work, we prove that in the presence of only massless particles (massive 
particles do not exist) the above identification is meaningless and does not lead 
to any connection. In an alternative construction of a connection, responsible 
for providing the orbits of all particles, the existence of the above two frames can 
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usually be adopted, but not their identification. Our proof is based on the exis-
tence of projectively equivalent connections and the absence of proper time for 
massless particles. The fact that the relevant group for massless particles is the 
conformal group does not affect the validity of our result since the Lorentz 
group is still present. We argue that this result is probably relevant in our world. 
It seems that the most direct and solid regime for the applicability of the above 
result is the early universe. In the early universe, the standard approach is to 
consider the contributions from loops and thermal corrections at finite temper-
ature. As a result, all particles are expected to be massless before the electroweak 
symmetry breaking. Even for theories with phase transitions at higher energy 
scales, before these scales all particles are still expected massless. If these massless 
particles have to decide about their motion in a gravitational environment out of 
some kinematical principles (at least as long as semiclassical notions such as or-
bits are still defined), they cannot be based on the notion of a massive particle 
which arises later in time. Thus, the Christoffel connection in this regime is not 
the result of physical arguments on particle kinematics, thus probably losing its 
overall reliability (in this same spirit, even the axiom of continuation to the 
purely massless case of the minimal length geodesics of the massive particles ap-
peared later in time, is also insufficient). On the contrary, if another connection 
could be defined out of physical arguments concerning the kinematics of all par-
ticles, which arguments will equally well be meaningful everywhere in spacetime, 
we consider that this new connection could be a more appropriate and realistic 
connection to be valid everywhere in spacetime. Moreover, the existence of the 
notion of orbit (either classical or semiclassical) seems still reasonable around 
the TeV scale since the full strong quantum gravity regime is normally expected 
at much higher energies. Another case where the insufficiency of the Christoffel 
connection may occur is in spacetime regions of very high energy and tempera-
ture where only massless particles may exist, which regions are causally discon-
nected from the rest of spacetime where massive particles are also present (deep 
interior of supermassive astrophysical objects or even black holes are not im-
possible to be such regions). The above thoughts could also be relevant in the 
presence of extra dimensions with some fundamental mass scale. 

2. The Local Inertial Frames 

The local indistinguishability of gravitational and inertial forces, which is an es-
sential step for the derivation of Einstein’s General Relativity (and therefore of 
other theories as well), is described by the axiom that there exists a coordinate 
system µχ  around the event p (local inertial frame or freely falling frame) and 
a parameter λ , such that the orbits ( )µχ λ  of freely falling test particles obey  

( )
2

2

d 0.
d

p
µχ

λ
=                        (2.1) 

The orbit ( )µχ λ  has locally the form of a straight line up to terms of order 

( )3λ . Equation (2.1) is an infinitesimal version of the law of inertia and im-
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plies the universality of free fall. It encapsulates some form of the weak equiva-
lence principle as refined by Einstein due to his epiphany by October 1907: “I 
was sitting in a chair in the patent office at Bern ...’’. It turns out that λ  is an 
affine parameter of a geodesic. In arbitrary coordinates xµ , Equation (2.1) takes 
the form  

 
2

2

d d d 0
d dd

x x xµ ν κ
µ
νκω

λ λλ
+ =                      (2.2) 

at p, where  

 
2

.x
x x

µ ρ
µ
νκ ρ ν κ

χω
χ
∂ ∂

=
∂ ∂ ∂

                      (2.3) 

The quantity µ
νκω  (symmetric in ,ν κ ) is easily seen that forms the compo-

nents of a connection and is given by the functions ( )xµ νχ . Formally, the ana-
lytical expression (2.3) is defined not only at p but at other points as well. How-
ever, the correct is that the expression (2.3) is meaningful and gives the values of 
the connection only at the point p. At another point a corresponding expression 
will be valid for the corresponding µχ , and depending on what assumptions 
one adopts, the form of the connection will arise at all points. Indeed, if Equa-
tion (2.3) was valid in a neighborhood of p, applying this equation for the spe-
cific system xµ µχ= , it would give a vanishing (flat) connection with vanishing 
curvature, which certainly is not the situation that one wants to describe. For the 
same reason, Equation (2.1) cannot be true in a whole neighborhood around p 
(something that sometimes is misunderstood). However, Equation (2.2) for 
xµ µχ=  provides with the use of (2.1) that at the point p the components of the 

connection in the system µχ  vanish. So, basically the system µχ  defines the 
connection at p, such that at p the components of the connection in its own 
coordinates µχ  vanish. 

