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Abstract 
Corporate distress signals are important for both institutions and banks when 
evaluating firms’ performances. This paper evaluates five different models in 
predicting the distress for listed companies in China based on 22 dimensions 
of financial data from 2014 to 2022. The models include three ensemble ma-
chine learning models: Adaboost, Bagging, and Random Forest, as well as a 
single machine learning model Decision Tree, along with a benchmark Logis-
tic Regression. The comparative analysis found Random Forest to be the most 
promising method with the highest accuracy ratio and lowest Type I and 
Type II errors. This paper concludes that ensemble learning models could be 
an easy-to-replicate and highly efficient tool for institutions and banks to 
evaluate and predict potential distress in firms.  
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1. Introduction 

Firms’ distress will seriously influence banks, stakeholders, employees, and other 
relative actors’ benefits. While the distress rate may be a measure for economic 
development, the detection of bankruptcy ensures the efficiency of commercial 
credit allocation [1]. Therefore, it is important to precisely monitor corporate 
potential risk of distress to ensure the stability of the financial system. 

Compared with econometric methods, artificial intelligence approaches, in-
cluding machine learning and ensemble learning, are becoming popular. With 
datasets containing more indicators, it becomes possible to establish more flexi-
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ble relationships between indicators and prediction outcomes compared to sim-
ple linear models [2]. They also exhibit better performance and could signifi-
cantly raise the precision in prediction than traditional methods [3]. The merits 
of machine learning like boosting and random forest are examined by many em-
pirical research [2] [4] and policy evaluation [5] [6] [7] [8]. Among the many 
machine learning models, ensemble methods are gaining popularity in many 
prediction topics for their better performances in classification compared with 
other approaches because they combine various instances into a more accurate 
prediction [9], thus improving simple supervised learning methods. 

Existing bankruptcy research aims to identify a better model with higher pre-
dicting precision through multiple approaches, concerning potential predictors 
from various dimensions [10] [11] [12]. Prediction in the economic area tradi-
tionally hinges on the regression of panel data like logistic regression or probit 
model [13] [14]. Later work improved these models by introducing different ex-
tensions such as duration analysis [15], macroeconomic conditions [16], and 
unobserved heterogeneity [17]. The seminal work of Campbell et al. [18] used 
multiple logit models to predict bankruptcy over different time periods. Studies 
using newer statistical models followed, such as the Cox intensity model [19], 
mixed logit model [20], volatility-adjusted distance-to-default measure [21], dy-
namic capital structure model [22], and so on. 

In bankruptcy prediction, various machine learning methods are deployed 
and their results imply that machine learning models are more accurate, like 
those in Kim et al. [12]. Since studies of bankruptcies using machine learning 
techniques with sequential data remain rare and bankruptcy results may come 
from many periods of production [23], Kim et al. [12] provided results three 
benchmarks machine learning ways (logistic model, support vector machine and 
random forest) using the Compustat North America dataset from 2007 to 2019 
but only provide a one-period prediction. They found that random forest per-
forms better than other methods. Sun et al. [24] focused on financial distress 
prediction and found that Adaboost performs better than other models using 
2000 to 2008 Chinese-listed companies data, indicating that Adaboost is more 
suitable for Chinese-listed companies’ distress research. Jones et al. [25] processed 
detailed information about why machine learning techniques outstanding tradi-
tional econometric methods in bankruptcy prediction, using high-dimensional 
data (91 predictor variables) in the gradient boosting model, concluding the best 
and weakest predictors. Moreover, Jones [11] examined 16 classifiers in US cor-
porate bankruptcies, concluding that though simple classifiers (logit) perform 
better, “new age” methods like Adaboost and random forest are highly recom-
mended for their good interpretability and easy implementation. Barboza et al. 
[26] tested machine learning models based on five variables from the literature 
Altman [27], and show what future research should focus on: considering the 
impact of macroeconomic variables, setting up an easy-to-replicate model, which is 
consistent with [28], who point out that many existing models reflect neither the 
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panel property of financial statements nor the common influence of macroeco-
nomic conditions on each company. Keasey and Watson [29], Yeh et al. [30] 
conduct models based on financial ratios and non-financial ratios, indicating the 
role of non-financial ratios in prediction. 

