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Abstract 
We review the distance modulus in twelve different cosmologies: the ΛCDM 
model, the wCDM model, the Cardassian model, the flat case, the ϕCDM 
cosmology, the Einstein—De Sitter model, the modified Einstein—De Sitter 
model, the simple GR model, the flat expanding model, the Milne model, the 
plasma model and the modified tired light model. The above distance moduli 
are processed for three different compilations of supernovae and a superno-
vae + GRBs compilation: Union 2.1, JLA, the Pantheon and Union 2.1 + 59 
GRBs. For each of the 48 analysed cases we report the relative cosmological 
parameters, the chi-square, the reduced chi-square, the AIC and the Q para-
meter. The angular distance as function of the redshift for five cosmologies is 
reported in the framework of the minimax approximation. 
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1. Introduction 

At the moment of writing, the determination of the Hubble constant is oscillat-
ing between a low value as derived by the Planck collaboration [1],  

( ) 1 1
0 67.4 0.5 km s MpcH − −= ± ⋅ ⋅ , and an high value,  

( ) 1 1
0 74.03 1.42 km s MpcH − −= ± ⋅ ⋅ , as measured on 70 long-period Cepheids in 

the Large Magellanic Cloud (LMC) [2]. The above difference is referred to as the 
Hubble constant tension [3] and takes the value of 4.4σ . It fixes an acceptable 
interval for the evaluation of H0. The number of supernovae (SNs) of type Ia for 
which the distance modulus is available has grown with time: 34 SNs in the sam-
ple which produced evidence for the accelerating universe [4], 580 SNs in the 
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Union 2.1 compilation [5], 740 SNs in the joint light-curve analysis (JLA) [6], 
and 1048 SNs in the Pantheon sample [7] [8]. The availability of SN compila-
tions allows testing old and new cosmological models. We select some of them 
among others: cosmological relativity in five spatial dimensions [9], an im-
provement of the Einstein—De Sitter cosmology [10], the ( )f R  gravity with 
additional logarithmic corrections [11] [12], influence of the detection of gravi-
tational waves on a definitive theory of gravity [13], the derivation of the value of 
the Hubble constant as ( ) 1 1

0 70.5 0.5 km s MpcH − −= ± ⋅ ⋅  in the framework of 
the dark energy cosmology [14] and the deduction of the parameters for Staro-
binsky gravity [15]. This paper reviews, in Section 2, old and new distance mod-
uli in twelve cosmologies. Then Section 3 processes the analysed cosmologies in 
four compilations of SNs. 

2. Different Cosmologies 

In the following, we analyze twelve cosmologies. A useful introduction to the 
distances in cosmology can be found in [16]. 

2.1. The Standard Cosmology 

In ΛCDM cosmology the Hubble distance HD  is defined as  

H
0

,cD
H

≡                             (1) 

where c is the speed of light and H0 is the Hubble constant. We then introduce 
the first parameter MΩ ,  

0
M 2

0

8
,

3
G
H
ρ

Ω
π

=                           (2) 

where G is the Newtonian gravitational constant and 0ρ  is the mass density at 
the present time. A second parameter is ΛΩ ,  

2

2
0

,
3

c
HΛ
Λ

Ω ≡                            (3) 

where Λ  is the cosmological constant, see [17]. Once ΛΩ  and H0 are found 
the numerical value of the cosmological constant is derived, 21.2 m−Λ ≈ . 

The two previous parameters are connected with the curvature KΩ  by  

M 1.KΛΩ +Ω +Ω =                         (4) 

The comoving distance, CD , is  

( )C H 0

d ,
z zD D

E z
′

=
′∫                          (5) 

where ( )E z  is the “Hubble function”:  

( ) ( ) ( )3 2
M 1 1 .KE z z z Λ= Ω + +Ω + +Ω                (6) 

The above integral cannot be done in analytical terms, except for the case of 
0ΛΩ = , but the Padé approximant, see Appendix 5, allows to derive the ap-
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proximated indefinite integral, see Equation (10). 
The approximate definite integral for (5) is therefore,  

( ) ( )( )C,2,2 H 2,2 0 1 2 0 1 2 2,2 0 1 2 0 1 2; , , , , , 0; , , , , , ,D D F z a a a b b b F a a a b b b= −     (7) 

where 2,2F  is Equation (10). The transverse comoving distance MD  is:  

H C H

M C

H C H

1 sinh for 0

for 0
1 sin for 0

K K
K

K

K K
K

D D D

D D

D D D

  Ω Ω >  Ω
= Ω =


  Ω Ω <  Ω

           (8) 

and the approximate transverse comoving distance M,2,2D  computed with the 
Padé approximant is:  

H C,2,2 H

M,2,2 C,2,2

H C,2,2 H

1 sinh for 0

for 0
1 sin for 0

K K
K

K

K K
K

D D D

D D

D D D

  Ω Ω >  Ω
= Ω =


  Ω Ω <  Ω

         (9) 

