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Abstract 
The quantum Unruh effect on radiation of a gravitational object including a 
black hole is analyzed and calculated. It is surprisingly found that the 
well-known Hawking radiation of a black hole is not physical. Applying the 
Stephan-Boltzmann law with the use of the Unruh radiation temperature at 
the surface of a black hole to calculate the power of radiation of the black hole 
is conceptually unphysical. This is because the Unruh radiation temperature 
results from the gravitational field of the object rather than from the thermal 
motion of matter of the object, so that the Stephan-Boltzmann law is not ap-
plicable. This paper shows that the emission power of Unruh radiation from a 
gravitational object should be calculated in terms of the rate of increase of the 
total Unruh radiation energy outside the object. The result obtained from this 
study indicates that a gravitational object can emit Unruh radiation when the 
variation of its mass and radius satisfies an inequality of dM/M > 1.25dR/R. 
For a black hole, the emission of Unruh radiation does not occur unless it can 
loose its mass (dM < 0). The emission power of Unruh radiation is only an 
extremely tiny part of the rate of mass-energy loss if the black hole is not ex-
tremely micro-sized. This study turns down our traditional understanding of 
the Hawking radiation and thermodynamics of black holes. 
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1. Introduction 

A black hole is an object, from which even light cannot escape due to its strong 
gravitational field. The existence of black holes in nature was theoretically pre-
dicted from the Schwarzschild solution of Einstein’s general relativity a century 
ago [1] [2] and was confirmed recently from the observational detections of gra-
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vitational waves by the Laser Interferometer Gravitational Wave Observatory 
(LIGO) [3]. A star with mass above around twenty solar masses, when it runs 
out of its nuclear fuel, will end as a star-like black hole through a supernova ex-
plosion. Within each galaxy, in addition to the millions to billions of star-like 
black holes, there is usually a massive black hole with millions of solar masses at 
its center. The observed extremely luminous quasi-stellar objects, quasars, are run 
or powered by supermassive black holes with billions of solar masses. The ob-
served highly energetic events, gamma-ray bursts, are believed to be generated or 
created when giant stars collapse into black holes or when two or more black 
holes including neutron stars merge. Our universe itself is an extremely super-
massive and fully expanded black hole according to the author’s well-developed 
black hole model of the universe [4] [5].  

The inside of a black hole is a mystery, though it is generally believed that 
matter inside or once entering a black hole will gravitationally fall into the center 
and form a dreaded point-like or size-less singularity, where the matter density, 
pressure, and temperature go to infinity and the spacetime breaks down with in-
finite curvature [6]. The standard Big Bang model of the universe suggested that 
the universe originated from a Big Bang singularity [7]. Recently, the author of 
this paper has shown that, with the quantum Unruh effect, such dreaded size-less 
singularity cannot be actually formed because the total Unruh radiation energy 
of a size-less singularity goes to infinity and hence violates the law of energy con-
servation [8]. The formed singularity sphere has a finite radius, which is propor-
tional to the square root of mass and extremely small in comparison with the 
size of the black hole. A size-less singularity cannot be formed unless it is also 
massless. In the black hole model of the universe, a black hole is hierarchically 
structured with infinite layers and the singularity is asymptotical with infinite 
singular subspacetimes [9]. 

Using the Unruh radiation temperature at the surface as the temperature of a 
black hole, Hawking [10] [11], in terms of the Stephan-Boltzmann law, obtained 
the radiation power of the black hole to be inversely proportional to the mass of 
the black hole. He further derived the evaporation time and entropy of the black 
hole, respectively, by setting the power of the Hawking radiation to be the rates 
of the mass-energy loss and heat transfer. The evaporation time is inversely 
proportional to the cube of the black hole mass, while the entropy is proportion-
al to the square of the black hole radius or mass (i.e. proportional to the surface 
area of the black hole). However, the Unruh radiation temperature results from 
the gravitational field of the object rather than from the thermal motion of mat-
ter of the object. The Stephan-Boltzmann law describes the intensity of the ther-
mal radiation emitted by matter in terms of that matter’s temperature. Therefore, 
it is conceptually unphysical to apply the Stephan-Boltzmann law with the use 
of the Unruh radiation temperature at the surface of a black hole to calculate 
the power of radiation of the black hole. This non-applicability of the Stephan- 
Boltzmann law surprisingly leads to that the well-known Hawking radiation of a 
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black hole is not physical. 
The objective of this study is to investigate the quantum Unruh effect on radi-