This paper mainly aims to predict listing firms’ distress through high-dimensional 
analysis, evaluating corporate responses based on time-series data in China. We 
extend the existing literature of ensemble machine learning models in bank-
ruptcy prediction and make the following contributions. First, this paper pro-
vides a high-dimensional analysis with 22 parameters of financial and non-fi- 
nancial information for a more recent period leading up to the pandemic. Fur-
thermore, we employed variable selection techniques to remove highly corre-
lated variables and performed hyperparameter optimization. This would provide 
more accurate assessments of the model performances. Second, this paper con-
siders time-series data to provide a more accurate assessment. In China-listed 
companies, before being labeled with a distress signal (“ST” or “*ST”), some 
firms might already demonstrate potential distress in previous years’ perfor-
mance. Thus, it’s important to include the time effects on the models. Lastly, this 
paper provides a more comprehensive assessment of ensemble machine learning 
models by examining various models from different literature. 

The rest of this paper is organized as follows. Section 2 describes the metho-
dology and the various adaptive learning models used in this paper. Section 3 
presents and discusses our results. Section 4 summarizes our results. 

2. Methodology 
2.1. Decision Tree 

A decision tree is a popular machine-learning algorithm that is used for both 
classification and regression tasks. It is a tree-like model of decisions and their 
possible consequences that is built by recursively splitting the data based on the 
values of the input features. 

At the root of the tree, the entire dataset is considered and the input feature 
that best separates the data into the different classes or the output variable is 
chosen as the first split. The data is then split into smaller subsets based on the 
chosen feature value, and the process is repeated recursively for each subset until 
a stopping criterion is met, such as reaching a maximum tree depth, achieving a 
minimum number of data points in a leaf node, or a minimum reduction in im-
purity. 

Each internal node of the decision tree represents a decision based on the val-
ue of an input feature, while each leaf node represents a predicted output value 
or class. The decision rules learned by a decision tree can be easily visualized and 
interpreted, making it a popular choice for applications where interpretability is 
important. 

Decision trees can be used with different impurity measures to decide which 
feature to split on at each node. Two common impurity measures are Gini im-
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purity and entropy. Gini impurity measures the probability of misclassifying a 
randomly chosen example from a given class, while entropy measures the amount 
of disorder or uncertainty in the data. In this paper, the CART algorithm is dep-
loyed in a single machine learning model and also set as weak classification in 
ensemble models, which depends on the Gini index to split the classification [31] 
[32]. Gini coefficient could be written as: 

 ( ) ( ) ( )( )
1

1
n

k k k
k

Gini X P x p x
=

= −∑  (1) 

where P is the probability of choosing classifier k with value X. 
Decision trees can also be prone to overfitting, where the tree becomes too 

complex and captures noise in the data rather than the underlying patterns. To 
address this issue, techniques such as pruning, ensemble methods like random 
forests, and early stopping can be used. 

Decision trees have been successfully applied in many domains, including 
medicine, finance, and marketing. They are especially useful in applications 
where the decision-making process is based on a hierarchical set of rules or fea-
tures, and where interpretability and transparency are important. 

2.2. Bagging Model 

Bagging, which stands for Bootstrap Aggregating, is a model of adaptive learning 
that is commonly used in machine learning [26] [31] [33]. The basic idea behind 
Bagging is to create multiple models using different subsets of the training data 
and then combine their predictions to improve accuracy and reduce overfitting. 
Figure 1 illustrates how it works in this paper. 

In Bagging, the training data are randomly sampled with replacement to 
create multiple subsets, which are used to train individual models. These models 
can be trained using any algorithm, such as decision trees, neural networks, or 
support vector machines. The final prediction is then made by combining the 
predictions of all the individual models, either by taking a majority vote (for 
classification problems) or by averaging the predictions (for regression prob-
lems). 
 

 

Figure 1. Framework of bagging model. 
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The use of multiple models trained on different subsets of the data helps to 
reduce the impact of outliers and noise in the data, as well as to capture different 
aspects of the underlying patterns. Random sampling also helps to reduce over-
fitting, as the individual models are more likely to be diverse and less likely to 
memorize the training data. 

