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Abstract

Ultrahyperfunctions (UHF) are the generalization and extension to the com-
plex plane of Schwartz’ tempered distributions. This effort is an application
to Einstein’s gravity (EG) of the mathematical theory of convolution of Ul-
trahyperfunctions developed by Bollini ef al [1] [2] [3] [4]. A simplified ver-
sion of these results was given in [5] and, based on them; a Quantum Field
Theory (QFT) of EG [6] was obtained. Any kind of infinities is avoided by
recourse to UHF. We will quantize EG by appealing to the most general
quantization approach, the Schwinger-Feynman variational principle, which
is more appropriate and rigorous that the popular functional integral method
(FIM). FIM is not applicable here because our Lagrangian contains derivative
couplings. We follow works by Suraj N. Gupta and Richard P. Feynman so as
to undertake the construction of an EG-QFT. We explicitly use the Einstein
Lagrangian as elaborated by Gupta [7], but choose a new constraint for the
ensuing theory. In this way, we avoid the problem of lack of unitarity for the
S matrix that afflicts the procedures of Gupta and Feynman. Simultaneously,
we significantly simplify the handling of constraints, which eliminates the
need to appeal to ghosts for guarantying unitarity of the theory. Our ap-
proach is obviously non-renormalizable. However, this inconvenience can be
overcome by appealing to the mathematical theory developed by Bollini et al.
[1] [2] [3] [4] [5]. Such developments were founded in the works of Alexan-
der Grothendieck [8] and in the theory of Ultradistributions of Jose Sebastiao
e Silva [9] (also known as Ultrahyperfunctions). Based on these works, an
edifice has been constructed along two decades that are able to quantize
non-renormalizable Field Theories (FT). Here we specialize this mathemati-
cal theory to discuss EG-QFT. Because we are using a Gupta-Feynman in-
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spired EG Lagrangian, we are able to evade the intricacies of Yang-Mills theo-
ries.
Keywords

Quantum Field Theory, Einstein Gravity, Non-Renormalizable Theories,
Unitarity

1. Introduction

Quantifying Einstein gravity (EG) remains an open question, a kind of su-
preme desideratum for quantum field theory (QFT). The failure of some at-
tempts in this direction is due to the fact that 1) they appeal to Rigged Hilber
Space (RHS) with undefined metric, 2) problems of non-unitarity, and also 3)
non-renormalizablity issues.

Here we build up a unitary EG’s QFT in the wake of related efforts by Suraj
N. Gupta [7]. We deviate from his work by using a different EG-constraint,
facing then a problem similar to that posed by Quantum Electrodynamics
(QED). In order to quantize the concomitant non-renormalizable variational
problem we appeal to mathematics developed by Bollini ez al [1] [2] [3] [4] [5],
based upon the theory of Ultradistributions de J. Sebastiao e Silva (JSS) [9], also
known as Ultrahyperfunctions (UHF). Any kind of infinities is avoided by re-
course to UHF. The above cited mathematics was specifically devised to quantify
non-renormalizable field theories. We consequently face a theory similar to
QED, but endow with unitarity at all finite orders in power expansions in G
(gravitation constant) of the EG Lagrangian. This was attempted without success
first by Gupta and then by Feynman, in his Acta Physica Polonica work [10].

Mathematically, quantifying a non-renormalizable field theory is tantamount
to suitably defining the product of two distributions (a product in a ring with
zero-divisors in configuration space), an old problem in functional theory
tackled successfully in [1] [2] [3] [4] [5].

Remarking that, in QFT, the problem of evaluating the product of distribu-
tions with coincident point singularities is related to the asymptotic behavior of
loop integrals of propagators.

In references [1] [2] [3] [4], it was demonstrated that it is possible to define a
general convolution between the ultradistributions of JSS [9] (Ultrahyperfunc-
tions). This convolution yields another Ultrahyperfunction. Therefore, we have a
product in a ring with zero divisors. Such a ring is the space of distributions of
exponential type, or ultradistributions of exponential type obtained applying the
anti-Fourier transform to the space of tempered ultradistributions or ultradi-
stributions of exponential type.

