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Abstract 
In this paper, we used the Singular Value Decomposition (SVD) to find the 
relationships in the fluctuation of the six market indexes CAC 40, DAX, 
DOW JONES 30, FTSE 100, IBEX35 and NIKKEI 225 during the year 2018. 
This technique allows relating several indexes in a very similar way the clas-
sical Principal Component Analysis (PCA). In fact, we will just use the statis-
tical software to confirm some results. 
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1. Introduction 

It is assumed that there are six indexes: CAC 40, DAX, DOW JONES 30, FTSE 
100, IBEX35 and NIKKEI 225 with 254n =  trading days, in fact not all indexes 
have the same number of days, when a value was missing the value of the index 
has been repeated. In this order, let be  

( ) ( ) 254 6
1 2 3 4 5 6 , , , , , .ijq ×= = ∈Q q q q q q q                (1) 

In Figure 1, you can see these values, although the difference in size prevents 
any idea of their possible relationships, in other words, the data needs to be 
normalized. The first is centering the values in each column using the mean val-
ue for that column, i.e.  

254

1

1  , with ,
254ij ij j j ij

i
Q q q q q

=

= − = ∑                (2) 
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Figure 1. Variation of the index values.  

 
and the second step is to scale the values in each column using a characteristic 
value jS  for that column, in this case we used the maximum entry in the jth 
column in absolute value, so  

( ) ( )1 2 3 4 5 6, , , , , with   ,ij
ij ij

j

Q
p p

S
= = =P p p p p p p           (3) 

for 1, , 254; 1, ,6i j= =  . In Figure 2, we have plotted the columns of the 
matriz P . In this graphic, it already seems to detect possible relations between 
the variations in the indices. 

The question considered is, is there a connection between the movements in 
the indexes of the markets? and if there are, which are the relationships and 
which are not? 

This paper is organized as follows. In Section 2, we describe the principal 
components and possible linear approaches. In Sections 2 and 5, we study the 
one and two dimensional approximations respectively and we compare our re-
sults with those obtained with the software in Matlab. In Section 8, we consider 
the five dimensional approximation with a result maybe a little surprising. Fi-
nally in Section 11, we analyze the numerical results and draw the main conclu-
sions. 

Our numerical methods were implemented in Matlab, the codes are available 
on request. The experiments were carried out in an Intel(R) Core(TM)2 Duo 
CPU U9300 @ 1.18 GHz, 1.91 GB of RAM. 

2. Principal Component 

The goal of Principal Component Analysis is to find the principal directions of 
the normalized data matrix 254 6×∈P  . This technique has widely be used in 
computer science for data reduction as it enables to summarise the main di-
rections of the data set. However, we will use an alternative option to Compo-
nent Analysis called singular value decomposition. Before properly entering data  
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Figure 2. Variation of the normalized index values.  

 
processing we split our data set into a training and testing set, respectively  

127 61 ×∈P   and 127 62 ×∈P  . 1P  is used to find the principal components while 
2P  is used to test the accuracy of the approximations. In practice, we select the 

even rows of the dataset for training and the odd for testing. 
Singular Values Composition (SVD) gives: T1  = ΣP U V  where U  is an  

127 127×  orthogonal matrix, V  is an 6 6×  orthogonal matrix and  
( )1 6diag , ,σ σΣ =   is an 127 6×  diagonal matrix. The columns of V  are called 

the principal components. This technique has widely been applied in applied 
mathematics. For further analysis we suggest some literature references [1]-[10]. 
In particular, SVD can be seen as a basis transformation that enables us to go 
from an initial six dimension corresponding to the initial data basis into a second 
six-dimension space with orthogonal basis. U  and V  correspond to the trans-
formation matrices. In Matlab the relevant command is svd. In this particular 
case, the singular values of 1P , that is the diagonal elements of the matrix Σ  
are 

1 2 38.0164, 3.3344, 1.9863,σ σ σ= = =  

4 5 61.2209, 0.9312, 0.5284.σ σ σ= = =  

and 

( )1 2 3 4 5 6, , , , ,

0.4129 0.0473 0.1955 0.3034 0.7363 0.3934
0.4820 0.1892 0.1485 0.1407 0.1590 0.8153
0.1561 0.7115 0.2788 0.5518 0.2950 0.0157
0.5053 0.0008 0.7078 0.0484 0.4868 0.0663
0.4869 0.3991 0.5855 0.081

=

− − −
− −

− − −
=

− − −
− −

V v v v v v v

5 0.2817 0.4181
0.2837 0.5445 0.1345 0.7581 0.1709 0.0316

 
 
 
 
 
 
 −
  − − − − 

 

Because we want to determine the best linear fit of the normalized data  

( )1 2 3 4 5 6, , , , , ,=P p p p p p p  
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one need select one of the following linear functions  

1 1,α=p v                            (4) 

1 1 2 2 ,α α= +p v v                          (5) 

1 1 2 2 3 3 ,α α α= + +p v v v                       (6) 

1 1 2 2 3 3 4 4 ,α α α α= + + +p v v v v                    (7) 

1 1 2 2 3 3 4 4 5 5 ,α α α α α= + + + +p v v v v v                 (8) 

the first choice (4) corresponds a one-dimensional approximation or linear case, 
(5) is a two-dimensional approximation, etc. 