Bagging is effective in many real-world applications, such as image and speech 
recognition, natural language processing, and financial forecasting. However, it 
may not be suitable for all types of problems, especially those with a small num-
ber of training examples or those that require a high degree of interpretability. 

2.3. Random Forest 

Random Forest is a popular extension of the Bagging algorithm that is also fre-
quently used for classification and regression problems [12] [26] [30]. While 
Bagging employs all of the features in the subsamples, Random forest only se-
lects a part of the subsamples to train. It was first introduced by Breiman [34] 
and is based on the concept of decision trees.  

In this paper, the Random Forest algorithm works by building a large number 
of classification and regression trees (CART) on randomly selected subsets of the 
training data. In this paper, Optuna is deployed and the best number of trees is 
133. Each tree is trained on a different subset of the data and with a random 
subset of the features. This helps to reduce overfitting and improve the generali-
zation of the model. The final prediction is then the average or majority vote of 
the predictions of all the trees. 

One of the main advantages of Random Forest is its ability to handle 
high-dimensional data and noisy or missing data. It is also less prone to overfit-
ting compared to single decision trees. Moreover, Random Forest can provide 
feature importance scores, which can be useful for feature selection and under-
standing the importance of different features in the model. 

However, Random Forest also has some limitations, such as its tendency to be 
computationally expensive, especially when dealing with a large number of trees. 
Additionally, it can be difficult to interpret the model, especially when dealing 
with a large number of trees. 

2.4. Adaboost Model 

Adaptive learning algorithms have been gaining popularity in recent years due 
to their ability to improve the accuracy of machine learning models [3] [24] [31] 
[32]. One such algorithm is AdaBoost, which stands for Adaptive Boosting. In-
troduced in Freund and Schapire [35], AdaBoost is a powerful ensemble learning 
technique that combines multiple weak classifiers to produce a highly accurate 
final model. 

The AdaBoost algorithm works by iteratively training a sequence of weak 
classifiers on the training data, and then weighting the data based on the accu-
racy of the previous classifiers. In this paper weak classifier is the CART decision 
tree model. The weights assigned to each observation are used to adjust the im-
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portance of that observation in subsequent rounds of training. The final model is 
a weighted combination of the weak classifiers, and its accuracy is typically bet-
ter than that of any individual weak classifier. Figure 2 illustrates the framework 
of Adaboost, when ε is determined by the ratio of wrong classifications samples 
to total samples. 

AdaBoost has several advantages over other machine learning techniques, 
such as its ability to handle high-dimensional data and class imbalance. It is also 
relatively easy to implement and can be used with a wide range of classification 
algorithms. However, AdaBoost is not without its limitations, such as its sensi-
tivity to noisy data and tendency to overfit the training data. 

2.5. Logistic Model 

Logistic regression is a popular machine learning algorithm used for binary clas-
sification problems, where the goal is to predict a binary output variable based 
on one or more input variables Kim et al. [12], Bajari et al. [33], Beutel et al. 
[10]. It is a type of generalized linear model that uses a logistic function to esti-
mate the probability of the output variable. 

In logistic regression, the input features are first linearly combined using a set 
of weights and biases. The resulting score is then passed through a logistic func-
tion, also known as a sigmoid function, which maps the score to a value between 
0 and 1. This value represents the estimated probability of the output variable 
taking a positive class. 

The logistic function has an S-shaped curve that starts close to 0 and gradually 
rises to 1 as the input score increases. The steepness of the curve can be adjusted 
by changing the slope parameter, which affects the rate at which the probability 
changes concerning the input score. 

The logistic regression model is trained by minimizing a cost function, typi-
cally the cross-entropy loss, which measures the difference between the pre-
dicted probabilities and the actual labels. This is done using an optimization al-
gorithm such as gradient descent, which updates the weights and biases in the 
model to minimize the cost function. 
 

 

Figure 2. Framework of Adaboost model. 
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Logistic regression has several advantages, including its simplicity, interpreta-
bility, and ability to handle both continuous and categorical input variables. It is 
also computationally efficient and can be easily extended to handle multi-class 
classification problems using techniques such as one-vs-all or softmax regres-
sion. 

Logistic regression has been widely used in many applications, including medi-
cal diagnosis, credit risk assessment, and marketing. However, it may not be suita-
ble for all types of problems, especially those with complex decision boundaries 
or imbalanced classes. 