We must clarify at this point that the ultrahyperfunctions, our present prota-
gonists, are the generalization and extension to the complex plane of the

Schwartz tempered distributions and the distributions of exponential type. That
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is the tempered distributions and those of exponential type are a subset of the
ultrahyprefunctions.

In our work we do not use counter-terms to get rid of infinities, because
our convolutions are always finite. We do not want counter-terms, since a
non-renormalizable theory involves an infinite number of them.

At the same time, we conserve all extant solutions to the problem of running
coupling constants and the renormalization group. The convolution, once obtained,
converts configuration space into a ring with zero-divisors. In it, one has now
defined a product between the ring-elements. Thus, any unitary-causal-Lorentz in-
variant theory quantified in such a manner becomes predictive. The distinction
between renormalizable on non-renormalizable QFT’s becomes unnecessary
now.

With our convolution, that uses Laurent’s expansions (LE) in the parameter
employed to define the LE, all finite constants of the convolutions become com-
pletely determined, eliminating arbitrary choices of finite constants. This is tan-
tamount to eliminating all finite renormalizations of the theory. The indepen-
dent term in the Laurent expansion yield the convolution value. This translates
to configuration space the product-operation in a ring with divisors of zero.

We have already obtained an EG-OFT in [6] by recourse to the mathematics
elaborated in [5]. What we do here is an extended EG-QFT, using the more gen-
eral mathematical approach of [3].

The manuscript is organized as follows:

o Section 2 presents preliminary materials.

e In Section 3 we introduce the convolution of Ultrahyperfunctions, our
present protagonists.

o Section 4 is devoted to the QFT Lagrangian for EG.

o In Section 5 we quantize the ensuing theory.

o In Section 6 the graviton’s self-energy is evaluated up to second order.

o In Section 7 we introduce axions into our picture and deal with the axions gravi-
tons interaction.

o In Section 8 we calculate the graviton’s self-energy in the presence of axions.

o In Section 9 we evaluate, up to second order, the axion’s self-energy.

« Finally, in Section 10, some conclusions are drawn.

2. Preliminary Materials

We do not deal in this effort with the popular functional integral method (FIM).
Instead, we appeal here to the most general quantification approach, Schwing-
er-Feynman variational principle [11], which is able to deal even with high order
supersymmetric theories, as exemplified by [12] [13]. Such theories cannot be
quantized with the usual Dirac-brackets technique.

We introduce the action for a set of fields defined by

S[a(x),oo,mx)]=J(IX)K[«ﬁA(f)wA(é),f]df, (2.1)
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where o(x) if a space-like surface passing through the point x. o, is that

surface at the remote past, at which all field variations vanish. The Schwing-

er-Feynman variational principle dictates that:

“Any Hermitian infinitesimal variation 68 of the action induces a canonical

transformation of the vector space in which the quantum system is defined, and

the generator of this transformation is this same operator S ”.

Accordingly, the following equality holds:
P, =i[68,4,].

Thus, for a Poincare transformation we have
oS =a“P +1a""M
- “9 v

where the field variation is given by

- 1 en
é‘¢a = a”P,u¢A +Ea‘u MyV¢A'

From (2.2) one gathers that
0, =[Pty )
Specifically,
Ootn = ([P ]-

This last result will be employed in quantizing EG.

(2.2)

(2.3)

(2.4)

(2.5)

(2.6)

3. The Convolution of Two Lorentz Invariant Tempered

Ultradistributions

In [3] we have obtained a conceptually simple but rather lengthy expression for

the convolution of two Lorentz invariant tempered ultradistributions:

H,(p.A)

1

- J.J.F(pl)G(pz)pfp; ®|:S(,D):| [ln(—p1 +A)=In(-p, —A):|

2
8np T,

x[IN(=p, + A)=In(=p, = A) 4 (o, + A)(p, + A) = (p = py — p, —2A)’

<IN \/4(p1+A)(pz+A)_(P—P1—Pz—21\)2 —i(p—p—p,—2A)

2\/(,01 +A)(p, +A)

+[In(p,+A)=In(p,—A)|[In(p, +A)=In(p, — A)]

><\/4(p1—/\)(p2 _A)_(p_pl_pZ +2A)2

o Ja(p~A)(p, ~A)~(p—py —p, +20) ~i(p—p, —p, +2A)

2 (Pl _A)(pz _A)

