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Abstract 
The advent of quantum computers and algorithms challenges the semantic 
security of symmetric and asymmetric cryptosystems. Thus, the implementa-
tion of new cryptographic primitives is essential. They must follow the break-
throughs and properties of quantum calculators which make vulnerable exist-
ing cryptosystems. In this paper, we propose a random number generation 
model based on evaluation of the thermal noise power of the volume elements 
of an electronic system with a volume of 58.83 cm3. We prove through the 
sampling of the temperature of each volume element that it is difficult for an 
attacker to carry out an exploit. In 12 seconds, we generate for 7 volume ele-
ments, a stream of randomly generated keys of 187 digits that will be trans-
mitted from source to destination through the properties of quantum crypto-
graphy. 
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1. Introduction 

The emergence of quantum computers exposes classical cryptosystems. These 
cryptosystems whose semantic security is based on difficult mathematical prob-

How to cite this paper: Ndagijimana, P., 
Nahayo, F., Assogba, M.K., Ametepe, A.F.-X. 
and Shabani, J. (2020) Towards Post-Quan- 
tum Cryptography Using Thermal Noise 
Theory and True Random Numbers Genera-
tion. Journal of Information Security, 11, 
149-160. 
https://doi.org/10.4236/jis.2020.113010 
 
Received: May18, 2020 
Accepted: July 12, 2020 
Published: July 15, 2020 
 
Copyright © 2020 by author(s) and  
Scientific Research Publishing Inc. 
This work is licensed under the Creative 
Commons Attribution International  
License (CC BY 4.0). 
http://creativecommons.org/licenses/by/4.0/   

  
Open Access

https://www.scirp.org/journal/jis
https://doi.org/10.4236/jis.2020.113010
https://www.scirp.org/
https://doi.org/10.4236/jis.2020.113010
http://creativecommons.org/licenses/by/4.0/


P. Ndagijimana et al. 
 

 

DOI: 10.4236/jis.2020.113010 150 Journal of Information Security 
 

lems and algorithmic complexity become vulnerable. Shor’s [1] and Grover’s [2] 
algorithms are a perfect illustration. The first solves the problems of large numbers 
factorization and discrete logarithm in polynomial time [3] while the second [4] 
favors cryptanalysis of the AES for size keys of 128 and 192 bits [5]. This challenge 
to the fundamentals of symmetric and asymmetric cryptography worries the re-
searchers. It leads to the rise of quantum and post-quantum cryptography [6]. 
However, post-quantum cryptography implemented through NP-complete prob-
lems [7] cannot guarantee perfect secrecy [8]. A promising related theory is the 
generation of random numbers associated to quantum physical phenomenon [9]. 
The aim is to exploit the laws of quantum physics associated to basic principle of 
cryptology for the implementation of new cryptographic primitives. 

In this work, we propose a random number generation model using the 
thermal noise theory. This model is described as a sequence of concatenation 
of the integer and decimal parts of the thermal power of each volume element 
of an electronic system. The power is evaluated by sampling the temperature in 
non-equilibrium state according to Fourrier’s law [10]. For a sampling period (t) 
with [ [0;t∈ +∞ , we prove that it is impossible for an attacker to determine ex-
actly the variations of the temperature ( iT∆ ), so the sequences of generated 
numbers. 

We devote the first and second sections respectively to an exhaustive study of 
TRNG using the properties of quantum physics, and the description of the pro-
posed mechanism. In third section, we carry out the experiments and perfor-
mances analysis. 

2. Related Works  

In this section, we make an exhaustive study of the random numbers generators 
based on the properties of quantum physics. 

2.1. True Random Number Generator  

A True Random Number Generator (TRNG) is a device able to produce a se-
quence of numbers for which there is no known deterministic link paradoxically 
to the pseudo-random number generator [9]. According to Stipcevic and Koç 
[11], it follows that a true random numbers is a sequence of numbers for which 
there is no deterministic algorithm. 

In computer science, a hardware random number generator is a device that 
generates random numbers from a physical phenomenon rather than use of a 
computer program [12] [13] [14] [15]. These systems are in most cases based on 
laws of quantum physics and proven random phenomena. Several techniques 
exist for the generation of these random numbers whose properties are widely 
used in cryptography. These properties ensure the absolute information secu-
rity. As example, we mention the techniques based on noise amplification, 
phase jitter in oscillators, the impact of noise on metastable behavior [16] and 
noise amplification based on chaos circuits [12]. These mechanisms are real en-
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tropy sources for random number generation. 
However, they have the limits that require researchers to move towards other 

innovative primitives. For illustration purposes, research topics are oriented to-
wards nano-devices, inverters, oxide distribution and random telegraph noise. 
Although these methods are efficient for producing true random numbers, their 
implementation proves to be complex for 14 nm processors and its derivatives 
[12]. 