ation of gravitational objects including black holes. In Section 2, we first describe 
the quantum Unruh effect. Then, for a gravitational object, we explain how the 
Unruh radiation temperature and energy density distribute radially around the 
gravitational object. We further show how to calculate the total Unruh radiation 
energy outside the gravitational object. In Section 3, we calculate the emission 
power of the Unruh radiation of a gravitational object according to the rate of 
increase of the total Unruh radiation energy outside the gravitational object, in-
cluding a black hole. For an effective comparison, we, in Section 4, briefly review 
how the Hawking radiation of a black hole is theorized based on the Unruh rad-
iation temperature and Stephan-Boltzmann law. This study shows that a gravita-
tional object can emit Unruh radiation conditionally depending on the variation 
of its mass and radius (or the variation of its gravitational field). For a black hole, 
the emission of Unruh radiation does not occur unless it can loose its mass. The 
emission power of Unruh radiation is only an extremely tiny part of the rate of 
mass-energy loss. The Stephan-Boltzmann law is not applicable to the Unruh 
radiation as the Unruh radiation temperature results from the gravitational field 
rather than from the matter’s thermal motion.  

2. The Quantum Unruh Effect and Radiation  

The Unruh effect (also known as the Fulling-Davies-Unruh effect) is a strange, 
surprising prediction of quantum field theory [12] [13] [14]. It refers to that an 
accelerating observer detects a thermal radiation or thermal bath with tempera-
ture being proportional to the acceleration of the observer, expressed by [15] 
[16] 

 
2 B

aT
ck

=
π
�

, (1) 

where 2h π=�  with h the Planck constant, c is the speed of light in the free 
space, kB is the Boltzmann constant, and a is the acceleration of the observer. A 
non-accelerating observer, however, does not detect such radiation. As it is a 
quantum phenomenon, the author prefers to call it as the quantum Unruh effect.  

From Mach’s principle of equivalence, gravitation and acceleration are equiv-
alent. An object cannot recognize itself whether attracted by a gravitational force 
or in an accelerating system. Therefore, with Mach’s principle of equivalence, 
the Unruh radiation temperature that an observer detects in a gravitational field 
will be [8] 

 
2 B

gT
ck

=
π
�

, (2) 

where g is the gravitational acceleration or field. Here, to obtain Equation (2), we 
have simply replaced the acceleration a in Equation (1) by the gravitational ac-
celeration g. This implies that an observer at rest in a gravitational field detects 
the Unruh radiation with temperature to be proportional to the gravitational 
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acceleration. The physics of Unruh radiation is quantum field theory. In a gravi-
tational field, the Unruh radiation temperature is proportional to the gravita-
tional field, independent of the thermal heat of the local matter.  

For a gravitational object with mass M and radius R, the magnitude of the 
gravitational acceleration g at a radial distance r is, according to the Newtonian 
gravitational law, given by 

 ( ) 2
GMg r
r

= , (3) 

where G is the gravitational constant. Then, by substituting Equation (3) into 
Equation (2), the Unruh radiation temperature of a gravitational object, in the 
Newtonian approximation, is obtained to be proportional to the mass and in-
versely proportional to the square of radial distance [8], 

 ( ) 22 B

G MT r
ck rπ

= ⋅
�

, (4) 

and the Unruh radiation energy density, in terms of Planck’s law of blackbody 
radiation [17], is obtained to be proportional to the fourth power of mass and 
inversely proportional to the eighth power of radial distance [8], 

 ( )
4 4

2 7 8240
G Mu r

c rγ = ⋅
π
� . (5) 

These results indicate that most of the Unruh radiation energy distributes in 
the space very nearly around the surface of the gravitational object (Figure 1).  
 

 
Figure 1. A schematic diagram sketches the Unruh radiation of a gravitational object. In 
this author’s created sketch, the blue sphere is the gravitational object, while the light yel-
low spherical shell that surrounds the object is the Unruh radiation. It is gravitationally 
confined and distributes very nearly around the object without propagating to the outer 
space. The Unruh radiation energy density radially decreases by inversely proportional to 
the eighth power of the radial distance.  
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The Unruh radiation spreads radially, but the temperature and especially the 
energy density rapidly decrease with the radial distance. The radial distributions 
of Unruh radiation temperature and energy density are quite different from the 
blackbody radiation of thermal matter, which gives the radiation temperature 
equal to the matter’s temperature at the surface of blackbody and the radiation 
energy density and flux to be inversely proportional to the square of radial dis-
tance. The Unruh radiation of a static gravitational object is gravitationally con-
fined and unable to propagate radially outward to the outer space while the radi-
ation of a normal blackbody does. 