2.6. Optuna in Machine Learning 

Optuna is a powerful Python library for hyperparameter optimization, which is a 
critical component of machine learning [36]. Hyperparameters are the configu-
ration variables that define the behavior and performance of a machine learning 
model, such as the learning rate, regularization strength, and network architec-
ture. Hyperparameter optimization is the process of finding the optimal combi-
nation of hyperparameters that yields the best performance of the model on a 
given task. 

Optuna uses a Bayesian optimization algorithm to efficiently search the 
hyperparameter space and find the optimal combination of hyperparameters. 
The algorithm works by building a probabilistic model of the objective function, 
which maps the hyperparameters to the performance metric of the model, such 
as accuracy or mean squared error. The model is then used to predict the per-
formance of different hyperparameter settings and guide the search towards 
promising regions of the hyperparameter space. 

Optuna supports various types of hyperparameters, including continuous, 
discrete, and categorical variables, and provides a flexible and intuitive API for 
defining the search space and constraints. It also supports parallel and distri-
buted optimization, which allows multiple trials to be run simultaneously on 
different machines and provides a dashboard for monitoring the progress and 
results of the optimization. In this paper, Optuna will be deployed in every mod-
el before training. 

2.7. Model Evaluation 

This paper uses five different methods to measure the performance of each 
model. The first is AUC (accuracy ratio), which is widely deployed as the best 
criterion to evaluate the performance of the model [31] because it could better 
depict the performance in imbalanced data classification [12] while demonstrat-
ing how the model can separate distressed and non-distress firms. AUC is calcu-
lated as the area below ROC (receiver operating characteristic curve). 

The second criteria commonly used are Type I and Type II errors, which 
mainly consider the likelihood of identifying distressed firms and non-distress 
firms [26]. Type I error is the percentage of firms identified as non-distressed 
when they are distressed, also known as false positives. Type II error is the per-
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centage of firms identified as distressed when they are non-distressed, also 
known as false negative. Since investors and banks are more concerned with de-
tecting distressed firms, minimizing Type II errors has a higher priority. We 
denote TP as true positive, the probability of non-distress firms predicted suc-
cessfully and set it to 0. We denote TN as true negative, representing the proba-
bility of distressed firms correctly identified, and labeled it as 1. The variables are 
determined as follows: 

 Type I Error FP
FP TN

=
+

 (2) 

 Type II Error FN
FN TP

=
+

 (3) 

where FP denotes false positive, and FN represents false negative. Since the con-
fusion matrix records the classification results, this paper provides Type I and II 
errors through confusion matrices. 

In addition to the above two criteria, we also use Precision, Recall, and F1 
scores to measure the performance of each model. Precision looks at the number 
of truly distressed firms from the firms that are predicted as distressed, while 
Recall seeks the number of truly distressed firms that are successfully detected by 
the model. The F1 score is the average of Precision and Recall. 

3. Empirical Strategy 
3.1. Data Description 

Chinese mainland listed companies with distressed performance will be la-
beled as “ST” (special treated), mainly due to consecutive two years’ negative 
net profit or net capital per share being lower than the face value per share 
[24], and “*ST” implies the firm is in risk of listing suspension. WIND database 
provides detailed information on the time for listing changes, and samples dur-
ing the periods start from “*ST”, “From *ST to ST”, “ST” and “Stock Listing 
Suspended” are determined as distressed firms. Moreover, since the distress is 
mainly due to inappropriate business management lasting for several years, 
WIND database from 2014 to 2022 will be deployed to include the effect of time 
in prediction. 

Utilizing WIND data, 3355 listed companies are selected. In each year, the 
sample with too many non-values will be excluded from the modeling, then the 
remaining descriptive data are presented in Table 1. Setting every four years as a 
window period to train, and testing the fifth year based on four-year training. In 
other words, in each model, data from 2014 to 2017, 2015 to 2018, 2016 to 2019, 
and 2017 to 2020 will be set into training separately, while data from 2018 to 
2021 will be evaluated based on four training respectively. Therefore, data from 
2018 to 2021 are subjected to assessment based on the previous four-year train-
ing respectively, and the prediction accuracy is determined by the testing out-
come from 2018 to 2021. In other words, aggregate accuracy could depict the 
performance of four times training, and include the information from 2014 to 
2021. 
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Table 1. Summary statistics. 