It is a crucial point that for massive particles the parameter λ  of (2.1) has for 
consistency to be the proper time τ  along the orbit of the particle (or more 
generally equal to ατ β+ , with ,α β  constants), defined by 2d d dg x xµ ν

µντ = − . 
This is an assumption inside Equation (2.1), and therefore, for massive particles 
the only affine parameter is assumed to be the proper time. If this was not as-
sumed, we will see that inconsistency would appear even in our everyday world 
and the Christoffel connection would never arise. For massless particles there is 
no proper time, so a parameter λ  is assumed to exist such that Equation (2.1) 
is still valid. In the massless case, the parameter λ  can be the temporal coordi-
nate 0χ  since if λ  is different than 0χ , one can define the new coordinate 
system µξ  such that its spatial coordinates are i iξ χ= , while 0ξ λ= , and then  

( )
( )

2

20

d 0
d

p
µξ

ξ
= . We will let a general λ  satisfying Equation (2.1) without some  

other specification, except if stated otherwise explicitly. Another point to be no-
ticed is the following: the arbitrary system xµ  can equally well describe the mo-
tion of either massive or massless particles (for example, the standard coordi-
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nates , , ,t r θ φ  of a spherically symmetric configuration describes all particles). 
Intuitively, this is so since the orbit of a massless particle is very close to the orbit 
of a massive particle chasing the first one very closely. Since the connection is a 
spacetime function, independent of the orbits, the inertial system µχ  of (2.3) 
describes all particles. 

If, instead of λ , an arbitrary parameter σ  is used, then Equation (2.1) be-
comes  

 ( ) ( ) ( )
2

2

d d ,
dd

p f p p
µ µχ χ

σσ
=                    (2.4) 

where  

 
22

2

d d ,
dd

f σ σ
λλ

−
 = −  
 

                      (2.5) 

while Equation (2.2) becomes  

 
2

2

d d d d
d d dd

x x x xf
µ ν κ µ

µ
νκω

σ σ σσ
+ =                  (2.6) 

at p. The connection µ
νκω  remains unchanged when we pass from the affine 

parameter λ  to the non-affine σ . Equation (2.2), Equation (2.6), as known, 
transform tensorially under coordinate transformations with f unchanged. As 
for the function f, it could in principle be different from geodesic to geodesic, 
depending on the selected parametrization on each one. 

If a coordinate system x̂µ  satisfies ( )
2 ˆ

0x p
µ

ν κχ χ
∂

=
∂ ∂

, while the parameter λ̂  

obeys ( )
2

2

d 0ˆd
pλ

λ
= , then ( )

2

2

ˆd 0ˆd
x p
µ

λ
= . Thus, it seems that ( )µχ λ  may not  

be unique around p with the property that “eats up’’ gravity, but other systems 

( )ˆx̂µ λ  could also exist with the same property. Indeed, for example, the glo-
bally rotated systems µ µ ν

νγ χ= , where µ
νγ  a general invertible constant ma-

trix, are also locally inertial with the same affine parameter λ , and satisfy (2.1), 
(2.3). In the following of this section, we will show the existence of other 
non-trivial such systems and construct them more systematically using two me-
thods. In the first method, from an arbitrary system xµ , another local inertial 
system xµ

  will be constructed for any sort of particles being present, such that 
( )xµ λ  satisfies (2.1) and also xµ

  can replace µχ  in (2.3). In this sense, 
another system yµ  will define its own local inertial frame yµ

 , different in 
general from xµ

 , such that again ( )yµ λ  satisfies (2.1), (2.3), and so on. The 
system ( )y yµ ν

  can also be expressed in terms of xµ  as ( )( )y y xµ ρ ν
 . The 

inertial systems and the way they are constructed in the first method do not lead 
to any inconsistency even if only massless particles are present. They rather con-
vince us in a more direct and manifest manner about the multiplicity of inertial 
frames and they lead to the Christoffel connection. In the second method, from 
an arbitrary but specific system µx , in the case where only massless particles 
are present, we will construct an infinity of local inertial frames ( )x xµ ν  such 
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that each one of them, along with its appropriate parameter λ , satisfies (2.1), 
i.e. ( )x µ λ  satisfies (2.1), while it also satisfies a deformation of (2.3). The sys-
tems x µ  are different in general from the systems , , , ,x yµ µ µ µχ  

  because 
the affine parameter λ  is different than λ . If a massive particle is present, the 
systems x µ  reduce to xµ

 , since a x µ  has to describe both massive and mass-
less particles. The existence of the systems x µ  in the purely massless case is the 
root for the proof of the claimed inconsistency. 

For an arbitrary coordinate system xµ , we define the coordinate system xµ
  

by the relation  

( ) ( ) ( ) ( )( ) ( )( )1 .
2

x x p x x p p x x p x x pµ µ µ µ µ ν ν κ κ
νκω− = − − − −         (2.7) 

Maybe a few xµ
  are defined, and not just one, due to the quadratic form of the 

defining equation. As µχ , the system xµ
 , due to Equation (2.7), is also valid 

for all particles. The components µ
νκω  of the connection in the coordinates xµ

  
are easily seen to have ( ) 0pµ

νκω = . Therefore, since Equation (2.2), Equation 
(2.6) hold for any system, applying them for x xµ µ=   we get the corresponding 
of (2.1), (2.4), i.e.  

