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Abstract 
Recently Martin, Guerard, and Xia [1] used a new optimal bias robust regres-
sion estimator, called the mOpt estimator, in Fama-MacBeth cross-section 
regressions to study the statistical significance of the earnings-to-price (EP) 
and book-tp-price (BP) factors, among others. An earlier study by Markowitz 
et al. [2], and a number of studies referenced therein, used an alternative 
well-known Tukey Bisquare robust regression estimator. This begs the ques-
tion of how the Bisquare estimator fares relative to the mOpt robust regres-
sion with regard to determining the statistical significance of the EP and BP 
factors. Here we show that the Bisquare robust regression estimator performs 
almost as well as mOpt with regard to the size of their significant t-statistics. 
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1. The Fama-MacBeth Method and the Data 

A wide variety of robust regression M-estimators have existed for some time, 
and are availiable in open source R packages such as RobStatTM and robustbase, 
and in commercial statistical software products such as Stata and SAS. In fact 
SAS offers 10 regression M-estimator weight function variants for its ROBUSTREG 
Procedure, with the following names: Andrews, Bisquare, Cauchy, Fair, Hampel, 
Huber, Logistic, Median, Talworth, Welsch. While SAS contains the Bisquare 
robust regression estimator studied herein, it does not contain the mOpt robust 
regression estimator studied herein, which however is contained in the RobS-
tatTM package. The relatively new mOpt estimator is based on the theoretical 
results for an Opt optimal bias robust regression estimator discovered by Yohai 

How to cite this paper: Martin, R.D., 
Guerard, J.B. and Xia, D.Z. (2024) Earnings 
to Price Analysis with mOpt versus Bis-
quare Robust Regression. Journal of Ma-
thematical Finance, 14, 243-249. 
https://doi.org/10.4236/jmf.2024.142014 
 
Received: April 2, 2024 
Accepted: May 28, 2024 
Published: May 31, 2024 
 
Copyright © 2024 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jmf
https://doi.org/10.4236/jmf.2024.142014
https://www.scirp.org/
https://doi.org/10.4236/jmf.2024.142014
http://creativecommons.org/licenses/by/4.0/


R. D. Martin et al. 
 

 

DOI: 10.4236/jmf.2024.142014 244 Journal of Mathematical Finance 
 

and Zamar [3], and modified by Konis and Martin [4]. The first, and only, cur-
rently published papers studying the use of the mOpt robust regression estima-
tors in quantitative finance are those of Martin and Xia [5] and Martin et al. [6]. 

Recently Martin, Guerard, and Xia [1] used robust mOpt and least squares (LS) 
Fama-MacBeth cross-section factor model regressions to evaluate the statistical 
significance of EP and BP factors.1 For at times 1,2, ,t T=   the factor model 
for EP and BP has the form 

 
2

, 0, , , ,
1

, 1,2, ,i t t ik t k t i t t
k

r b s i Nθ θ ε
=

= + + ⋅ =∑   (1) 

where the ,ik tb  are the known values of lagged factor exposures, 0,tθ  is the in-
tercept, and 1, 2,,t tθ θ  are the regression slopes.2 The parameter 0s >  is an un-
known error term scale factor, which is needed for the mOpt robust regression 
method. The steps of the Fama-MacBeth method are: 1) Compute the intercept 
and regression slopes estimates 0, 1, 2,

ˆ ˆ ˆ, ,t t tθ θ θ  for each 1,2, ,t T=  ; 2) Use the 
time series of these slope estimates to compute heteroscedasticity and autocor-
relation corrected (HAC) t-statistics for the intercept and slopes. The standard 
Fama-MacBeth method is based on LS regressions, and here we extend it to a 
robust Fama-MacBeth method based on the mOpt robust regression estimates 
described in Section 2. 

We use the same stock data as in Martin, Guerard, and Xia [1], namely stock 
returns for the CRSP universe, and for emulated Russell R3000, R2000, and 
R1000 index universes, for the two time-periods 1980-2007, and 2008-2020. The 
average number of stocks in the cross-sections of those universes for 2008-2020 
are 6961, 2769, 1833 and 967. The CRSP® data is from the Center for Research in 
Security Prices, LLC database, and the R3000, R2000 and R1000 stock universes 
were emulated from the CRSP database by matching the Russell indexes stock 
CUSIP’s with those of the CRSP® database. 

The EP and BP factor exposures are computed using balance sheet data from 
the Compustat database. For each calendar year, we use balance sheet data from 
the fiscal year ending in calendar year t − 1 for estimation starting in June of 
year t until May of year t + 1, predicting returns from July of year t until June of 
year t + 1. The EP value is the earnings-per-share (EPS) divided by the stock 
price at the end of each month, where EPS is firm’s reported net income (NI) 
from its income statement, divided by the number of its common stocks out-
standing. The BP value is the book value per share divided by the price per share, 
where the book value is the common stockholder equity (SEQ). 

