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Abstract 
The relationship E = −K holds between the energy E and kinetic energy K of 
the electron constituting a hydrogen atom. If the kinetic energy of the elec-
tron is determined based on that relationship, then the energy levels of the 
hydrogen atom are also determined. In classical quantum theory, there is a 
formula called the Rydberg formula for calculating the wavelength of a pho-
ton emitted by an electron. In this paper, in contrast, the formula for the wa-
velength of a photon is derived from the relativistic energy levels of a hydro-
gen atom derived by the author. The results show that, although the Rydberg 
constant is classically a physical constant, it cannot be regarded as a funda-
mental physical constant if the theory of relativity is taken into account. 
 

Keywords 
Rydberg Formula, Rydberg Constant, Classical Quantum Theory,  
Energy-Momentum Relationship in a Hydrogen Atom, Relativistic Kinetic 
Energy 

 

1. Introduction 

In the classical quantum theory of Bohr, the energy levels of the hydrogen atom 
are given by the following formula [1] [2]. 

4
e

BO, 2 2
0

1 1
2 4n

m e
E

nε

2
  1

= − ⋅ π  

                 (1a) 

2 2
e
2 1 .

2
m c

n
n

α
= − ,     = , 2,⋅ ⋅ ⋅                 (1b) 

Here, BOE  refers to the total mechanical energy predicted by Bohr. Also, α is 
the following fine-structure constant. 
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Bohr thought the following quantum condition was necessary to find the 
energy levels of the hydrogen atom. 

e 2 2 .n nm v r n⋅ π = π                         (3) 

The energy of the hydrogen atom is also given by the following formula. 
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If E in Equation (1b) is substituted into Equation (4), then the following for-
mula can be derived as the orbital radius of the electron. 
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The photonic energy emitted during a transition between energy levels 

( )BO, BO,n mE E−  and wavelength λ for principal quantum numbers m and n can 
be expressed as follows. 
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Here, R∞  is the Rydberg constant, which is defined by the following equa-
tion. 
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The Rydberg formula can be derived from Equation (6) as indicated below. 

BO, BO,
2 2

1 , 1, 2, , 1, 2,n mE E
R m n m m

hc m nλ ∞

−  = = −    =    = + + . 
 

 

１ １    (8) 

2. Relationship Enfolded in Bohr’s Quantum Condition 

This section to Section 4 are excerpts from another paper, but this material is 
repeated because it is needed here. The Planck constant h can be written as fol-
lows [3]: 

e C .
2 2

m ch λ
= =

π π
                         (9) 

Here, Cλ  is the Compton wavelength of the electron. 
When Equation (9) is used, the fine-structure constant α can be expressed as 

follows. 
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Also, the classical electron radius er  is defined as follows. 
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If er α  is calculated here, 
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If Equation (5) is written using er  and α, the result is as follows. 
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Next, if   in Equation (9) and nr  in Equation (13) are substituted into Eq-
uation (3), 
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If Equation (12) is also used, then Equation (14) can be written as follows. 
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From this, the following relationship can be derived [4]. 

.nv
c n

α
=                           (16) 

3. The Relation between Kinetic Energy and Momentum  
Derived from the STR Relationship 

The energy-momentum relationship in the special theory of relativity (STR) 
holds in an isolated system in free space. Here, if 0m  is rest mass and m relati-
vistic mass, the relationship can be written as follows. 

( ) ( )2 22 2 2 2
0 .m c p c mc+ =                    (17) 

What is the relationship between relativistic kinetic energy and momentum if 
this relationship holds? 

Incidentally, Sommerfeld once defined kinetic energy as the difference be-
tween the relativistic energy 2mc  and rest mass energy 2

0m c  of an object [5]. 
That is, 
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Sommerfeld believed that Equation (18), which can be derived from Equation 
(17), can also be applied to the electron in a hydrogen atom. 

First, it is clear that the following formula holds [4]. 

( ) ( )2 22 2 2 2
0 0 .m c mc m c mc + − =                  (19) 

Expanding the left side of this equation yields the following. 

( ) ( ) ( )( )22 4 2 4 2 4 2 2 2 2
0 0 0 0 0 .m c m c m c m c m m mc m c c+ − = + + −       (20) 

Using this, Equation (19) becomes as follows. 