3. Linear Case  

In this section, we only focus in the first linear relation defined in the previous 
section: 1α=p v  that written by components is  

1, for 1, ,6.j jp v jα= =   

Our goal is to assess the predictive power of this first approximation, in other 
words, if we knew an index, could we predict another index? For example, if we 
select the French market index (Cac) ( 1j = ) we take 1 11p vα = , then the best 
fits for the other indexes are  

1
1 1

11

      , for 2, ,6.j
j j

v
p v p j

v
α= = =   

This procedure applied in each day 1, ,127i =   is the prediction  

1
1

11

   , for 2, ,6.j
ij i

v
p p j

v
= =                    (9) 

The resulting lines are shown in Figure 3 in red for three example, from the 
left to right we predict the values of the indexes Dax, Ftse and Dow Jones respec-
tively. The blue points are the real values versus from the testing set in the ma-
trix 2P ; we could conclude that the Cac index can be used to predict the index-
esDax and Ftse but the Dow Jones doesn’t. In the Figure 4 you can see other 
examples, in the center we can observe the best approximation that is obtained 
with the Dax and Ibex indices. 

On the other hand, the Principal Component Analysis (PCA) is a classical 
technique with a very wide bibliography, see for example ([11], Chap. 8), [12] 
[13] ([14], Chap. 12), ([15], Chap. 3) ([16], Chap. 4), ([17], Chap. 6), ([18], Chap. 
1). This technique looks for connections between quantities, even though there 
is no obvious reason why they have to be connected. The Principal Component 
Analysis of raw data with Matlab is the command pca with the following sintax-
is:  
• >> [coefs,score] = pca(data);  
• >> vbls = {‘Cac’,’Dax’,’Dow’,’Ftse’,’Ibex’,’Nikkei’}  
• >> biplot(coefs(:,1:2),’Scores’,score(:,1:2),’VarLabels’,vbls)  
where the each column of the matrix  
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Figure 3. Prediction using Cac index. The red line come from the training set, while the 
data comes from the testing set.  

 

 
Figure 4. Other predictions.  

 
( )1 2 3 4 5 6coefs , , , , ,= − − −v v v v v v  

contains coefficients for one principal component in descending order of com-
ponent variance, and the matrix 127 6score ×∈  correspond to observations. All 
six variables are represented in the biplot Figure 5 and the direction and length 
of the vector indicate how each variable contributes to the two principal com-
ponents, i.e. the first principal component, which is on the horizontal axis, has 
positive coefficients for the six variables and the largest coefficient in the first 
principal component corresponding: Ftse, Dax, Ibex and Cac Indexes. Morevov-
er, the second principal component, which is on the vertical axis, has positive 
coefficients for the indexes Dow and Nikkei and negative for Ibex and Dax. The 
red points for each of the 176 observations indicates the score of each observa-
tion for the two principal components in the plot. On the other hand, note that 
the nearest indexes are the British Ftse with the French Cac and German Dax 
with Spanish Ibex. Moreover, the American Dow Jones is the furthest away. 

4. Two Dimensional Approximation  

In this subsection we will try to answer the following question: knowing two in-
dices are we able to predict the other four ones? For simplification, let assume 
we only have the first two variables; the French CAC index and the German 
DAX index. We would like to predict the other indices: Dow Jones ( 3j = ), Ftse 
( 4j = ), Ibex ( 5j = ) or Nikkei with ( 6j = ). For each index j, because  

1 1 2 2α α= +p v v , in components  

1 1 2 2  , for 2, ,6.j j jp v v jα α= + =   

and we must compute the parameters 1 2,α α  using the data, i.e., for each  
1, ,127i =   solving the two dimensional system  
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Figure 5. Representation of two principal components with biplot. 

 
1 111 12

2 221 22

,i i

i i

p v v
p v v

α
α

    
=    
    

                    (10) 

and the i-th prediction for the j index is  

1 1 2 2  .ij i j i jp v vα α= +                      (11) 

In Figure 6 and Figure 7 we have plotted the four cases. For each one, the red 
line is what would be obtained if the predicted values and real values are equal 
and the blue points are the real values versus the values predicted using the 
training set. From these four graphs two predictions are reasonable (Ftse and 
Ibex) and the other two are quite bad (Dow Jones and Nikkei). 