Row Labels 2014 2015 2016 2017 2018 2019 2020 2021 2022 Grand Total 

Non-disressed firms 1049 1260 1437 1702 1919 2061 2179 2447 983 15,037 

Distressed firms 175 179 181 167 160 163 157 101 16 1299 

Share of distressed firms 14.30% 12.44% 11.19% 8.94% 7.70% 7.33% 6.72% 3.96% 1.60% 7.95% 

Grand Total 1224 1439 1618 1869 2079 2224 2336 2548 999 16,336 

3.2. Variables Selection 

Figure 3(a) and Figure 3(b) demonstrate the 22 variables selected from WIND 
based on existing literature [24] [26] [29] [30] [31] [32]. Financial indicators 
capture and predict the enterprises’ financial performance, including the ability 
to generate profits, Solvency and so on. Non financial ratios evaluate the poten-
tial development of the corporate. There are 20 variables covering financial ra-
tios (including profitability, solvency, etc.), one variable for non-financial ratios 
(i.e. whether the audit is performed by big 4 audit firms) [30], and intellectual 
capital (i.e. expenditure in R&D). Table 2 illustrates the definitions of the va-
riables chosen. Highly correlated variables are excluded from the model. 

The data in 2022 include too much non-value information, and after deleting 
those non-value firms, only 16 distressed firms remain, while there are 161 dis-
tressed firms. Hence, 2022 data will not be utilized for testing. Distress observa-
tions are highly imbalanced and summing up all the observations together, dis-
tressed firms only account for 8 percent, with 15,307 overall from 2014 to 2022. 
Therefore, the synthetic minority over-sampling technique (SMOTE) is dep-
loyed in the data, before setting the hyperparameters and training. This is com-
monly used in many bankruptcy prediction analyses to balance the data [12] 
[37]. After deploying SMOTE, distressed firms are oversampling from 1299 to 
1503, the ratio of distress firms and non-distress firms is 8:10. 

3.3. Empirical Results 

The results are the outcome performance combined with the prediction from 
2018 to 2021, based on four different four-year loops of training. This paper 
evaluates the performance of the five models based on the prediction outcome. 

Figure 4 illustrates the comparison of ROC curve, and higher ROC represents 
better performance. ROC of the Random Forest is 0.94, with 0.01 higher than 
the Adaboost’s ROC curve, and 0.03 higher than Bagging’s. All of the ensemble 
learning models have higher than 0.90 performance, with Random Forest classi-
fication becoming the best classification model among the five methodologies, 
and the decision tree holds the lowest ROC. In addition, Logistic regression per-
forms better than the Decision tree model, with ROC 0.08 higher than 0.74. 

Figure 5 further presents the confusion matrix based on the prediction out-
come. For the TP (true positive) value, Random Forest holds the highest TP val-
ue than other methodologies, detecting 2192 non-distressed firms in the test set,  
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(a) 

 
(b) 

Figure 3. Correlation matrix. (a) Selected variables; (b) Selected variables excluded variables with high correlations. 
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Figure 4. ROC curve. 
 
while Adaboost holds the lowest TP value. However, for TN (true negative) val-
ues, Adaboost performs the best and detects 1733 distressed firms, which is 71 
units higher than Random Forest, and 538 units higher than logistic regression. 

Based on confusion matrices, Table 3 further evaluates the performance of 
different models. The Precision of Random forest and Bagging are 86.7% and 
84%, respectively, which is higher than other models. The Precision of logistic 
regression is also higher than 80%. The decision tree holds the lowest Precision. 
In addition, when comparing the recall score among ensemble models, Adaboost 
holds the highest recall score (88.6%), 3.7% higher than random forest and 
12.7% higher than bagging. Different from precision, the recall score of logistic  
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Table 2. Variables definitions. 