Recently, from the volume integration of the radiation energy density Equa-
tion (5) in the whole space outside a gravitational object, Zhang [8] obtained the 
total Unruh radiation energy of the gravitational object as, 

 ( )
4 4 4

2
7 5 54 d

300R

G M MU u r r r
c R Rγ γ α

∞

= = =
π

⋅π∫
�

, (6) 

which is proportional to the fourth power of the mass and inversely proportional 
to the fifth power of the radius. An object, if it is more massive and more com-
pact (or has a stronger gravitational field), has more Unruh radiation energy sur-
rounded. A typical stellar star, neutron star, star-like black hole, or supermassive 
black hole surrounds Unruh radiation with total energy about 10−60, 10−37, 10−34, 
or 10−43 J, respectively. All these values are extremely small and give negligible 
contributions to the universe.  

If the gravitational object is static (or its gravitational field is not varied), e.g. 
does neither gain mass (dM = 0) nor shrink size (dR = 0), the Unruh radiation of 
the object will be also static, neither changing the spatial distributions of the 
Unruh radiation temperature and energy density nor varying the total Unruh rad-
iation energy that surrounds the gravitational object (dUγ = 0). That is, a static 
gravitational object does not emit Unruh radiation. If the gravitational object is 
dynamic (or its gravitational field is varied), e.g. either gains mass (dM > 0) or 
shrinks size (dR < 0), the Unruh radiation of the object will be also dynamic, 
changing the spatial distributions of the Unruh radiation temperature and ener-
gy density and increasing the total Unruh radiation energy that surrounds the 
gravitational object (dUγ > 0). In this case, the gravitational object emits Unruh 
radiation.  

3. The Power of the Unruh Radiation  

The power of the Unruh radiation of a gravitational object can be calculated ac-
cording to the rate of change of the total Unruh radiation energy [8]. That is, the 
time derivative of Equation (6) gives the power as,  

 
3 4 4

5 6 5

d 4 d 5 d 4 d 5 d .
d d d d d
U M M M R M M RP
t R t R t R M t R t
γ

γ α α α  = = − = − 
 

 (7) 

For the gravitational object to emit Unruh radiation, we need the power or the 
time rate of change of the total Unruh radiation energy to be positive (Pγ > 0), i.e. 
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the rates of changes in relative mass and radius satisfy the following inequality, 

 1 d 5 d d 5 d    or   
d 4 d 4
M R M R

M t R t M R
> > . (8) 

That is, if the rate of change of its relative mass is 1.25 times greater than the rate 
of change of its relative radius, the gravitational object emits Unruh radiation. 
Typically, a gravitationally collapsing object can emit Unruh radiation. A gravi-
tationally matter-accreting object can emit Unruh radiation when the changes of 
its mass and radius satisfy dM/M > 1.25dR/R.  

For example, considering a neutron star with mass of 1.5 solar masses and ra-
dius of 20 km, we can obtain the Unruh radiation temperature at its surface to 
be about 4.06 × 10−9 K, many orders in magnitude lower than the neutron star’s 
actual matter temperature at the surface, and the total Unruh radiation energy 
outside the neutron star to be about 2.56 × 10−37 J, many orders in magnitude 
lower than the energy of a single photon of visible light. When the neutron star 
accretes 30% mass in one million years and meantime raises its radius by 10% 
(or dM/M = 3dR/R), it radiates the Unruh radiation energy of about 1.98 × 10−37 
J with the emission power of Unruh radiation to be about 6.28 × 10−51 W. The 
neutron star decreases its gravitational potential energy by about 9.66 × 1045 J. 
The Unruh radiation energy is just a tiny part of its gravitational potential ener-
gy loss. If the neutron star remains static, i.e. does neither accrete matter nor 
vary its size, it does not radiate the Unruh radiation. 