( ) ( )( ) ( )2 22 2 2 2 2
0 0 0 .m c m m mc m c c mc+ + − =            (21) 

Since this equation and Equation (17) are equal, the following relationship 
must hold when Equation (18) is taken into account. 
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( )( ) ( )2 2 2
0 0 0 .p m m mc m c m m K= + − = +              (22) 

The following formula is obtained from this. 
2
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Here, reK  is relativistic kinetic energy and rep  relativistic momentum. The 
“re” in reK  and rep  stands for “relativistic”.  

Equation (23) is the formula for relativistic kinetic energy. Classical 
(non-relativistic) kinetic energy, in contrast, is defined as follows. 
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In classical theory, mass does not depend on velocity. That is, Equation (23) 
and Equation (24) are the same if 0m m= . 

4. Energy-Momentum Relationship of the Electron Derived 
with Another Method 

The author has previously derived the following relationships applicable to the 
electron constituting a hydrogen atom [6]. 

( ) ( )2 22 2 2 2
e .n nm c p c m c− =                    (25) 

Here, 
2 2

e re, .n nm c m c K= −                       (26) 

nm  is the mass of an electron in a state where the principal quantum number 
is n. 

These energy relationships can be illustrated as follows (Figure 1). 
In this paper, Equation (25) will be derived more simply by using a method 

different from that used previously. The logic of Equations (19) to (23) is bor-
rowed to accomplish that purpose. 

Now, it is clear that the following equation holds. 

( ) ( )2 22 2 2 2
e e .n nm c m c m c m c + − =                 (27) 

Expanding and rearranging this equation, the following equation is obtained. 

( ) ( )( ) ( )2 22 2 2 2 2
e e e .n n nm c m m m c m c c m c+ + − =           (28) 

Next, the relativistic kinetic energy of the electron can be defined as follows by 
referring to Equation (23). 
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From this, 

( )( )2 2 2
e e re, .n n nm m m c m c p+ − =                  (30) 

Finally, Equation (28) matches Equation (25). 
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Figure 1. Energy levels of a hydrogen atom derived from Bohr’s classical quantum theory 
and this paper: According to the virial theorem, BO, cl,n nE K= −  and re, re,n nE K= − . An 

electron at rest in free space emits a photon when it is taken into a hydrogen atom. Also, 
the electron acquires the same amount of kinetic energy as the energy of the emitted 
photon. If BO re0, 0E E= =  are described using an absolute energy scale, then the elec-
tron is at rest in free space, and this corresponds to the state of having a rest mass energy 
of 2

em c . 
 

Incidentally, re,n n np m v=  [4], and thus it is clear that the following equation 
holds. 

re, .n n np c m v c=                         (31) 

Here, if we substitute re,np c  in Equation (31) into Equation (25) and rear-
range, then the following value is obtained. 
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If the relation in Equation (16) is used here, Equation (32) becomes as follows. 
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Hence, the energy levels of a hydrogen atom re,nE  are: 
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5. Relativistic Energy of a Hydrogen Atom Derived  
from Equation (16) 

When both sides of Equation (16) are squared, and then multiplied by e 2m , 
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If Equation (16) is taken as a departure point, the energy levels of the hydro-
gen atom derived by Bohr can be derived immediately. Equation (16) has tre-
mendous power. However, from a relativistic perspective, ( ) 2

e1 2 nm v  is an ap-
proximation of the kinetic energy of the electron. Therefore, the energy in Equa-
tion (1) is also an approximation of the true value. 

Next, let’s try to derive the energy levels in the hydrogen atom from Equation 
(16). If both sides of Equation (16) are first squared, and then both sides are 
multiplied by ( )2

en nm m m+ . 
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Here, the left side of Equation (37) is the relativistic kinetic energy of the elec-
tron, and thus the energy levels are: 
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Next, if Equation (33) is taken into account, the right side of Equation (38) is 
as follows. 
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Next, the numerator and denominator of Equation (39) are multiplied by: 
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When this is done, Equation (39) is as follows. 
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Equation (34) can also be derived taking Equation (16) as a starting point. The 
discussion thus far in this section has provided an explanation by quoting 
another paper. 

Now, if a Taylor expansion is performed on the right side of Equation (34), 
2 4 6
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3 51 1
2 8 16nE m c

n n n
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Comparing Equation (41c) and Equation (1b), it is evident that Equation (1) 
is an approximation of Equation (34). That is, 

re, BO, .n nE E≈                         (42) 

Next, Table 1 summarizes the energies of a hydrogen atom obtained from 
Equation (1) and Equation (34) [7]. 

The following values of CODATA were used when calculating energies. 