On the other hand, using the before software in Matlab we can represent three 
components by typing:  
• >> biplot(coefs(:,1:3),’Scores’,score(:,1:3),’VarLabels’,vbls)  
with the result in Figure 8 a picture similar to the previous Figure 5 but with 
three principal components. Maybe the most remarkable detail is that the vec-
tors for indexes Cac, Dax, Ftse and Ibex are almost on a single plane. 

5. Five Dimensional Approximation 

The question that we now consider is whether known five indices, how well can 
predict the sixth. 

Now the fit is (8) i.e.  

1 1 2 2 3 3 4 4 5 5 ,α α α α α= + + + +p v v v v v                 (12) 

which in matrix form is  

1 11 12 15 1

2 21 22 25 2

6 61 62 65 5

.

p v v v
p v v v

p v v v

α
α

α

    
    
    =
    
    
    





     



                 (13) 
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Figure 6. Test of the predictions for Dow Jones and Ftse using Cac and Dax. 

 

 
Figure 7. Test of the predictions for Ibex and Nikkei using Cac and Dax.  
 

 
Figure 8. Representation of three principal components with biplot.  
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In order to make the mathematical formulation easier, we assume that the in-
teresting variable is 1p , then we need to find the kα ’s in terms of 2 6, ,p p  
what is achieved by solving the linear system  

2 21 22 25 1

3 31 32 35 2

6 61 62 65 5

,

p v v v
p v v v

p v v v

α
α

α

    
    
    =
    
    
    





     



                (14) 

If we write 6
2k kj jj a pα

=
= ∑  for 1, ,5k =    

1 1 11 2 12 3 13 4 14 5 15

2 2 3 3 4 4 5 5 6 6

  
 ,

p v v v v v
a p a p a p a p a p
α α α α α= + + + +

= + + + +
 

with 5
11k j jkja v a

=
= ∑ . 

Finally, this procedure applied in each data 1, ,127i =   result prediction  

1 2 2 3 3 4 4 5 5 6 6  .i i i i i ip a p a p a p a p a p= + + + +               (15) 

In Figures 9-11 we have represented the six cases. Similarly to the previous 
Figure 6 and Figure 7, the red line is what would be obtained if the real values 
and predicted values are equal and the blue points are the real versus the pre-
dicted values using the training set. From these figures we could highlight the 
following comment: 

There are two different behaviors, while for the indexes Dax, Cac and Ibex the 
predictions are reasonable, the other three indexes have quite bad predictions. 

 

 
Figure 9. The real values versus the predicted values using the training set 
for Cac and Dax respectively. 

 

 

Figure 10. The real values versus the predicted values using the training set 
for Dow Jones and Ftse respectively.  
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Figure 11. The real values versus the predicted values using the training set 
for Ibex and Nikkei respectively. 

 

 
Figure 12. Relative error (16).  

6. Conclusions and Discussion 

In this paper, we have considered six indexes: CAC 40, DAX, DOW JONES 30, 
FTSE 100, IBEX35 and NIKKEI 225 in the year 2018, and we have tried to link 
their movements using the principal components of the matrix of their fluctua-
tions. Our numerical results are very close to the numerical software with Mat-
lab, however, the result of the last Section 8 might be a little surprising, especially 
because of the deviation in the English index Ftse. 

In this point, a question we might ask is: how many columns of V  is needed 
for our analysis? ([19] [20]). If we use the first k columns from V , the relative 
error is given in ([10], p. 415) by  

2 2
1 6

2 2
1 6

,k
kR

σ σ
σ σ

+ + +
=

+ +




                    (16) 

for 1, ,5k =   representing in Figure 12. Usually, this information is used to 
decide on how many components to use for a PCA, the most used is based on a 
noticeable change in this plot, applying this to Figure 12, one would again de-
cide on taking one or two columns and no more. There are those who use a cri-
terion of the form kR tol< , where tol  is a number chosen somewhere between 
0.25 and 0.05, here the result is similar. Moreover, after the results of Figure 5 
and Figure 8 in this research it would seem that the linear case with one column 
is the best. 

This small academic exercise does not conclude important results, however, 
we believe that it is quite easy to extend this kind of analysis to longer series of 
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data or also apply it to other indexes, for example in Investing.com there are 45 
indexes. This would need to prepare the data files, a routine but important job, 
but with little academic interest. The main philosophy of all this is written by 
Yuval Noah Harari in the introduction of [21]: In a wold deluged by irrelevant 
information, clarity is power.  
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