-1-[|n(pl +A)=In(p, —A)][In(—p2 +A)=In(-p

2 _A)]
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X{%[\/‘l(pl +A)(p, = A)=(P-pi =P, )2 “ilp-pi-p, )}

+\/4(P1 +A)(p2 _A)_(p_pl —P; )2
o VAo + M) (s ~A)—=(p-p—ps ) ~i(p=pr— )
2i\/—(,ol -i—A)(p2 —A)

+[In(=p, +A)=In(=p, = A)][In(p, + A)=In(p, —A)]

X{%N“(pl/\)(pz +A)=(p=p=p,) ‘i(p‘pl_pzﬂ

\/4 pl p2+A (,0 pl_pz)z

{\/4 P p2+A (p plpz)zi(pplpz):H%
)

2'\/ (o =A)(p, +A

-6[-5(p)] {['“ (=it A)=In(=p,=A)J[In(=p, + A)=In(=p, ~A)]

\/4 ,01 (,0 PP +2A)2
\/4 (o - )=(p=p—p, +20) —i(p—p,— p, +2A)
2 (p1 )(pz _A)

+[In(p,+A)-In(p, ~A)][In(p, +A)=In(p, -A)]
x\J4(py+A) (0, + M) =(p—p.— P, ~2A)
X|n|:\/4(p1+/\)(p2+/\)(pplp22/\)2i(pplpZZA):l
2|(p+A)(p, +A)
+[In(p,+A)=In(p, = A)][In(=p, +A)=In(=p, = A)]

X{%M(pw)(pz “N)~(p-p-p) ilp-p-p,)]

+\/4 (. =A)(p, +A)=(p-p = p,)

|:\/4 P p2+A (,0 plpz)zi(pplpz)]}

ZI\/ (p—A)(p, +A)

+[In(=p, +A)=In(=p, = A)|[In(p, +A)=In(p, —A) ]

X{%[le(plw)(pzA)(pplpzf -i(o-pp)

Ao+ M) (o —-A)—(p-pi—p, )

DOI: 10.4236/jmp.2020.113024 382 Journal of Modern Physics


https://doi.org/10.4236/jmp.2020.113024

A. Plastino, M. C. Rocca

Xl{x/“(ﬂﬁf\)(/)z ~A)=(p-pi-p,) —i(p—pl—pz)}

Zi\/_(pl +A)(p, = A)

(I A)=In(=p = A)][In (=, + A)=In (=, )]
x(pl—pz)_ln i /%Jnn(—i Zi—:i }
+[In(p,+A)=In(p,—A)|[In(p, +A)=In(p, —A)]

[A=p; A+ p
X(pl—pz)_h’l —i rzz]””[' fr,’zz }
+[In(p+A)=In(p,—A)|[In(=p, +A)=In(=p, — A)]

A+p A-p
{n-o a2
+%['”(‘P1_pz+A)_|n(_p1_p2_A)

=In(p,+p, +A)+In(p+ p, = A) |+ p,[IN(=p,— p, + A)

—|n(—p1—p2—A):|+p1[|n(p1+p2+A)—|n(pl+p2—A):'

[In(=p,+A)=In(=p, = A)][In(p, + A)=In(p,— A)]
A-p A+p

x (/Jl—pz){'”( ri;]””(,//\_—i}:l

+%[In(pl+p2 +A)=In(p,+p,—A)

=In(=p,=p, + A)+In(=p, - p, _A)]+p1[|n(_p1 —p2+A)

_In(_pl_pz —A):|+p2[|n(p1+p2 +A)_|n(/71 TP, _A)]

This defines an ultradistribution in the variables p and A for

[3(p)[>3(A)>[3(p1)| |3 (p2 )

to other parts of 3. Thus, we define

(3.1)

dpdp,

Let B be a vertical band contained in the complex A -plane 3. Integral
(3.1) is an analytic function of A defined in the domain 2. Moreover, it is

bounded by a power of |pA|. Then, H,(p,A) can be analytically continued

H(p)=H"(p,i0") (3.2)
H, (p,i0") = S H® (p,i0")2" (3.3)
“m
As in the other cases, we define now
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{F*G}(p)=H(p) (3:4)

as the convolution of two Lorentz invariant tempered ultradistributions.
The Feynman propagators corresponding to a massless particle Fand a mas-

sive particle G are, respectively, the following ultrahyperfunctions:
F(p)=-06[-3(p)]p"

G(p)=-06[-3(p)](p+m?)" (3.5)

where p isthe complex variable, such that on the real axis one has

p =kZ+kZ+kZ—kZ. For them, the following equalities are satisfied
P'F(p)=-0[-3(p)]p""
PG (p)=-6[-3(p)](p+m?)" (3.6)

l .
where we have used: ( p+ mz) = p*, since we have chosen m to be very small.