37.2973525693 10 .α −= ×  
8 -12.99792458 10  m s .c = × ⋅  

31
e 9.1093837015 10  kg.m −= ×  

The results derived from section 3 to 5 are summarized here in Table 2. 
In deriving the energy levels of a hydrogen atom, Sommerfeld began from 

Einstein’s energy-momentum relationship. However, that is a mistake. The 
Einstein relation that holds in an isolated system in free space is not applicable 
in the space inside a hydrogen atom where there is potential energy. The author 
derived, for the first time, Equation (25) that is applicable to an electron in a hy-
drogen atom. 

6. Discussion 

In the sections up to the previous section, the groundwork was laid for finding a 
formula for the wavelength of a photon emitted from a hydrogen atom. 

The differences in energy between different energy levels in the hydrogen 
atom can be found with the following formula. 

 
Table 1. Comparison of the energies of a hydrogen atom predicted by Bohr’s classical 
quantum theory and this paper. 

 Bohr’s Energy Levels This Paper 

n = 1 −13.60569 eV −13.60515 eV 

2 −3.40142 eV −3.40139 eV 

3 −1.511744 eV −1.511737 eV 
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Table 2. Formulas and energies derived from the standpoint of STR and Sommerfeld, and formulas and energies derived by the 
author: Equations marked at the right with an asterisk are quoted from Reference [4]. When discussed by depicting a classical 
picture, like the Bohrmodel, the electron moving within the atom becomes lighter as its velocity increases. 

 Formula of STR and Sommerfeld (SO) This Paper 

Kinetic Energy 2 2
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2
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Energy-Momentum Relationship ( ) ( )22 2 2 2
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Holds in isolated systems in free space 

( ) ( )2 22 2 2 2
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Applicable to an electron in a hydrogen atom 

Energy Levels of a Hydrogen Atom 2 2
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1E  SO,1 13.60624 eV.E = −  * re,1 13.60515 eV.E = −  * 
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The following equation is also known. 
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Taking into account Equation (46), 

2
e

C

hcm c
λ

= .                          (47) 

Based on this, Equation (45) can be written as follows. 
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Equation (48) is the formula for wavelength, taking into account Equation 
(25). If the Taylor expansion of Equation (48) is taken, the following formula is 
obtained. 
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Table 3. Wavelengths of photons emitted due to transitions between different energy le-
vels: the 3 values in the table, in order from the top, are the values found from Equation 
(8), the values found from Equation (48), and the actual measured values. 

 m = 1 2 

n = 2 
121.502 nm 
121.508 nm 

121.6 nm 
 

3 
102.517 nm 
102.522 nm 

102.6 nm 

656.112 nm 
656.121 nm 
656.29 nm 

 
2 2 4 2 4

e
2 4 6 2 4 6

1 3 5 1 3 5
2 4 8 4 8
m c
h m m m n n n

α α α α α    
= − + − − − + −    

     
       (49c) 

2 4 2 4

2 4 6 2 4 6

1 3 5 1 3 5
4 8 4 8

R
m m m n n n

α α α α
∞

    
= − + − − − + −    

     
          (49d) 

2 2 4 4

2 2 4 4 6 6

1 1 3 3 5 5 .
4 4 8 8

R R
m n n m n m

α α α α
∞ ∞

  ≈ − + − − +  
   

              (49e) 

It is evident here that the approximation value of Equation (49e) matches the 
Rydberg formula Equation (8). That is, 

1 2 1 22 2

2 2 2 2
C

1 1 11 1 1, 2,R n m m
n m m n
α α

λ

− −

∞

       + − + ≈ −  ,   = + + .     
      

   (50) 

Here, if the wavelengths of photons emitted due to transitions between dif-
ferent energy levels are calculated using Equations (8) and (48), the results are as 
indicated in Table 3.  

Precision up to 4 significant digits is required for experiments. Therefore, 
there will be no problems even if the approximation of Equation (8) is used in-
stead of Equation (48) to calculate wavelengths. 

However, Equation (8) for calculating the wavelength of the spectra of a hy-
drogen atom is strange because it does not include the Compton wavelength of 
the electron. 

7. Conclusions 

In classical quantum theory, the wavelength of a photon emitted due to a transi-
tion by an electron to a different energy level is calculated using Equation (8). 
However, this paper has shown that Equation (48) is a formula more exact than 
calculating the wavelength of the photon. 

Thus, it has been shown that the existing Equation (8) is an approximation for 
Equation (48). 
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