 ( )
2

2

d 0
d

x p
µ

λ
=



                          (2.8) 

 ( ) ( ) ( )
2

2

d d .
dd

x xp f p p
µ µ

σσ
=

                      (2.9) 

Moreover, a direct calculation shows that the expression (2.3) is also valid with 
xµ
  playing the role of µχ , i.e. it is  

 
2x x

x x x

µ ρ
µ
νκ ρ ν κω ∂ ∂
=
∂ ∂ ∂





                      (2.10) 

at p.1 Obviously, due to (2.10), the connection at p defined by a system xµ
  

coincides with ( )pµ
νκω . These mean that for each coordinate system xµ , a 

corresponding local inertial system xµ
  can be defined with the same affine pa-

rameter λ . It can be noticed that Equation (2.7) defining xµ
  can be written 

equivalently in exactly the same form if xµ  is replaced by X xµ µ ν
νγ= , µ

νκω  
by the corresponding components ( ) ( )1 1σ τµ ρ µ

νκ στ ρ ν κ
ω γ γ γ− −Ω =  of the same 

connection in the X µ  coordinates, and xµ
  by X xµ µ ν

νγ=

 . The system X µ
  

satisfies (2.8), (2.9), while µ
νκΩ , X µ , X µ

  satisfy (2.10). Therefore, the (trivial) 
globally rotated frames of xµ

  are locally inertial with the same affine parameter 
λ  and arise from the class of the globally rotated systems of xµ , still within the 
formula (2.7). Since Equations (2.8)-(2.10) are analogous to Equation (2.1), Eq-
uation (2.4), Equation (2.3), someone might think that the systems xµ

  are not 

 

 

1Inversely, starting from a geodesic equation of the form (2.6) (with f the same for all coordinate 
systems) for an arbitrary torsionless connection µ

νκω , Equations (2.8)-(2.10) arise at p for the sys-

tem xµ
  of (2.7). Therefore, if a geodesic equation of some connection provides the orbits of free 

particles, Equation (2.1) is not anything fundamental, but it is a simple geometric fact that is always 
true; in the hands of Einstein, however, Equation (2.1) obtained a primitive role which allowed him 
to determine the connection. 
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something new, but they coincide with µχ  (or their rotations µ ). However, 
this is not true in general. Moreover, xµ

  is not the rotation of yµ
  in general. 

Therefore, various xµ
  exist, which are different from µχ  and different from 

each other. To see this, let xµ  defines through (2.7) the system xµ
 , while 

another system yµ  defines yµ
 . Let us suppose that xµ

  coincides with µ ν
νγ χ  

and yµ
  coincides with µ ν

ν χΓ , where ,µ µ
ν νγ Γ  are invertible constant matric-

es. Then, y xµ µ ν
ν= ∆  , where ( )1 κµ µ

ν κ ν
γ −∆ = Γ . This relation between ,x yµ µ

   
is shown not to be generic, even if ,x yµ µ

   are not related to µχ . Indeed, Equa-
tion (2.7) is a quadratic algebraic equation for xµ

  and its solution for xµ
  is 

some algebraic expression containing square roots. Similarly, we solve the 
second equation with yµ  for xµ

 ; it will have another form with square roots 
with some differences due to the different values of the connection in the yµ  
system and the possible existence of the free parameters µ

ν∆  wandering around. 
Equating the two expressions for xµ

  we get that the system yµ  is related to 
the system xµ  through a specific algebraic expression with square roots, con-
taining also various numerical values. Of course, such an expression does not 
exhaust an arbitrary coordinate system yµ , so the above relation of xµ

 , yµ
  

only rarely occurs. Therefore, formula (2.7) defines the first method mentioned 
above for the determination of various inertial frames. 

There are two non-trivial things happening for the geodesic Equation (2.6) 
with an arbitrary µ

νκω . First, Equation (2.6) is quasi-form invariant under changes 
of the parameter σ , something that does not happen in all ordinary differential 
equations, although a change of the independent variable is always a permissible 
transformation. This precisely means that the form of Equation (2.6) does not  

change if σ  is replaced by σ  and f by f


, where 
22

2

d d d
d dd

f f σ σ σ
σ σσ

−  = −  
  

  



 

(and to be more precise xµ  by xµ σ ). Therefore, when we have a connection 
µ
νκω  at hand (in a coordinate system), the choice of the function f does not af-

fect the geodesics (their point sets). So, while the new geodesic equation with f


 
to be solved is different than the original one with f, the geodesics are the same. 
The above expression for f



 is in agreement with (2.5) setting 0f =


 and 
σ λ= . 