On the real axis, the previously defined propagators are given by:
f(p)=F(p+i0)-F(p-i0)=(p-i0)"
9(p)=G(p +i0)~G(p—-i0)=(p+m? ~i0) " (3.7)

These are the usual expressions for Feynman propagators.

Consider first the convolution of two massless propagators. We use (3.6),
since here the corresponding ultrahyperfunctions do not have singularities in the
complex plane. We obtain from (3.1) a simplified expression for the convolu-

tion:
. 1
h(P)=5, [ (p:=10) (0, =i0) [ (P =P = £.)" ~ 410, [ dpip, (3.8)

This expression is nothing other than the usual convolution:
h,(p)=(p—i0)" *(p-i0)"" (3.9)
In the same way, we obtain for massive propagators:
h/l(p):(pﬂ-mz—iO)/H*(p—mz—iO)lil (3.10)
These last two expressions are the ones we will use later to evaluate the gravi-
ton’s self-energy.

4. The Lagrangian of Einstein’s QFT

Our EG Lagrangian reads [7]
1 1 o Ly
Lo = Rylo| =2 ma0.n* 0 h, 4.1)

where 7" =diag (1,1,1,—1) , h* = Mg”v The second term in (4.1) fixes the
gauge. We effect now the linear approximation

h* =n“ + kg, (4.2)

where x” is the gravitation’s constant and ¢’ the graviton field. We write
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Lo=L +L,, (4.3)

where
L =- [ B0 P —20,0,,0° 9" +20°$,,0 49" ] (4.4)
and, up to 2nd order, one has [7]:
2" [2 0,870, +0,6,,0" ¢ - am,,paw] (4.5)
having made use of the constraint
¢, =0. (4.6)

This constraint is required in order to satisfy gauge invariance [14] For the gra-

viton we have then

04,, =0, (4.7)

whose solution is

¢#V: 1 J‘ a/,v( ) ik, XK ( ) ~ik,, xH dgk, (48)

with Kk, =K|.

5. Quantization of the Theory

We need some definitions. The energy-momentum tensor reads
Th oL

=Y )

and the time-component of the four-momentum is

R = IT00d3X- (5.2)

Using (4.4) we have

1 v i uv o j 4ua
TO0 - 2[60¢yv60¢ﬂ + aj¢yvaj¢# - 26a¢/4060¢# - 2aa¢#jaj¢!

(5.3)
+20,0"“00fy +20,4"°0 4} |-
Consequently,
P, = %“k[am (K)a™ (k)+a™" (k)a,, (k)]d%. (5.4)
Appeal to (2.6) leads to
[’Po,a#v (k)] =—koa,, (k)
[R.a (k) |=ka™ (k). (5.5)
From the last relation in (5.5) one gathers that
k|a** (k") j| [, (l),a (k') Ja (k). (5.6)

The solution of this integral equation is
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[a,,(k).a™" (K')]=[ 0,5 + 805, [6(k-K). (5.7)

v Oy
As customary, the physical state |y/> of the theory is defined via the equation
i/|v)=0. (5.8)
We use now the usual definition
A% (x=y)=(0[T[ 4, ()¢ (¥)]|0)- (5.9)
The graviton’s propagator then turns out to be

ik/,(x"—y/‘)
| e

As a consequence, we can write

m(x=y)=

j|k|[ (k)a™ (K')+a™ (k)a,, (k)]s (k-K)d°kdk’, (5.11)
or
P, :%j|k|[2a“’"(k’)aﬂv(k) +5(k-Kk)]o(k-K)dkd’k'.  (5.12)
Thus, we obtain
P =2 [ka ™ (K)a, (K)o, (513)

where we have used the fact that the product of two deltas with the same argu-
ment vanishes [1], e, &(k—k')§(k—k')=0. This illustrates the fact that us-
ing Ultrahyperfunctions is here equivalent to adopting the normal order in the

definition of the time-component of the four-momentum
1
P = Z”k| [a. (K)a™ (k)+a™ (k)a,, (k)]:d%. (5.14)