For a black hole, we have the total Unruh radiation energy to be inversely 
proportional to the mass of the black hole [8],  

 
54 4 2 3

5 7
1

300 2 9600
M G c cU
R c G M GMγ α

 
= = ⋅ = 

 π π
� � . (9) 

Here, we have used the mass-radius relation of a black hole, 

 2
2 1GM
c R

= . (10) 

For a star-like black hole with 3 solar masses, we have the total Unruh radia-
tion energy to be Uγ ~ 2.35 × 10−34 J. For a supermassive black hole with one bil-
lion solar masses, we have Uγ ~ 7.05 × 10−43 J. These results indicate that the 
contributions of Unruh radiation from all of the star-like, massive, and super-
massive black holes to the universe are also negligible. The smaller a black hole is, 
the larger its total Unruh radiation energy is.  

Taking a derivative of Equation (9) with respect to time, we have the rate of 
change of the total Unruh radiation energy that surrounds the black hole as,  

 
3

2

d d
d 9600 d
U c MP
t GM t
γ

γ π
= = −

� , (11) 

It is seen that, if a black hole looses its mass (i.e. dM/dt < 0), the total energy of 
its Unruh radiation increases or we say that the black hole emits Unruh radia-
tion. The emission rate of the radiation energy or the power of the Unruh radia-
tion from a black hole is much lower than the rate of mass-energy loss from the 
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black hole if the black hole is not micro-sized one. For example, when a 3 solar 
mass black hole looses its mass of one kilogram in one second, the emission 
power of Unruh radiation is only about 4 × 10−61 W, while the rate of mass-energy 
loss is 9 × 1016 W. Principally, as nothing can escape from it, a black hole does 
not emit Unruh radiation. A black hole does not evaporate unless we can find a 
physical process, through which matter can get out of the black hole.  

At the surface of a black hole (r = R), the Unruh radiation temperature is giv-
en by [8] 

 
3

22 8B B

GM cT
ck R k GM

= =
π π
� �

, (12) 

which is inversely proportional to the mass of the black hole. It is usually called 
the Hawking temperature of a black hole, T → TH [10] [11]. Due to the emission 
of Unruh radiation, the change of entropy of a black hole can be given by, 

 
ddd

H

UQS
T T

γ= = − . (13) 

Here Q is the heat of the black hole. The Unruh radiation of the black hole caus-
es its energy or heat change, dQ = −dUγ. 

Integrating Equation (13) with the use of Equations (11) and (12) to replace 
dUγ and TH with respect to the mass of a black hole from an initial mass M0 to 
the final mass M, we can find the entropy of the black hole with the final mass M 
as, 

 
0 0

0
0

d
d ln

1200 1200

M M
B B

HM M

U k k MS S M
T M M

γ  
− = − = =  

 
∫ ∫ , (14) 

where S0 is the initial entropy of the black hole with the initial mass M0. It is seen 
that the entropy of a black hole increases as it slowly grows by proportional to 
the natural logarithm of its mass. The entropy of a black hole does not decrease, 
as it never looses its mass. In general, the entropy of a black hole with mass M 
can be defined as an arbitrary constant Δ plus a small part of the mass-dependent 
entropy.  

 ln
1200

BkS M= ∆ + , (15) 

Figure 2 shows the various parameters of Unruh radiation of a black hole as 
functions of the black hole’s mass. The red line plots the Unruh radiation tem-
perature of the black hole at its surface, given by Equation (12). The green line 
plots the ratio of the power of Unruh radiation and the rate of mass-energy loss, 
defined by RγM = Pγ/(−c2dM/dt) according to Equation (11). The purple line 
plots the total Unruh radiation energy of the black hole, given by Equation (9). 
And the blue line plots the entropy of the black hole, given by Equation (15) 
with the constant Δ = 0. It is seen that both the Unruh radiation temperature at 
the surface of the black hole and the total Unruh radiation energy outside the 
black hole are inversely proportional to its mass. The rate of emission (or power)  
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Figure 2. It plots various parameters for the Unruh radiation of a black hole as functions 
of its mass. These parameters include: 1) the Unruh radiation temperature at the surface 
of the black hole (red line), 2) the ratio of the power of Unruh radiation and the rate of 
mass-energy loss (green line), 3) the total Unruh radiation energy that surrounds the 
black hole (purple line), and 4) the entropy of the black hole (blue line).  
 
of Unruh radiation is only a tiny part of the rate of mass-energy loss with a per-
centage to be inversely proportional to the square of its mass. The entropy of the 
black hole is extremely low if the constant Δ is not too much greater than the 
mass-dependent part of the entropy and slowly increases with its mass via the 
function of natural logarithm. 