2.2. Thermal Noise Study  

Noise refers to all harmful signals that overlap with the useful signal at any point 
in a measurement chain or transmission system. The useful signal represents the 
information, while noise is a hindrance to understanding the information con-
veyed by the signal. In electronics, it presents interesting properties due to its 
randomness. According to Johnson-Nyquist work [17] [18], we define thermal 
noise as the noise generated by the thermal agitation of charge carriers. In other 
words, that is electrons at thermal equilibrium in electrical resistance. It is ex-
pressed: 
- when we evaluate the noise across resistor [17] [18] by:  

2 4 ;b KTR Fν = ∆                        (1) 

with:  
2

bν : Voltage variance across the resistor,  
K: Boltzmann constant, 23 11.3806 10 J KK − −= × ⋅ ,  
T: resistor absolute temperature expressed in kelvin,  
R: resistance expressed in Ohms,  

F∆ : bandwidth expressed in Hertz. 
This application enables to predict the minimum noise in electronic system 

and its detection limit: 
- when we evaluate the power of thermal noise [17] [18] by:  

0 ;KT Fη = ∆                           (2) 

with:  
K: Boltzmann constant, 23 11.3806 10 J KK − −= × ⋅ ,  
T: conductor temperature expressed in Kelvin,  

F∆ : bandwidth in Hertz,  

0η : thermal noise power, expressed in Watt. 
Thermal noise is inevitable and unpredictable in electronic systems and has 

quite important characteristics when Shannon theory is associated it [19]. In-
deed, by considering the noise as information source, it is possible to evaluate 
the quantity of derived information. In cryptography, this quantity of informa-
tion is an entropic source for true random numbers generation. Through Table 
1, we make a comparative study of mechanisms of which entropy describe good 
results for true random numbers generation [12] [16] [20]. 
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Table 1. Comparative study of the mechanisms leading to true random numbers genera-
tion.  

Classification Technology Advantages Limits 

AAmplify Noise Analog Simple structure High energy consumption 

Oscillator 

Couple Oscillator Digital Easy integration Vulnerable to frequency attacks 

Ring Oscillator Digital Good portability Hermetic 

FIRO/GARO Digital 
More sensitive to 

jitter 

Vulnerable to feedback 
connections leading 
to arbitrary output 

Metastability  Digital Easy integration 

Sensitive to physical 
phenomena and 

vulnerable to symmetry 
of metastability 

Chaos 

Continuous Time Analog High rate High energy consumption 

Discret Time Digital High rate 
Finite computable 
precision with a 

pseudo-random output 

 
Scott A. Wilber [13] proposes a mechanism for non-deterministic random 

numbers generation. It uses an electronic assembly of two oscillators producing 
output signals, of which one is multiplexed. The processor extracts the entropy 
resulting from the fluctuation during successive emission of signals by the two 
oscillators for true random numbers generation. The author mention that ran-
dom number generators use physical sources of entropy evaluation. This value is 
then used as information source for true random numbers generation. Thus, it is 
possible to establish a hypothesis between the entropy and its evaluation sources. 
However, we estimate that Scott A. Wilber’s approach inherits the limits of the 
oscillatory phenomena due to periodic properties of these phenomena. Indeed, 
study and determination of the frequencies of emitted signals by each oscillator 
influence the entropy. The device is therefore vulnerable to side channel attacks. 
Let’s consider g, as the fluctuation between two signals according to time t and 
respectively frequencies 1f , 2f , if:  

( )lim 0;
t

g t
→+∞

=                         (3) 

an attacker who studies behavior of the system, could compute the entropy ac-
curate values. Therefore, they are many theories and implementation for true 
random numbers generation [21] [22]. Despite research efforts, the weaknesses 
persist and the semantic security still a great challenge due to advances in the 
implementation of quantum computers and side channel attacks. So, new theo-
ries need to be developed. 

3. Architecture of Proposed Mechanism  

In this section, we present logical structure of the proposed true random number 
generation mechanism. Also we perform the tests. 
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3.1. Logical Structure  

Let’s consider an embedded system in non-equilibrium state. Its density is given 
by:  

;m
v

ρ =                            (4) 

with: 
ρ : density expressed in kg∙m−3,  
m: mass expressed in kg,  
v: volume expressed in m3. 
According to Fourier’s law [10] this non-equilibrium state generates a varia-

tion in temperature and creates a heatflow defined by:  

;F I S GradT= × ×                        (5) 

with: 
F: heatflow in Watts,  
S: plane area expressed in m2,  
I: thermal conductivity expressed in W∙m−1∙K−1,  
GradT : temperature gradient expressed in K∙m−1. 
Let’s consider: 

a volume element of embedded system defined by:  

d d d ;x y zν
Σ

= ∫∫∫                         (6) 