Now, we must insist on the fact that the physical state should satisfy not only
Equation (5.8) but also the relation (see [7])
2,0" |w)=0. (5.15)

The ensuing theory is similar to the QED-one obtained via the quantization
approach of Gupta-Bleuler. This implies that the theory is unitary for any finite
perturbative order. In this theory only one type of graviton emerges, ¢, while
in Gupta’s approach two kinds of graviton arise. Obviously, this happens for a

non-interacting theory, as remarked by Gupta.

Undesired Effects of NOT Using Our Constraint

If we do NOT use the constraint (5.8), we have
P =21 2 (8,00 - a7 (W3t (k) Jok (5.16)

and, appealing to the Schwinger-Feynman variational principle we find

[K|a, (k') ——Ilkl{ a™ (k)| @, (k).a;, k)] ([ (k), apl(k)]}d3k,(5.17)
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whose solution is
[, ()25 (K) = 2hi + gl = 11, |3 (K=K, (5.18)

The above is the customary graviton’s quantification, that leads to a theory

whose $matrix in not unitary [7] [10].

6. The Self Energy of the Graviton

To evaluate the graviton’s self-energy (SF)c we start with the interaction Hamil-

tonian 7, . Note that the Lagrangian contains derivative interaction terms.

oL,

H, = o ¢ - L,. (6.1)
A typical term reads
L \A-1 a1
e (K) =Ky Ky, (0 =10)" 7%k, Kk, (0 —i0) (6.2)
where p =k’ +kZ +kZ —k?
The Fourier transform of (6.2) is
Fl Kk, (p=10) 7k, k,, (p=i0)"]
20 r(2+A) ] e
= X+i0
41_, (1 _ 1)2 77a1a2 770(30:4 ( )
2P (24 )T (3+ 4 s &)
+ ( ) 2( )( aap ag Xa4 + 770(3(24 Xa1 Xaz )(X + IO) e
2F(1— /1)
21 (34 2)° 2

_—F(l—ﬁ) Xgy X X Xy (X +10)
where X = X2+ X2 + X2 — X

Anti-transforming the above equation we have
L \A- L \A-1
K, k., (p—10)"" =k, k, (p—-i0)

in’ {r(mz){ r(2+4) , T(3+4)

m r(22+4) T(24+ 5)}7"1“2 Nazas

r(4+3)

- ~A\24+2
+ m(naqaz ’70(30:4 + na2a377a1a4 + 770:20:4’7a1a3 )}r(_ZA - 2)(10 - IO)

+ ( ){ ( ) F(V +1)(77a1az kasktu +77a3a4k0‘1k“2)

2r(1-2)* |[(22+5)
I'(1+3)

+ s Ko K + Ty Ko K )}r(—zz ~1)(p—i0)"*" (6.4)

in’l(4+3)°

F(1-4)'T(24+6) k. [(-24)(p-i0)"

o oy ag oy
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Self-Energy Evaluation for 4 =0

We appeal now to a A -Laurent expansion and retain there the A =0 inde-

pendent term [3]. Thus, we Laurent-expand (6.4) around A =0 and find
K, k., (p—i10)" " xk,k,, (p—i0)""

2

.|l ,
- E 5(77“1”‘2 77“30‘4 + 770!20:3 770;10:4 + 770[2% 77&10[3 )p
2 1
- |:E(na1a2 kaS kaA * 77:13054 kal kaz ) a a(n%az ka3 ka4