The above analysis for the quantum Unruh effect on radiation of black hole is 
quite different from the work done by Hawking in 1974 [10] [11]. This study 
does not apply the Stephan-Boltzmann (S-B) law with the Unruh radiation tem-
perature at the surface of a black hole to determine the Unruh radiation power 
of the black hole. The reason is because the S-B law describes the intensity of the 
thermal radiation emitted by matter in terms of that matter’s temperature and 
hence is not applicable to the Unruh radiation. The Unruh radiation results from 
the gravitational field of the body rather than the thermal heat of the body’s 
matter. For the thermal radiation of a blackbody, the S-B law states that the ra-
diant or total radiation energy emitted from a unit area of the blackbody in one 
second is directly proportional to the fourth power of the temperature of the 
blackbody. Applying the S-B law to the Unruh radiation of a static gravitational 
object will lead to some physical contradictions.  

For instance, with the Unruh radiation temperature at the surface of the neu-
tron star exampled above with mass of 1.5 solar masses and radius of 20 km, 
even though it is gravitationally static without accreting matter or shrinking size, 
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the Stephan-Boltzmann law gives the power of Unruh radiation to be 

 
4 4

2 4 33
- 6 64 ~ 4.8 10 J s

240S B
G MP R T

c R
σ −= ×π=

π
� . (16) 

where σ is the Stephan-Boltzmann constant. This increases the neutron star’s 
total Unruh radiation energy outside by about ten thousand times in just one 
second, which equivalently enhances the Unruh radiation temperature and 
hence the neutron star’s gravitational field by ten times greater. This cannot be 
true and therefore unphysical because a gravitationally static object remains its 
gravitational field unchanged rather than generates a significant radially outward 
propagating gravitational field disturbance or wave. In addition, the temperature 
and energy density of the radiation derived by the S-B law depend on the radial 
distance in the ways very different from those of the Unruh radiation given in 
Equations (4) and (5). Therefore, we should not suggest that a gravitationally 
static object keeps continuously emitting the Unruh radiation at the flux deter-
mined according to the S-B law with the Unruh radiation temperature at the 
surface of the object.  

4. The Hawking Radiation  

But unbelievable, Hawking did it for a black hole in such unphysical way. He 
substituted the Unruh radiation temperature of a black hole at its surface into 
the S-B law to find the radiation power of the black hole. He further let the radi-
ation power equal to the rates of mass-energy loss and heat change to find the 
evaporation time and entropy of the black hole. All these work done by Hawking 
were conceptually incorrect in physics, but unfortunately, no one has yet pointed 
it out and corrected that great mess or blunder on the black hole radiation. The 
following three paragraphs give a brief description of Hawking’s work done in 
[10] [11] on the radiation of black hole.  

Applying the S-B law with the Unruh radiation temperature given by Equa-
tion (12) and integrating the flux of the Unruh radiation over the surface of the 
black hole, Hawking obtained the power of radiation (widely called the Hawking 
radiation) from a black hole to be, 

 
45 4 3 6

2 4 2
3 2 2 2

24 4
15 8 15360

B
H H

B

k c cP R T R
h c k GM G M

σ π  
= = =π π

π π
 

� � , (17) 

which is inversely proportional to the square of mass. Here we have applied the 
expression of the Stephan-Boltzmann constant. For a star-like black hole with 3 
solar masses, we have the temperature and power of Hawking radiation to be 

8~ 2.04 10 KHT −×  and 30~ 9.9 10 WHP −× , respectively. In just one second, 
this will raise the total Unruh radiation energy that surrounds the black hole by 
ten thousands times. This ten-thousand times increase of the total Unruh radia-
tion energy equivalently makes the gravitational field of the black hole ten times 
stronger per second, which must be unphysical. A black hole no matter static or 
not radiate Hawking radiation.  
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Based on the Hawking radiation power Equation (17) to be equal to the rate of 
mass-energy loss, PH = −c2dM/dt, Hawking further obtained the time needed (or 
the evaporation time) for a black hole to be completely radiated or evaporated 
out as 

 
0 2 2 3

4
5120dH

HM

c G MM
P c

τ = − =
π

∫ �
, (18) 

which is proportional to the cube of the mass. For the star-like black with 3 solar 
masses, it takes 761.8 10 sHτ = ×  to evaporate the black hole out. For a mi-
cro-sized black hole with the Planck mass (~2.18 × 10−8 kg), the Unruh radiation 
temperature at the surface, Hawking radiation power, and Hawking evaporation 
time are ~5.62 × 1030 K, 7.5 × 1047 W, and 8.7 × 10−40 s, respectively. The study as 
shown by Equation (11) finds that the Unruh radiation is only a tiny part (~10−80 
for a star-like black hole) of mass-energy loss.  