2. The mOpt and Bisquare Robust Regressions 

The general form of a robust regression estimator for the regression model given 

 

 

1Fama-MacBeth cross-section regressions are commonly used in empirical asset pricing research, 
and for an overview of this research area, see Bali, Engle, and Murray [7]. 
2Lagged factor exposures ,ik tb  are the exposure values measured at time t − 1. Since most of the 

factor exposures in this study are dimensionless ratios, and our main interest is in factor significance, 
we do not bother with the common practice of standardizing the exposures to having cross-section 
sample mean and standard deviations of 0 and 1, respectively. 
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by Equation (1) is as follows. Let ( ), 1, 2,,i t i t i tb b ′=b  be the vector of lagged expo-
sures for the i-th stock at time t, and let ( ), ,1,i t i t

′′=b b  be the lagged exposures 
vector augmented to include the intercept. Then with ( )0, 1, 2,, ,t t t tθ θ θ ′=θ , the 
2-factor EP and BP model has the form: 

 , , , .i t i t t i tr s ε′= + ⋅b θ  (2) 

Dropping the time subscript t in the above model for notation convenience, 
the regression residuals are defined as 

 ( )ˆ , 1,2, ,i i ir i Nε ′= − =b θ θ  (3) 

where θ  is variable. It is shown in Martin et al. [6] that an mOpt robust re-
gression M-estimator t̂θ  of θ  is a solution of the non-linear weighted least 
squares (WLS) estimating equation 

 
( ) ( )mOpt
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where ŝ  is a robust residuals scale estimate computed prior to solving the 
above equation, and the weight function ( )mOptw x  is determined by the deriv-
ative of the mOpt M-estimator loss function.3 The formula for the mOpt weight 
function is 

 ( ) ( )
( ) ( ) ( ) ( )mOpt

1 1
w 1 0.01321 SGN U 3.00 1
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x x x
x x
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where ( )SGN x  is the “sign” function whose value is +1 for 0x > , −1 for 
0x < , and 0 for 0x = , ( )U x  is the unit step function whose value is 1 for 
0x ≥  and 0 for 0x < , and ( )xφ  is the standard normal probability density 

function. For details concerning the mOpt estimator weight function, see Konis 
and Martin [4]. 

The Equation (4) is solved for θ̂  using an iterated weighted least square 
(IWLS) algorithm is briefly described in Equation (16) of Martin et al. [6], and 
described more completely in Martin, Guerard, and Xia [1]. Furthermore, proof 
of convergence of the IWLS algorithm for weight functions which are 
non-increasing in x  is provided in Section 9.1 of Maronna et al. [8]. 

The mOpt regression estimator is optimal in the sense of minimizing the 
maximum bias of θ̂  due to joint factor exposure and return outliers. Details 
concerning this are provided in the Section “Efficient bias robustness of the 
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( )xρ  is symmetric and non-decreasing with ( )0 0ρ = . Differentiation of the summation shows 

that ˆ
Mθ  is a solution of the estimating equation 
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ψ ρ ρ′= = . The weight function is then obtained from ( )xψ  as ( ) ( )w x x xψ= . 
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mOpt regression estimator” in Martin and Xia [5]. 
However, the robust regression M-estimator used in Markowitz et al. [2], and 

a number of references therein by John Guerard and co-authors, used the Tukey 
Bisquare weight function, whose formula is: 

 ( )

22

Bisquare
1 4.68

w 4.68

0 4.68

x x
x

x

   − ≤    =    


>

 (6) 

The above mOpt and Bisquare weight functions have been tuned, by the 
choice of their constants, to have 95% efficiency for the case where the tε  in 
Equation (1) have a normal distribution. The shapes of ( )mOptw x  and ( )Bisqw x  
are displayed in Figure 1. 

The mOpt weight function gives a weight of 1 to all robustly scaled residuals 

( ) ( )ˆ ˆˆ ˆt t i i tr sε ′= − bθ θ  that are less than 1 in magnitude, and smoothly transitions 
to a weight of 0 for robustly scaled residuals whose absolute value is greater than 
3.00. Data returns and lagged exposures vector pairs ( ),t ir b  which result in 0 
weights are said to be rejected. For normally distributed data and true parameter 
values, the probability that such a pair is rejected is a tiny 0.27%, and the esti-
mator is virtually equivalent to the LS estimator. 

The differences in the shapes of the mOpt and Bisquare weight functions in 
Figure 1 suggest that the Bisquare robust regression will be sub-optimal, relative 
to the mOpt regression, in controlling bias due to outliers, because: The Bisquare 
weight function down-weights robustly scaled regression residuals ( )ˆ ˆi sε θ  
more than the mOpt weight function for absolute values of the robustly scaled 
regression residuals greater than 0 and less than 3.0, and thereby are not consi-
dered to be outliers, and down-weights robustly scaled prediction residuals less 
than mOpt for robustly scaled prediction residuals with absolute values greater 
than 3.0, which are thereby considered to be outliers which are rejected by the 
mOpt regression. 
 