+ 77(130:4 kal kaz + ’7a1a3 kaz ka4 + na1a4 kaz koc3

8
+ 771120:3 koq ka4 + 771120:4 kaq ka3 ):|p + ; koq kaz ka3 ka4 }

" 1377,
- 5!_2(77(11{12 ’7(13114 * 770‘20’377"’1"‘4 + ’70‘20‘4’7(11113 )liln (p - IO) B E}p
. TCZ - 1
+ |$ (nalaz ka3ka4 + ﬂa3a4 kalkaz )l:ln (p _ |0) _E:|
1
- ﬂ(ﬂaﬂ’@ kas de + 770:30:4 koq kaz + 77a1a3 kaz ka4 + 77a1a4 kaz ka3 (6-5)

. 101
+ MoK K + Ty Ko Keg )[m(p ~i0)+Inm+2C —E:Hp

o ap ag
30 n=1

2 )
—i ok, k k kw[ln(p—io)—%}+2an/l”}

The exact value of the convolution we are interested in, 7e., the left hand side of
(5.5), is given by the independent term in the above expansion, as it is
well-known. If the reader is not familiar with this situation, see for instance [3].
We then reach
L\l RN
2o (K) =Ko Ky, (0 =10) " %k, K, (p—i0)

2

ki . 137
T 512 <77a1a2 na3a4 + 77‘12“377(11054 + ﬂazazl 770!1!13 )|:In (p - IO) - E:|p2
i T
! 41 {(nalazk%k% + nagamkalkaz )I:In(p - |0) - 6 :l

1 (6.6)

24

1 K Krs F ey K Ko )[In(p —i0)+Inn+2C —%}}P

(nalaz ka3 ka4 + 77:13114 kal kaz + na1a3 kaz ka4 + 77:110:4 kaz ka3

7 . 47
R [In(p - '0)‘&} |
We have to deal with 1296 diagrams of this kind.

7. Including Axions into the Picture

Axions are hypothetical elementary particles postulated by the Peccei-Quinn

theory in 1977 to tackle the strong CP problem in quantum chromodynamics. If
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they exist and have low enough mass (within a certain range), they could be of
interest as possible components of cold dark matter [15]. We include now a

massive scalar field (axions) interacting with the graviton. The Lagrangian be-

comes
—lR L o,h*“0 h** 1h""6 2
LGM _F \/E_EU#V a Vil _E|: ,uwv¢+m ¢ :' (71)

We can now recast the Lagrangian in the fashion

Loy =L+ L+ Loy + Ly, (7.2)
where

1
Loy == 0,40"9+m*" ], (7.3)

so that £, becomes the Lagrangian for the axion-graviton action
1
‘ClM = _5K¢ﬂ ang¢' (7'4)

The new term in the interaction Hamiltonian is

oL
H,y = aa‘l’h;ﬁ °¢p—L,,. (7.5)

8. The Complete Self Energy of the Graviton

The presence of axions generates a new contribution to the graviton’s self energy
-1

S au e (K) = K K, (0 +m? =i0) kK, (o +m? —i0) . (8.1)

So as to compute it we appeal to the usual integral together with the generalized

Feynman-parameters. After a Wick rotation we obtain

-1

Kk, (p+m?=i0) " £k k, (o +m? —i0)

L ek k -k -k .
:i‘[x_,i (1—X) A u” r(pv v)(p527zﬂs)d4kdx, (8 2)
0 [(k - px)2 + a}
where
a=p’x—p*x*+m? (8.3)
After the variables-change u=k — px we find
Kk (p+m?=i0)" " xkk, (o +m? —i0)
1 8.4
- ijx'l (1-x)" j—f (u;x,y, 2,\2/18) d*udx 84
0 + a)
where
f(u,x ,1,v,9)
=u,u,p,p,(1- x)2 +U,u,u,u; —u,u.p, p,x(1-x) (®5)
—u,u,p,PX(1-x)-uup,p,x(1-x) '
—U,u, p,pX(1-X)+ p,p, P, PX° (1- X)* +U,U,p, P, X,
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After evaluation of the pertinent integrals we arrive at

Kk (0+m?=i0) " xkk, (p +m? —i0)"

5

in22¥m?** I'(-1-24)
= kK, + 7,k K
16 l"(l—/l) ( yr Vs ’7vs " r)
3 ..p S ... p
Fl1-24,-1-24,> - 4;—t> | F|1-4,-1-24,>-2;-- 5
2 4m 2 4m