T∆ : the measured temperature according to time (t) and space (ν ). We eva-
luate it considering two parameters: 
- time(t): it is sampling period of temperature; 
- volume element (ν ): it is the volume element considered during temperature 

evaluation. The evaluation of thermal noise power in relation to its volume 
element is defined by:  

;P K T Fν = ∆ ∆                         (7) 

with: 
K: Boltzmann constant, 23 11.38 10 J KK − −= × ⋅ ,  

T∆ : volume element temperature expressed in Kelvin,  
F∆ : bandwidth expressed in Hertz,  

Pν : thermal noise, expressed in Watt. 
Let’s consider: 

ePν  and dPν  respectively as the integer part and the decimal part of the 
thermal noise power. 

TRNG as the concatenation of ePν  and dPν  ( ||e dP Pν ν ) such as :  

|| ;i e i d iTRNG P Pν ν=                       (8) 

where iTRNG : the sequence of random numbers generated and [ [ 0;i∈ +∞  the 
clock step of each temperature evaluation. Also, we describe through an algo-
rithm, the proposed mechanism for true random numbers generation. 
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3.2. Security Proof  

We evaluate the robustness of the proposed mechanism through the notion of 
entropy derived from Shannon [23] and Yamamoto [24] and the constraints to 
which the model is subjected: 
- the numbers are generated following the measured temperature ( iT∆ ) within 

each volume element ( iν ) of the proposed device; 
- the measured value determines the power ( iPν ) of the thermal noise. 

Let’s note respectively: X, Y, Z the random variables associated to the sources 
( iPν ), ( iT∆ ), ( iν ) and H(X), H(Y), H(Z), their entropies. 

Let’s consider the determination of the thermal noise power of a volume ele-
ment as a source of information. Its probability and entropy follow respectively 
the relation: 

( ) ( )| ;iP X x P Y Z= =                      (9) 

( ) ( ) ( )( )

( ) ( )( )

log

| log |

i i i
x

x

H X x P X x P X x

P Y Z P Y Z

= = − = =

= −

∑

∑
           (10) 

(By identification following to (10));  

with: ( ) ( )
( )

|
P Y Z

P Y Z
P Z

=


. 

For an infinity of volume elements (z), z → +∞ : 
1) ( )  0iP Z z= →  (equiprobability);  
2) ( )  0P Y Z →

 (nonequiprobable due to the source ( iY y= );  
3) ( ) ( )| 0iP X x P Y Z= = → .  
From 1), 2) and 3), we have: 

( ) ( ) ( )( )

( ) ( )( )

log

| log |   0 bit.

i i i
x

x

H X x P X x P X x

P Y Z P Y Z

= = − = =

= − →

∑

∑
        (11) 
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Thus, an attacker has none information to determine the thermal power of 
each volume element.  

We conclude that the proposed mechanism is efficient. 

3.3. Description of Experimental Environment  

We use an Arduino Uno ATMega 328p [25] as source of the thermal noise. It 
generates a solid (Σ ) of space (ω ). 

We mention that the function which characterizes each volume element of the 
solid (Σ ) is defined by:  

d d d ;x y zν
Σ

= ∫∫∫                       (12) 

We define by framing in black (Figure 1) the considered volume elements 
during the temperature evaluation. They are referenced by numbering. We per-
form the tests on a set of 7 volume elements. 

For each volume element of the electronic system, we deploy a temperature 
sensor type LM 35. Then, we determine the power for each volume element ac-
cording to the temperature values measured. 

We summarize through Table 2 and Table 3, the obtained results following 
the experiments. 

 
Table 2. Obtained results (Power computation).  

Index 
Volume 

(cm3) 
Constant  

J·K−1 
Temperature  

(K) 
Frequency  

(Hz) 
Time  

(s) 
Power (w) 

1ν  1.35 1.3806 × 10−23 305.25 16 × 103 0 67,428,504 × 10−24 

2ν  1.46 1.3806 × 10−23 303.55 16 × 103 2 670,529,808× 10−25 

3ν  1.08 1.3806 × 10−23 305.85 16 × 103 4 675,610,416× 10−25 

4ν  1.98 1.3806 × 10−23 297.85 16 × 103 6 657,938,736× 10−25 

5ν  22.2 1.3806 × 10−23 304.75 16 × 103 8 67,318,056 × 10−24 

6ν  1.2 1.3806 × 10−23 296.45 16 × 103 10 654,846,192 × 10−25 

7ν  5.4 1.3806 × 10−23 296.95 16 × 103 12 655,950,672× 10−25 

 
Table 3. Obtained results (Retrieval of integer part and decimal part). 