Second, if q µ  is an arbitrary vector field, then  

 q qµ µ µ µ
νκ νκ ν κ κ νω ω δ δ= + +



                    (2.11) 

defines another torsionless connection. The value of µ
νκω



 at p depends on the 
value of q µ  at p and no differentiation of q µ  or µ

νκω  will appear. However, 
the values of q µ  along the geodesic will be used in order to make changes in 
the parameter σ  or λ , similarly to the fact that the various coordinate sys-
tems are also defined around p. The geodesic Equation (2.6) for µ

νκω  is written 
as  

 
2

2

d d d d
d d dd

x x x xf
µ ν κ µ

µ
νκω

σ σ σσ
+ =


                  (2.12) 
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at p, where  

 d2 .
d
xf f q
ρ

ρ σ
= +                         (2.13) 

Moreover, defining σ  by the equation  

 
22

2

d d d 0,
d dd

f fσ σ σ
σ σσ

 + − = 
 

                   (2.14) 

Equation (2.12) becomes  

 
2

2

d d d d
d d dd

x x x xf
µ ν κ µ

µ
νκω

σ σ σσ
+ =


                  (2.15) 

at p. Alternatively, Equation (2.15) can arise by first performing a parameter 
change from σ  to σ  in (2.6) and then introducing µ

νκω


 from (2.11). In the 
context of geometry, the previous equations for µ

νκω


 are valid not only at p as 
here, but along the whole curves, and then, since (2.12) is also the geodesic equa-
tion of µ

νκω


, this means that the geodesics of µ
νκω



, µ
νκω  coincide ( µ

νκω


 is 
called projectively equivalent to µ

νκω ). So, two projectively equivalent connec-
tions have different f’s with the same parametrization (i.e. σ ), or alternatively, 
they can have the same f with different parametrizations (i.e. ,σ σ ). In practice, 
Equation (2.15) for suitable ,q µ σ  can facilitate the finding of the geodesics. 
Hence, the connection µ

νκω


 defined by (2.11) is in some loose sense a sort of 
“gauge’’ transformation for the geodesics. For our purposes here, the validity of 
the previous equations at p will be enough. The inverse is also true, which means 
that any two connections which have all their geodesics the same are necessarily  

related by an equation of the form (2.11) [28] [29]. Indeed, if d
d
xv
µ

µ

σ
= , the geo-

desic equations of the projectively equivalent connections ,µ µ
νκ νκω ω


 are written 

as d
d
v v v hv
µ

µ ν κ µ
νκω

σ
+ = , d

d
v v v hv
µ

µ ν κ µ
νκω

σ
+ =
 

 for some appropriate functions  

,h h


. Therefore v v Hvν κ
µνκ µ∆ = , where µνκ µνκ µνκ µκνω ω∆ = − = ∆



, H h h= −


. 
The above algebraic condition for µv  implies that there are vector fields Aµ , 
Bµ , such that g A g Bµνκ µν κ µκ ν∆ = + . The symmetry property of µνκ∆  implies 
A Bµ µ= , and thus Equation (2.11) arises. 

We now focus to the case where only massless particles are present. We will 
find other local inertial frames, for which the equivalence principle holds, in a 
different way. Namely, using a single coordinate system xµ , we will define var-
ious systems x µ  (other than the global rotations of the corresponding system 
xµ
 ) such that still gravity is locally eliminated. If in particular we attach with 

such a x µ  the appropriate affine parameter λ , we will have the form (2.1) for 
( )x µ λ . Indeed, we have defined in (2.14) the parameter σ , such that the geo-

desic equation for µ
νκω



 at p takes the specific form (2.15). Define now the pa-
rameter λ  by the equation  

 
12

2

d d
dd

f λ λ
σσ

−
 

=  
 

                       (2.16) 
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and we get  

 
2

2

d d d 0
d dd

x x xµ ν κ
µ
νκω

λ λλ
+ =


                    (2.17) 

at p. The coordinate system x µ  defined by  

 ( ) ( ) ( ) ( )( ) ( )( )1
2

x x p x x p p x x p x x pµ µ µ µ µ ν ν κ κ
νκω− = − − − −



  (2.18) 

has vanishing components at p of the ω


 connection in the x µ  system, i.e. 
( ) 0pµ

νκω =


, quite similarly to what happens with Equation (2.7). Due to (2.18), 
the system x µ  is valid for all particles, massive and massless, similarly to what 
happens with the systems xµ

 . Since Equation (2.17) holds for any system, ap-
plying it for x xµ µ= , we get the corresponding of (2.1), i.e.  

 ( )
2

2

d 0.
d

x p
µ

λ
=                         (2.19) 

Moreover, it arises  

 
2x x

x x x

µ ρ
µ
νκ ρ ν κω ∂ ∂
=
∂ ∂ ∂

                     (2.20) 

at p. These mean that various local inertial coordinate systems x µ , each one 
with an appropriate affine parameter λ , arise from the projectively equivalent 
connections µ

νκω


 (as parametrized by q µ ). Due to (2.20), the connection at p 
defined by a system x µ  coincides with ( )pµ

νκω


. 
Since the role played by the parameter λ  is crucial, it is enlightening to 

simplify the previous analysis in order to make the situation even more clear. 
We consider in (2.12) the affine parameter λ  instead of the general parameter 
σ  and get  

 
2

2

d d d d d2
d d d dd

x x x x xq
µ ν κ ρ µ

µ
νκ ρω

λ λ λ λλ
+ =


             (2.21) 

at p. Equation (2.21) also arises directly from (2.2) introducing the quantity 
µ
νκω