X

R N

i2 224 I m+as
4
r(-2-24
( ) F(—2—2&,1—,1,§—1;—L2
2 4m

F(l—ﬂ)l“(i—ﬂj

5
L im2 22 2taA
- |6—4(77yskrkv + nyvkrks + ﬂrskykv + nrvkyks)

y (2-2)(-1-24)
r(l—a)zr(i—zj

5

s 0021 40 _ _

+iukykrkvks r( /1)1"(522) F(_zg,z—i,i—i;—%)-
32 (1_/1)%(2_1) 2 4m

(005 + 7005 + 70,570

F(—l—u,z—i,i—i;——pzj (8.6)
2 4m

Self-Energy Evaluation for 4 =0

We need again a Laurent’s expansion and face

A-1

Kk, (p+m?—i0)"" xkk, (p+m? ~i0

uor

L 11
:IH m (n;zrkvks+ﬂvskykr)|:§+g

m2

4 2
2+_[ pzj
m-  15\4m

4 1
-m (77,”77\/5 +77/4v’7rs +nys77rv)x Z+§

2

m
ek io ek K KK I kK
2 _m? 2 2 _ 2
Joom e e -2k k,kvks}
2 430 a6
2_2

T (n,urk k +77vsk kr)

[ o)

2

Hi— 3 (nyrkvks"'nvsk kr)#

+i
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LT
=l —(ﬂpr s + 77,N77rs + nysﬂvr )
1 2 p 8( P )2
N5 a2z e 2
2 34m° 15\4m
2
><(Inm2+1)—l 3.1 p2 22 ’02
212 914m 225\ 4m

2n°m* o Y 9 p
-1 105 (nﬂrnvs+ﬂ;zvﬂrs+77ysf7vr)(m F 1'1'5’_4m2

o n'm? (k*—m?

—1
12(4m2 +k?-i0

1 , 1) 1 » 5) K’
x| = Inm" +=|+=Inm" +— |—
2 3) 5 6/)4m

- im(nﬂskrkv + Uﬂvkrks + nrsk#kv + nrvkﬂks)

) , 2) k¥ Kk? Kk? in?m* k>
xme[| Inm® +—= |+—+ = |- 5 5
3) 12 304m 40(4m +k —|o)4m
2

.m'm
_ |—10 (mskrkv +17,,KKs + 17,5k K, + Urvk#ks)

2 2 2 \?
x kz mz - F(l'l'g;_izj X 2
21(4m +k —|o) 2" 4m? )| 4m
2 2 Am2?
Sk ok, [lnm2+§j+% (8.7)
12 4) " 2(4m*+k* -i0)

2,2 2 2 2 o
-i“g Kk, M2k (1,1,1;— j+2an/i”.
n=0

k2
MY 4m? 4 K2 -0 4m? 2" 4m?

) (nyskrkv + nyvkrks + nrskykv + nwkyks)

Again, the exact result for our four-dimensional convolution becomes

-1

Somars (K) =K K, (p+m? =i0) "k k, (p+m? ~i0)

GM puvrs

.m?n’ 1 1 1 p 13
=i——(n k k. +n.k k )x| =] Inm? +— |+= Inm? +=
g (bl ok, '){3[ 12} 54m2( 15]}

2,2
.M P
+|T(nyrkvks +77vskykr)m

X F(l,l,z;—LJ+EF(1,1,g;— P )
2 4dm*) 7 2 4m?

2.4

. 7°m 1 2p 8(pY
_IT(nyrnvs +77;4v77rs +77ps’7vr )X{lzg_gm_ﬁ(élmzj
2
x(ln m? +1)—l 3 Y p 520 p
212 9\4m? 225\ 4m?

2n*m* P ’ 9. p
_IW(ﬂyrnvs +’7yv’7rs +’7ys77vr) m F 111’5’_4m2
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2m? (k2 —=m?
—i tT ( i ) (nyskrkv+77/karks+77rskﬂkv+77”’k”k5)

12(4m? +k* -i0)
1 , 1)1 , 5) k2
x[=Inm*+=|+=|Inm° +—=
2 3) 5 6 ) 4m?
L mm (MoK, + 70k ke 77K K, 470K K, )
8(4m2+k2—i0) us r v wv N s rs v v s
2) k2 k? K in?m? K2
xm? (Inm2+—)+—+ - |- : ~
3) 12 304m 40(4m2+k2—|o) 4m
. m?