 
Figure 1. mOpt and Bisquare 95% normal distribution efficiency weight functions. 
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3. EP and BP Factor Significance with mOpt versus Bisquare 

The study results reported in this Section are motivated by the recent results of 
Martin, Guerard, and Xia [1], who show that the earnings-to-price (EP) factor is 
not a significant factor for explaining the cross-section of returns when least- 
squares Fama-MacBeth regressions are used, but EP is highly significant when 
mOpt robust regressions are used. The EP factor was also shown to be an im-
portant factor in multi-factor models fit with Bisquare robust regressions, for the 
purpose of constructing mean variance optimal (MVO) portfolios in Markowitz 
et al. [2], and in papers co-authored by Guerard referenced therein. It has re-
mained an open question of how well the Bisquare regressions perform relative 
to the optimal bias robust mOpt regressions, for the pupose of studying the sig-
nificance of the EP factor. 

In order to check on the extent to which the Bisquare regression is sub-optimal 
relative to the mOpt regression, we computed the HAC t-statistics (Tstats) for 
the Bisquare and mOpt regression for the CRSP®, R3000, R2000, R1000 universes 
and the time periods 1980-2007 and 2008-2020, and the results are displayed in 
Table 1. We consider Tstats with absolute values greater than 3.0 to be signifi-
cant, and consider those with values at least 2.0 but less than 3.0 to be weakly 
significant, Thus in Table 1 we use green highlight for significant Tstats, and use 
yellow for weakly significant Tstats. The results show very clearly that EP is a 
significant using both mOpt and Bisquare regressions for the CRSP®, R3000 and 
R2000 universes for both time periods, but is only weakly significant for the 
R1000 during the first time period. Furthermore, for the mOpt and Bisquare re-
gressions, BP is never significant, except for the CRSP universe for the second 
time period, where it is highly significant as a “negative value” factor. The CRSP 
data universe is curiously unique in this regard after 2007. 
 
Table 1. Comparison of mOpt and Bisquare HAC Tstats for EP and BP multiple regres-
sions for CRSP®, R3000, R2000, R1000 universes and the time periods 1980-2007 and 
2008-2020. 

Universe mOpt EP Bisquare EP mOpt BP Bisquare BP 

1980-2007 

CRSP 6.09 6.28 2.03 1.86 

R3000 6.86 6.23 0.46 0.47 

R2000 7.1 6.49 1.24 1.12 

R1000 2.67 2.61 0.21 0.16 

2008-2020 

CRSP 6.07 5.98 −4.75 −4.78 

R3000 6.07 5.82 −1.16 −0.97 

R2000 6.46 6.07 −0.52 −0.46 

R1000 1.12 0.94 −1.1 −0.95 
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The mOpt Tstat is larger than that of the Bisquare for all but 3 of the 16 pair-
wise comparisons of the two Tstats, and for 2 of those 3 it is a tiny difference in 
the second digit. The mean relative difference between the mOpt and Bisquare 
Tstats is 9.2%, and minimum and maximum relative differences of −3.2% and 
31.2%. However, there is only one case where the significance outcomes are dif-
ferent, namely for BP using the CRSP® universe in the first time period where the 
mOpt Tstat is weakly significant but the Bisquare is not at all significant. Thus 
one can conclude that most, if not all, of the conclusions based on applying the 
Bisquare robust regression to minimum variance portfolio optimization in 
Markowitz et al. [2], in papers co-authored by Guerard therein, would be 
changed very little, if at all, by using the theory based mOpt regressions. Howev-
er, it is preferable to use an estimator such as the mOpt estimator, for which 
there exists solid theoretical support. 

4. Concluding Comments 

We have shown that the Bisquare regressions performance in terms of the size of 
HAC t-statistics is not as large as those of the mOpt robust regression, but they 
are not much smaller. These empirical results are consistent with the theoretical 
optimal bias robustness of the mOpt regression estimator, which we strongly 
recommend for quantitative finance research and applications which involve 
time series and cross-section factor models. For an introduction to robust statis-
tics for portfolio construction and analysis we recommend Martin et al. [6], and 
for robust time series factor models see Martin and Xia [5]. 

One cannot stress too strongly the usefulness of mOpt robust regression as a 
diagnostic tool for checking whether or not a least squares regression has been 
unknowingly influenced by outliers. The software for computing mOpt robust 
regressions is available in the form of the lmrobdetMM function in the R open 
source R package RobStatTM, downloadable at  
https://cran.r-project.org/web/packages/RobStatTM. 
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