. Then, we define directly the parameter λ  from the equation  

 
2

2

d d d2 .
d dd
xq
ρ

ρ
λ λ

λ λλ
=                     (2.22) 

Equation (2.22) also arises from the previous equations, since for 0f =  in 
(2.16), a solution can be λ σ= , and Equation (2.14) provides (2.22). Finally, 
changing in (2.21) from λ  to λ  according to (2.22), we get (2.17). We can 
summarize by saying that adding in (2.2) the qµ  terms in order to get the pro-
jectively equivalent connection µ

νκω


 as in (2.21), a non-affine geodesic arises 
which can be changed into the affine one (2.17) through (2.22). Equations (2.19), 
(2.20) follow exactly as before. The parameter λ  is different from λ  (2.or 
αλ β+  with ,α β  constants), otherwise Equation (2.22) would be inconsistent. 
So, the process is that a q µ  defines a µ

νκω


 through (2.11) and a λ  through 
(2.22), then a x µ  is defined through (2.18) and satisfies Equation (2.19), Equa-
tion (2.20). The above description shows that instead of changing the coordinate 
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systems to get other local inertial frames, we can stay at a single coordinate sys-
tem and just flip to projectively equivalent connections in order to get new local 
inertial frames. Therefore, formula (2.18) defines the second method mentioned 
above for the determination of inertial frames in the purely massless case. 

As in the case with the systems xµ
 , also here, Equation (2.18) defining x µ  

can be written equivalently in exactly the same form if xµ  is replaced by  
X xµ µ ν

νγ= , µ
νκω



 by the corresponding components  

( ) ( )1 1σ τµ ρ µ
νκ στ ρ ν κ

ω γ γ γ− −Ω =
 

 of the ω


 connection in the X µ  coordinates,  

and x µ  by X xµ µ ν
νγ= . The system X µ  satisfies (2.19), while µ

νκΩ


, X µ , 
X µ  satisfy (2.20). Therefore, the (trivial) globally rotated frames of x µ  are lo-

cally inertial with affine parameter λ  and arise from the class of the globally 
rotated systems of xµ , still within the formula (2.18). The systems x µ  are dif-
ferent in general (i) from the systems xµ

  or X µ
 , and (ii) from µ  and from 

each other. As for (i), this is seen by combining Equation (2.7), Equation (2.18) 
and x xµ µ ν

νγ= , from where it arises  
( ) ( ) ( ) ( ) ( ) ( )2p p x x p x x p x x pµ ρ µ ν ν κ κ µ µ ν ν

ρ νκ νκ ν νγ ω γ δ       −Ω − − = − −            



. 
There is no µ

νγ  such that the last equation is valid, since the left hand side is 
quadratic in ( )x x pµ µ−   while the right hand side is linear, and also xµ

  depends 
on xµ . The same fact can also be seen as follows. The solution of Equation (2.22)  

will in general have both ( )
2

2

d
d

pλ
λ

, ( )d
d

pλ
λ

 non-vanishing, since the opposite 

is a very special initial condition for the differential Equation (2.22), which means a 
very special choice for the solution ( )λ λ . If x xµ µ ν

νγ= , then Equation (2.19), 

(2.8) would give ( )
2

2

d 0
d

pλ
λ

= , which is incompatible in general. As for (ii), let  

a q µ  defines µ
νκω



 and x µ , while another q µ  defines µ
νκω





 and x µ . If 
x µ µ ν

νγ χ=  and x µ µ ν
ν χ= Γ , then x xµ µ ν

ν= ∆ , where ( )1 κµ µ
ν κ ν

γ −∆ = Γ . This 
relation between ,x xµ µ  is not generic, even if ,x xµ µ  are not related to µχ . 
Indeed, from Equation (2.18) applied twice for ,x xµ µ , we get  

( ) ( ) ( ) ( )

( ) ( )2

p p x x p x x p

x x p

µ ρ σ µ ν ν κ κ
ρσ ν κ νκ

µ µ ν ν
ν ν

ω ω

δ

     ∆ ∆ − − −    
 = ∆ − − 

 

 . As before, there is no 

µ
ν∆  such that the last equation is valid, since the left hand side is quadratic in 

( )x x pµ µ−  while the right hand side is linear, and also x µ  depends on xµ . 
The same conclusion is also derived from Equation (2.22) applied twice for 

,λ λ , and we get ( )
22

2

d d d d2
d d dd

xq q
ρ

ρ ρ
λ λ λ

λ λ λλ
 

= − 
 

. If x xµ µ ν
ν= ∆ , then Equa-

tion (2.19) applied twice for ,x xµ µ  provides ( )
2

2

d 0
d

pλ
λ

= , and therefore 

( ) ( )q p q pµ µ= , which is inconsistent in general. 