Clock  
step 

Time  
(s) 

Volume  
(cm3) 

Power  
(w) 

Integer  
part 

Decimal  
part 

1 0 1.35 67,428,504 × 10−24 0 67,428,504 × 10−24 

2 2 1.46 670,529,808 × 10−25 0 670,529,808 × 10−25 

3 4 1.08 675,610,416 × 10−25 0 675,610,416 × 10−25 

4 6 1.98 657,938,736 × 10−25 0 657,938,736 × 10−25 

5 8 22.2 67,318,056 × 10−24 0 67,318,056 × 10−24 

6 10 1.2 654,846,192 × 10−25 0 654,846,192 × 10−25 

7 12 5.4 655,950,672 × 10−25 0 655,950,672 × 10−25 
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Figure 1. Volume elements [25]. 

4. Analysis and Discussions  

We devote this section to the analysis of the results obtained during the tests. 
Thus, Figures 2-4 represent graphs relating to the achieved results during the 
experiments. It is constant to note that the thermal noise power varies for each 
volume element at Figure 4. This variation happened due to changes of the 
temperature for each volume element over a time. Thus, the thermal noise pow-
er in a volume element means the determination of the following parameters: 
Temperature (T), time (t), and volume element (ν ). We conclude that the pow-
er varies according to temperature, volume element and time. As a result, the 
generated numbers vary in time and space and do not follow any deterministic 
approach. Therefore, they are deemed to be true and random. 

We generate a number by concatenation of the integer and decimal parts of 
the thermal noise power obtained per volume element ignoring the decimal 
point. A sequence of generated numbers is equivalent to a sequence of concate-
nation of integer and decimal parts of the power of each volume element ac-
cording to its assignment index j. So: 

for [ ] { }1 2 3 4 5 6 71;7 , , , , , ,jj ν ν ν ν ν ν ν ν∈ ⇒ ∈  

{ }1 2 3 4 5 6 7, , , , , ,jP P P P P P P Pν ν ν ν ν ν ν ν⇒ ∈  

{
}

1 1 2 2 3 3 4 4

5 5 6 6 7 7

|| || || || || || ||

|| || || || || ||
e d e d e d e d

e d e d e d

TRNG P P P P P P P P

P P P P P P

ν ν ν ν ν ν ν ν

ν ν ν ν ν ν

⇒ =
 

For 7 volume elements, we get a sequence of random numbers of 187 digits 
distributed as follows: 

Let’s note: 

inν : number of digits for each volume element,  

e inPν : number of digits enumerated for the integer part of each volume iν ,  

d inPν : number of digits enumerated for the decimal part of each volume ele-
ment iν . The results are represented in Table 4. 

Therefore, for z volume elements, [ [0;z∈ +∞ , it is very difficult for an at-
tacker to determine exactly the different temperatures within each volume ele-
ment and: 

1 1 2 2 3 3 4 4

5 5 6 6 7 7

4 4 1 1

|| || || || || || ||
|| || || || || || ||
|| || || || || || || .

z e d e d e d e d

e d e d e d

e z d z e z d z e z d z

TRNG P P P P P P P P
P P P P P P
P P P P P P

ν ν ν ν ν ν ν ν
ν ν ν ν ν ν
ν ν ν ν ν ν− − − −

=




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Figure 2. Variation of temperature depending on volume elements. 

 

 

Figure 3. Sampling the temperature for each volume element. 
 

 

Figure 4. Variation of temperature depending on the power of thermal noise. 
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Table 4. Number of digits counted per volume element.  

iν  e inpν  d inp ν  inν  

1ν  1 25 26 

2ν  1 26 27 

3ν  1 26 27 

4ν  1 26 27 

5ν  1 25 26 

6ν  1 26 27 

7ν  1 26 27 

Total number of digits 187 

 
The obtained TRN is converted into binary and recovered as a keystream. 

This keystream will be transmitted from the transmitter to the receiver 
through quantum cryptography properties. We will associate it on-time pad 
cryptographic method to secure the transmitted data. 

5. Conclusion  

In this paper, we have proposed a mechanism for true random number genera-
tion which can resist to an attacker with quantum computers. This mechanism 
uses the fundamentals of thermal noise theory which is a random phenomenon. 
For tests and experiments, we used an ATMega microcontroller as a solid space 
that generates volume elements. We sample the temperature of these volume 
elements to determine the power of thermal noise for each volume element. 
Thus, we have obtained for 7 volume elements, a series of random numbers of 
187 digits which conversion into binary represents the cryptographic key. Our 
analysis shows that it is not possible for an attacker to determine the generated 
sequence numbers for infinity of volume elements. In future work, we will pro-
pose a quantum cryptography mechanism to exchange the generated keystream 
and associate it the One-Time Pad cryptographic method. 
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