Dimensions Definition 

Financial Indicators 

Current Ratio 

Long-Term Liabilities 

EBITDA/Interest Expense 

Current Assets/Total Assets 

Net Working Capital 

Percentage of Sales 

Net Income/Total Profit 

ROE (Average) 

Net Income (TTM) 

R & D Expenditure 

Net Profit Margin (TTM) 

Return on Invested Capital (TTM) 

PCF (Net Cash Flow LYR) 

Cash Flow Adequacy Ratio 

Debt to Long-term Capital Ratio 

Average Turnover (Y) 

Free Cash Flow to Equity per Share 

Net Profit/Total Assets 

Retained Earnings/Total Assets 

Positive Income* 

Intellectual Capital R & D Expenditure/Total Assets 

Non Financial Indicators Big Four** 

Note: *1 if net income > 0; 0 otherwise. ***1 if audit firm is PwC, Deloitte, E & Y, or 
KPMG; 0 otherwise. 
 
Table 3. Classification performance. 

 Precision Recall F1 score Type I Type II 

Adaboost Classification 79.2% 88.6% 83.6% 11.4% 18.6% 

Random Forest Classification 86.7% 84.9% 85.8% 10.4% 15.1% 

Bagging Classification 84.0% 75.9% 79.8% 11.5% 24.1% 

Decision Tree Classification 75.1% 65.0% 69.7% 17.2% 35.0% 

Logistic Regression 82.3% 61.1% 70.1% 10.5% 38.9% 
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(a)                                                (b) 

    
(c)                                                (d) 

 
(e) 

Figure 5. Confusion matrix. (a) Confusion matrix: Adaboost; (b) Confusion matrix: Random forest; (c) Confusion matrix: 
Bagging; (d) Confusion matrix: Decision tree; (e) Confusion matrix: Logistic regression. 
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regression is only 61.1% and the lowest. F1 score averages the precision and re-
call score, and random forest performs best among all the models, with 85.5% in 
F1 score, with 2.2% higher than Adaboost and 6% higher than Bagging models. 
Logistic regression and decision tree a share close F1 score, with logistic regres-
sion 0.4% higher than the decision tree. Above all, combining precision and re-
call score, ensemble models are better than other methodologies. 

The second important evaluation is Type I and Type II errors, with lower er-
rors equating to better performance. Random forest shows the lowest in both 
Type I and Type II errors among ensemble models. Decision tree as a single 
machine learning model holds the highest Type I error with 17.2%, while logistic 
regression holds the highest Type II error with 38.9%, which is nearly 20% high-
er than Random Forest. Type I error for Random Forest is 10.4%, followed by 
Adaboost (11.4%), then Bagging (11.5%). Type II error for Random Forest is 
15.1%, followed by Adaboost (18.6%), then Bagging (24.5%). Since Type II error 
is more important in the topic of distress detection, logistic regression is the least 
recommended model in detecting distressed firms. Additionally, Random Forest 
is a promising model that’s slightly better than other ensemble models. 

Combining the two criteria together, though it is hard to rank the perfor-
mance of the five models, since the training samples SMOTE selects every time 
are different, random forest performs slightly better and is more suitable for de-
tecting distress than other ensemble learning models like Boosting and Bagging. 
Moreover, ensemble learning models perform more promising than single ma-
chine learning models and traditional models. 

4. Conclusions 

This study provides easy-to-replicate models that utilize the latest dataset with 
22 dimensions after variable selection techniques, hyperparameter optimization, 
and time effect by setting window periods through the classification. The results 
contribute to the existing literature that ensemble models perform better than 
single machine learning models and traditional econometric models. This paper 
conducted a comparative analysis based on ensemble learning models Random 
forest, Bagging, Adaboost, single machine learning model Decision Tree, and 
econometrical model Logistical Regression. All are designed in four window pe-
riods for training. Random forest model is found to provide a more efficient re-
sult based on the data and variables chosen, which means that Random forest 
could be a useful tool for clients when making investment decisions. This could 
supplement banks and audit firms when evaluating the performance of firms. 

Our study has several limitations due to limited data availability and compu-
tational resources. We only utilized information from listed firms, but investors 
and banks often lend to non-listed firms. Data on private firms will make the 
analysis more comprehensive. Our models make single-period predictions and, 
therefore, cannot provide survival probabilities over time. In addition, the 
shocks from industry might significantly impact bankruptcy [38], this work did 
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not consider any industry effects on firm bankruptcy. Thus, future work exten-
sions can include multi-period models and information on private firms. 
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