When massive particles are not present, the root of the claimed inconsistency 
lies on the existence of the local inertial frames x µ  which give rise to the pro-
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jectively equivalent connections µ
νκω



 according to (2.20). If, however, massive 
particles are present, the existence of proper time for the massive particles 
changes completely the situation and the systems x µ  reduce to xµ

 . Equation 
(2.17), Equation (2.19) for the massive particles should have λ λ τ= =  (or 
ατ β+ ) since the weak equivalence principle in the form (2.1) has embedded 
the assumption of proper time. Although the affine parameters between massive 
and massless particles are different, the system x µ  should be the same for both. 
Equation (2.22) for a massive particles provides 0q µ = , thus µ µ

νκ νκω ω=


 and 
x xµ µ=  . Therefore, if massive particles are present, the Christoffel connection 
arises normally and no inconsistency occurs. The same conclusion arises, al-
though in a little more complicated way, if we think the presence of massive par-
ticles in terms of the general non-affine parameter σ  instead of the proper 
time. Indeed, Equation (2.16) defines the parameter ( )σ τ . Since λ λ τ= = , 
Equation (2.16), Equation (2.5) coincide, and thus σ σ=  (up to a possible ad-
ditive constant). Hence, from Equation (2.14) it arises f f=  and (2.13) gives 

0q µ = . In other words, a general µ
νκω



, different than µ
νκω , satisfies for mas-

sive particles Equation (2.21) with a non-vanishing right hand side, in contrast 
to Equation (2.2), which means that x µ  satisfies (2.19) and not the axiom of 
the weak equivalence principle for massive particles in the form (2.1). Finally, let 
us finish with a hypothetical comment: If x µ  for timelike particles was differ-
ent than x µ  for null particles (which is not the case), then the construction of 
the systems x µ  would invalidate the derivation of the Christoffel connection 
even in the presence of massive particles. 

3. The Local Lorentz Frames 

Given a spacetime metric gµν , for a given point p there is a surrounding coordi-
nate system x µ′ , such that the corresponding components have ( )g pµν µνη′ = . 
This is an issue of linear algebra since the matrix ( )g pµν  can always be diago-
nalized and x µ′  can be constructed such that the vectors x µ′∂ ∂  at p coincide 
with the orthonormal vectors of diagonalization. Therefore, an infinite number 
of such systems x µ′  exist. Indeed, any system x µ′′ , such that ( )x x pµ µ′′ ′′−  
equals ( )x x pµ µ′ ′−  plus quadratic or higher powers of ( )x x pµ µ′ ′− , has 

( )g pµν µνη′′ = . While the weak equivalence principle intents to embody gravity, 
a metric with spacetime signature intends to embrace special relativity. Although 
the local Minkowski structure is always present (basically through the tangent 
space) and a coordinate system exists such that the metric locally coincides with 
the Minkowski metric, obviously there are coordinate systems around p with 

( )g pµν µνη≠ . In an arbitrary coordinate system xµ  it holds  

 x xg
x x

ρ σ

µν ρσµ ν η
′ ′∂ ∂

=
∂ ∂

                      (3.1) 

at p. This equation cannot be true in a whole neighborhood around p, since then, 
the space would be Minkowski in a whole neighborhood, which certainly is not 
the situation that one wants to describe. Today, a metric gµν  is considered as a 
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fundamental object, but it was not always obvious that such a gµν  should exist 
and generalize the Minkowski metric in the presence of gravity. It seems that 
what is called Einstein equivalence principle implies the existence of a gµν  
which is locally Minkowski2. This principle extends the weak equivalence prin-
ciple and requires the independency from the direction and spacetime position 
for any freely falling frame (where inhomogeneities of the external fields are ig-
norable) of any local non-gravitational test experiment. Thus, the metric arises 
as a direct result of the existence of the freely falling frames together with their 
direction insensitivity (local Lorentz invariance of the non-gravitational laws of 
physics) and position independency (see [32], p. 23 for more details). However, 
the selection of the Christoffel connection is not automatic and has to be justi-
fied. 

Another coordinate system x µ′ , more specific than x µ′ , can be defined 
through the relation  

( ) ( ) ( ) ( )( ) ( )( )1 ,
2

x x p x x p p x x p x x pµ µ µ µ µ ν ν κ κ
νκ′ ′ ′ ′ ′ ′ ′ ′ ′− = − − Γ − −       (3.2) 

where µ
νκ′Γ  are the components of the Christoffel connection in the system 

x µ′ . Then, it is easily seen that ( )g pµν µνη′ =  and ( )g x κ
µν′ ′  has vanishing  

first derivatives at p, i.e. ( ) 0
g

p
x
µν
κ

′∂
=

′∂





, ( ) 0pµ
νκ′Γ =



 (the small circle above the  

corresponding symbols reminds us notationally of these zero values). Also, Equ-
ation (3.1) holds at p with x µ′  taking the place of x µ′ . These are simple geo-
metrical facts which are generally true and are sometimes useful for performing 
proofs in tensor analysis. A system x µ′  is called local Lorentz frame (or local 
Minkowski frame) around p. Therefore, gravitation, which is manifested 
through gµν  (and possibly other fields), is a second-order effect. Certainly the 
existence of coordinate systems such as x µ′ , or even more x µ′ , expresses the 
fact that a gravity theory agrees locally with special relativity to a good approxi-
mation. In an arbitrary coordinate system xµ  it is  