- IT(ﬂuskrkv + vakrks + nrskykv + nrvkyks)

2 2 2 \?
x kz mz . F(l!l!g;_ pzj X 2
21(4m +k —|0) 2" 4m? )| 4m

2 2 am?2
Sk kokok, (In m? +§j+k—4m_
12 4) " 2(4m?+k*-i0)

212 2 2 2 2
_iﬂklkrkvks 'Z _T : K _F|1, ,Z;_k_z
30 ¢ 4m? +k* —i0 4m 2 4m

We have to deal with 9 diagrams of this kind.

(8.8)

Accordingly, our desired self-energy total is a combination of Zg, 4.0, (k)

and Ty p0mas (k).

9. Self Energy of the Axion
Here a typical term of the self-energy is:
2,0 (K) =k, (o +m? —i0) " x(p—i0)".

In four dimensions one has

k,k

Kk, (p+m?=i0) " x(p—i0)" = v d%k.

(k?+m?~i0)[ (p—k)" -i0]
with the Feynman parameters used above we obtain

Kk, (p+m?—i0) " x(p—i0)™*

_ifx 1-x)" Kk,
{ J.[(k— px)2+a]

—d*kdx,

where
a=(p*+m’)x—p>x.
We evaluate the integral (9.3) and find
kK, (p+m?—i0) " #(p-i0)"

_irlvrm2+4ln2 1—*(2_’_/1)
- 4 T(1-2)

(-1-24)F (—1—21,1—/1, 3; —ﬁj

(9.1)

(9.2)

(9.3)

(9.4)
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ik, k,m**n? T'(3+41)
+
6 r1-a)

T(-22)F (—2,1,1—4, 4;—%]. (9.5)
m

Self-Energy Evaluation for 4 =0
Once again, we Laurent-expand, this time (9.5) around A =0, encountering

Kk, (p+m?—i0) " x(p—i0)""
2 2
i L Ly e (1+1£2j(|nm2+ij
22 4 3 4 3m 2
(9.6)
—(l+1£2j —ﬁ(lnmﬂgj
6m 3 4

2 0
+3(£2j 1P Kk F(l,l,s;—%j+2an/1"
4\m 12 m 3 m n=1

The A -independent term gives the exact convolution result we are looking for:

%, (K) =k, (p+m? —i0) " *(p ~i0)*

2
=in? {Mﬁl+lﬂzj[ln m? +lﬂ
4 3m 2
(9.7)
—(1+E%H—ﬁ(lnmz +§]
6m 3 4

2
+£(%J Tlvl'rn iz_ I(Vkl' F(lllys'_%j
4\m 12 m 3 m

10. Discussion

We have developed above a quantum field theory (QFT) of Eintein’s gravity
(EQG), that is both unitary and finite, by appealing to the Schwinger-Feyman var-
iational principle. We emphatically avoid the functional integral method. Our
results critically depend on the use of a rather novel constraint the we intro-
duced in defining the EG-Lagrangian. Laurent expansions were also an indis-
pensable tool for us. As sgtated, in order to quantify the theory we appealed to
the variational principle of Schwinger-Feynman’s. This process leads to just one
graviton type ¢ . The underlying mathematics used in this effort has been de-
veloped by Bollini ez al [1] [2] [3] [4] [5]. This mathematics is powerful enough

so as to be able to quantize non-renormalizable field theories [1] [2] [3] [4] [5].

We have evaluated here in finite and exact fashion, for the first time as far as we

know, several quantities:

o the graviton’s self-energy in the EG-field. This requires full use of the theory
of distributions, appealing to the possibility of creating with them a ring with
divisors of zero.

« the above self-energy in the added presence of a massive scalar field (axions,
for instance). Two types of diagram ensue: the original ones of the pure EG

field plus the ones originated by the addition of a scalar field.
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o the axion’s self-energy.

Our central results revolve around Equation (6.6), Equation (8.8), and Equa-

tion (9.7), corresponding to the graviton’s self-energy, without and with the

added presence of axions. Also, we give the axion’s self-energy.

As a final remark, we would like to point out that our formula for convolu-

tions is a mathematical definition and not a regularization.
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