Considering the heat transfer to be equal to the mass-energy loss from the 
Hawking radiation, Hawking derived the entropy of a black hole to be given by 

 
2 3 2

2
3

0 0

d 8 4d
4

M M
B B B

H
H

Q k GM k GM k c RS c M
T c c G

= = = =
π π π

∫ ∫ � � �
, (19) 

which is proportional to the square of its mass or radius (or the surface area of 
the black hole). The big coefficient implies that black holes have unbelievably 
large entropies. For instance, a star-like black hole with 3 solar masses has en-
tropy of about 9.6 × 1075kB ~ 1053 J/K, many orders in magnitude higher than 
that of its parent star. Due to the Hawking evaporation, a black hole can de-
crease its entropy and thus loose the information that enters the black hole. The  
 

 
Figure 3. It plots various parameters for the Hawking radiation of a black hole as func-
tions of its mass. These parameters include: 1) the Hawking radiation power of the black 
hole (red line), 2) the Hawking entropy of the black hole (blue line), and 3) the Hawking 
evaporation time of the black hole (green line).  
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study as shown by Equation (14) finds that the entropy of a black hole is very 
low (~0.06kB for a 3-solar mass black hole) and slowly increases with its mass. 

Figure 3 shows the various parameters of the Hawking radiation of a black 
hole as functions of the black hole’s mass. The red line plots the Hawking radia-
tion power of the black hole, given by Equation (17). The blue line plots the 
Hawking entropy of the black hole according to Equation (19). And the green 
line plots the Hawking evaporation time of the black hole, given by Equation 
(18). It is seen that both the Hawking entropy and Hawking evaporation time 
increase with the black hole mass, while the power of Hawking radiation de-
creases with mass increase. For a star-like black hole, the entropy is many orders 
in magnitude greater than that of a star; the time of evaporation is also many 
orders in magnitude longer than the lifetime of the universe; while the power is 
many orders in magnitude lower than that of a single excited atom to emit a 
photon of light per second. 

5. Discussions and Conclusions 

These work done and results obtained by Hawking as briefly described above in 
Section 3 look great, but unphysical. The reason for this discrepancy is due to 
the Unruh radiation temperature at the surface of the object is not the object 
surface’s actual matter’s temperature, and hence the S-B law is not applicable. 
The Unruh radiation temperature is gravitational (resulting from the gravita-
tional field of the object), inversely proportional to the square of radial distance 
that leads to the Unruh radiation flux or energy density to be inversely propor-
tional to the eighth power of radial distance. Plugging the Unruh radiation tem-
perature into the S-B law, as done by Hawking, does not give the power of Un-
ruh radiation of a black hole. A gravitationally static black hole does not emit 
Unruh radiation as nothing can escape from the black hole.  

This paper shows that the emission power of Unruh radiation from a gravita-
tional object including a black hole should be calculated in terms of the rate of 
increase of the total Unruh radiation energy outside the object. The result ob-
tained from this study indicates that a gravitational object can emit Unruh radi-
ation when the variation of its mass and radius satisfies the condition dM/M > 
1.25dR/R. For a black hole, the emission of Unruh radiation does not occur un-
less it can loose its mass. The emission power of Unruh radiation is only a tiny 
part of the rate of mass-energy loss if the black hole is not micro-sized. For a 3 
solar mass black hole to loose 1 kg per second, the emission power of Unruh 
radiation is only about 4 × 10−61 W, while the rate of mass energy loss is 9 × 1016 
W. The entropy of a black hole that is calculated based on the Unruh radiation 
temperature and the change of the total Unruh radiation energy is very low and 
slowly increases with its mass. This study turns down our traditional understand-
ing of the Hawking radiation and thermodynamics of black holes and provides 
new insight and a conceptual correction regarding the quantum Unruh effect on 
the radiation of black holes.  
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