 .
x xg g
x x

ρ σ

µν ρσµ ν

′ ′∂ ∂ ′=
∂ ∂

 

                         (3.3) 

Differentiation of (3.3) gives  

 
2 2g x x x x

x x x x x x x

ρ σ ρ σ
µν

ρσ ρσκ µ ν κ ν µ κη η
∂ ′ ′ ′ ′∂ ∂ ∂ ∂

= +
∂ ∂ ∂ ∂ ∂ ∂ ∂

   

            (3.4) 

at p. 
If we consider the (global) Lorentz transformation x xµ µ ν

ν−′ ′= Λ  of x µ′ , then 
the corresponding metric gµν−′  also has the property ( )g pµν µνη−′ = . Accordingly,  

the systems x xµ µ ν
ν−′ ′= Λ 

  satisfy ( )g pµν µνη−′ = , ( ) 0
g

p
x
µν
κ

−

−

′∂
=

′∂





, so they define  

other local Lorentz frames. Equation (3.2) defining x µ′  can be written equiva-

 

 

2The Hughes-Drever experiment rules out the existence of more than one second-rank tensor field 
both coupling directly to matter, however, vector and tensor fields which couple only to gravity or to 
matter’s self gravitational energy are not ruled out [30] [31]. 
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lently in exactly the same form if x µ′  is replaced by x µ−′ , µ
νκ′Γ  by the cor-

responding components ( ) ( )1 1σ τρ µ
στ ρ ν κ

− −′Γ Λ Λ Λ  of the Christoffel connection 
in the x µ−′  coordinates, and x µ′  by x µ−′ . Therefore, the globally rotated sys-
tems of x µ′  arise from the class of the globally rotated systems of x µ′ , still 
within the formula (3.2). Equation (3.3), Equation (3.4) remain the same with 
x µ−′  substituting x µ′ . 

4. The Proof of the Inconsistency 

The notion of connection (which determines the free fall of particles) and the 
notion of metric (which embodies the local Minkowski structure) are in general 
unrelated. It was Einstein’s ingenuity to relate them in order to determine the 
connection µ

νκω . So, the Christoffel connection arises by the identification of a 
freely falling frame µχ  or xµ

  with a local Lorentz frame x µ′ , i.e. xµ µχ ′=   
or x xµ µ′= 

 . Substituting the second derivatives in (3.4) from (2.3) or (2.10), 
and making use of (3.1) for x µ′ , it arises  

 
g

g g
x
µν σ σ

µσ νκ νσ µκκ ω ω
∂

= +
∂

                    (4.1) 

at p. This is the known equation of vanishing non-metricity and for a torsionless 
connection it gives, after some algebraic manipulation, the Christoffel connection,  

 µ µ
νκ νκω = Γ                           (4.2) 

at p. The connection was found to be the Christoffel connection at the point p, 
and since the same can be repeated for any point, finally the Christoffel connec-
tion arises globally. 

If massive particles are present (possibly together with massless), no systems 
x µ  exist other than xµ

 , as explained in Section 2, due to the existence of prop-
er time assumed in the weak equivalence principle for massive particles. Thus, 
nothing more can be said beyond Equation (4.2) which is the final word for the 
connection. For a massive particle with λ τ=  we have the obvious equation  

d d d 0
d d d

x xg
µ ν

µνλ λ λ
 

= 
 

. The left hand side of this equation, after making use of  

(2.2) for the connection (4.2), turns out to be identically zero. This is a consis-
tency check for the assumption λ τ=  in (2.1). 

On the other hand, if only massless particles are present, the freely falling 
frames µχ , xµ

  still exist, but now the extra local inertial frames x µ  are also 
present. Each one of all these systems should be identified with some local Lo-
rentz frame x µ′ . For xµ µχ ′=   or x xµ µ′= 

 , Equation (4.1), Equation (4.2) at 
p arise in exactly the same way as before. However, the unavoidable identifica-
tion of x µ  with some x µ′ , i.e. x xµ µ′=  , gives some extra conditions. Indeed, 
substituting the second derivatives in (3.4) from (2.20), and making use of (3.1) 
for x µ′ , it arises  

 
g

g g
x
µν σ σ

µσ νκ νσ µκκ ω ω
∂

= +
∂  

                   (4.3) 
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at p. Again, algebraic manipulation of Equation (4.3), as before, provides that 
µ
νκω



 is the Christoffel connection, i.e.  

 µ µ
νκ νκω = Γ



                         (4.4) 

at p. Combining Equation (4.2), Equation (4.4) gives 0q qµ µ
ν κ κ νδ δ+ =  at p. 

Multiplication of this equation with qµ  gives 0q qν κ =  at p. This last equation 
obviously gives 0q µ =  at p. To get this result even more manifestly, since q µ  
is arbitrary, there are various vector fields q µ  with non-vanishing magnitude at 
p, i.e. 0q qµ µ ≠  at p. Considering equation 0q qν κ =  for such a q µ  and 
multiplying with qκ , we get 0qν = . Equation 0qν =  at p is certainly incon-
sistent since q µ  is arbitrary. Therefore, we have proved that the identification 
of a local inertial frame with a local Lorentz frame in the purely massless case is 
meaningless and does not provide any connection (Christoffel or other). The 
reason for this inconsistency is the absence of proper time and the existence of a 
distinct affine parameter λ , a different one for each local inertial frame µx , 
which satisfies Equation (2.19). The local inertial systems ( )x µ λ  are equally 
good as the local inertial systems ( )µχ λ  or ( )xµ λ  which satisfy Equation 
(2.1), Equation (2.8). The infinite number of the local inertial systems x µ  arise 
from the infinite number of the projectively equivalent connections µ

νκω


, 
which are parametrized by the vector field q µ . The inconsistency is due to that 
any such connection turns out to coincide with the Christoffel connection. If for 
massive particles it was not assumed that the affine parameter is the proper time, 
then it becomes obvious that the same inconsistency would occur along Equa-
tion (4.3), Equation (4.4) even in the presence of massive particles. 

5. Conclusions 

The assumption of the existence of a local inertial coordinate system around a 
spacetime point, for which the weak equivalence principle is valid, automatically 
implies the existence of infinitely many other such systems. The identification of 
any such system with a local Lorentz coordinate system implies that the Chris-
toffel connection controls the kinematics of all particles. However, if only mass-
less particles are present, the situation changes drastically and we show that the 
identification of a freely falling frame with a local Lorentz frame is meaningless 
and no connection arises. The presence of the conformal structure for massless 
particles, instead of the Lorentz one, does not influence our result. 

The reason for this inconsistency is that the absence of proper time in the 
purely massless case allows for the existence of even more local inertial coordi-
nate systems x µ . Technically, these last systems arise from the existence of pro-
jectively equivalent connections µ

νκω


 through the expression (2.18) and are 
parametrized by a vector field q µ  along the formula (2.11). The appropriate af-
fine parameter λ  of these systems for the null particles is defined from (2.22) 
and Equation (2.19) of free motion is derived, as well as the corresponding geo-
desic Equation (2.17). The inconsistency arises from Equation (2.20), when it is 
attempted to identify x µ  with a local Lorentz frame, since all the connections 
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µ
νκω



 turn out to coincide with the Christoffel one. 
Christoffel connection is theoretically significant in physics not because it is 

introduced as an axiom, or because it is economical and solely constructed in 
terms of the metric, but because it arises as a result of basic ideas concerning 
particle kinematics. If there are spacetime regions where only massless particles 
exist and no massive particles are present to move in the interior of the null 
cone, the Christoffel connection cannot arise out of the above particle kinemat-
ics, and therefore, this connection probably loses its overall significance as an 
exact connection of spacetime. A connection arising from different ideas of par-
ticle kinematics, which are meaningful in the whole of spacetime, is probably 
more satisfactory conceptually. 

In the early universe, before spontaneous symmetry breaking at electroweak 
scale, all particles are expected to be massless. In this region, which is not ex-
pected to be the full quantum gravity regime, notions such as orbits are still 
meaningful classically or semiclassically. The massless particles in this spacetime 
region have to decide about their motion in a gravitational environment, but 
they cannot be based on the notion of a massive particle which appears later in 
time. Therefore, the kinematical emergence of Christoffel connection in this re-
gion breaks down and can set in doubt its overall reliability. Other spacetime re-
gions with only massless particles could be imagined, although probably with no 
strong arguments, such as the very interior of astrophysical objects or black 
holes, or relevant objects in the presence of extra dimensions. 

Let us finish with an interesting remark. Suppose we have a gravity theory 
where a connection (or some of its components) is part of the dynamical fields. 
There are three options. In the first, one insists, due to Einstein’s kinematical 
arguments, that the motion of particles is still governed by the Christoffel con-
nection and that the other connection only indirectly influences the orbits 
through its interaction with the metric. However, this reasoning is insufficient 
whenever the previously shown inconsistency of the derivation of Christoffel 
connection is valid. In the second option, the orbit is governed by the geodesic 
equation of the connection which caries torsional or non-metricity degrees of 
freedom. In general, this equation will not preserve in time the nullity constraint 
of a massless particle, except if this demand is appropriately taken into account, 
possibly in the construction of the connection. In the third option, the motion of 
the particles is provided by some action. This action can either refer to extended 
fields which give the equation of motion for the particle through the geometric 
optics limit, or it can be a delta-like action providing the orbit directly. Beyond 
that there are many correction terms that can be added in such actions, similarly 
to the second case, the respect to the nullity condition only occasionally is ex-
pected to occur, if not built-in inside the action. 
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