The Padé approximant for the luminosity distance is  

( )L,2,2 M,2,21 ,D z D= +                       (10) 

and the Padé approximant for the distance modulus, ( )2,2m M− , is  

( ) ( )10 L,2,22,2 25 5log .m M D− = +                    (11) 

As a consequence, 2,2M , the absolute magnitude of the Padé approximant, is  

( )2,2 10 L,2,225 5log .M m D= − −                    (12) 

The expanded version of the Padé approximant distance modulus is:  

( ) ( )
( )

2,2 2 2
0 2 0 2 1

1125 5 ln sinh ,
ln 10

1
4

2 K

K

c z A
m M

H b b b b

  + Ω  − = +
  Ω −  

    (13) 

with  

( ) ( )
( ) ( )

2 2 2 2
2 1 0 1 2 0 2 1 2 1 0 2 1 0 2 1

2 2 2
0 1 2 0 2 1 0 2 1 0 2 1 2 2 0 2 1

22 1 2 1
0 2 1 1 22 2

0 2 1 0 2 1

2 1

0

ln 4 ln 4

ln 4 ln 4 2 4

2 2
4arctan 2arctan

4 4

2
4arctan

4

A z b zb b a b b b b z b zb b a b b b b

b a b b b b b a b b b b a zb b b b

zb b zb ba b b a b
b b b b b b

zb b

b

= + + − − + + −

− − + − + −

   + +   + −
   − −   

+
− 22 1

2 0 2 1 22 2
2 1 0 2 1

21 1
0 2 1 1 22 2

0 2 1 0 2 1

21 1
2 0 2 1 22 2

0 2 1 0 2 1

2
2arctan

4

4arctan 2arctan
4 4

4arctan 2arctan
4 4

zb ba b b b a
b b b b b

b ba b b a b
b b b b b b

b ba b b b a
b b b b b b

   +   +
   − −   
   
   − +
   − −   
   
   + −
   − −   
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Figure 1 reports the percentage error, see formula (75), for ( )2,2m M−  as 
function of the redshift until the value of 1% is reached at 6z ≈ . For 6z >  the 
Padé approximant of the distance modulus does not converge to the numerical 
distance modulus.  

More details can be found in [18]. 

2.2. Dynamical Dark Energy or wCDM 

In the dynamical dark energy cosmology (wCDM), firstly introduced by [19], 
the Hubble distance is  

( )
( ) ( )

M 3 3 3
M

1; , , ,
1 1

H DE w
DE

D z w
z z +

Ω Ω =
+ Ω +Ω +

        (14) 

where w is the equation of state here considered constant, see Equation (3.4) in 
[20] or Equation (18) in [21] for the luminosity distance. Here we considered w 
to be constant but also the case of w as function of z can be considered, see Equ-
ation (19) in [21]. In the above cosmology the cosmological constant is absent. 
In flat cosmology,  

M 1,DEΩ +Ω =                        (15) 

and the Hubble distance becomes  

( )
( ) ( )( )

M 3 3 3
M M

1; , .
1 1 1

H w
D z w

z z +
Ω =

+ Ω + −Ω +
        (16) 

The indefinite integral in the variable z of the above Hubble distance, 
C

H

D
Iz

D
≡ , is  

( ) ( )M M; , ; , d ,HIz z w D z w zΩ = Ω∫                 (17) 

where the new symbol Iz  underline the mathematical operation of integration. 
In order to solve for the indefinite integral we perform a change of variable 

1/31 z t+ = .  
 

 
Figure 1. Percentage error of ( )2,2

m M−  in respect to the nu-

merical value with data as in Table 1.  
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( )
( )( )

M
2/3

M M

1 1; , d .
3 1 w

Iz t w t
t t t

Ω =
− − +Ω −Ω

∫            (18) 

The indefinite integral is  

( )

( )M1 1
2 1

M
M 6

M

11 1 12 , ;1 ;
2 6 6

; , ,

wt
F w w

Iz t w
t

− − − −Ω
− − − −  Ω Ω =

Ω
      (19) 

where ( )2 1 , ; ;F a b c z  is the regularized hypergeometric function, see [22] [23] 
[24] [25] [26]. We now return to the variable z, the redshift. Then the indefinite 
integral becomes:  

( )

( ) ( )
M

3 2
M1 1

2 1
M

6 3 2
M

; ,

3 3 1 11 1 12 , ;1 ;
2 6 6

.
3 3 1

w

Iz z w

z z z
F w w

z z z

− −

Ω

 − + + + −Ω − − − − −Ω 
 =

Ω + + +

    (20) 

We denote by ( )M; ,F z wΩ  the definite integral,  

( ) ( ) ( )M M M; , ; , 0; , .F z w Iz z z w Iz z wΩ = = Ω − = Ω           (21) 

The luminosity distance, LD , for wCDM cosmology in the case of the analyt-
ical solution is  

( ) ( ) ( )L 0 M M
0

; , , , 1 ; , ,cD z c H w z F z w
H

Ω = + Ω             (22) 

where ( )M; ,F z wΩ  is given by Equation (21) and the distance modulus is  

( ) ( )( )10 L 0 M25 5log ; , , , .m M D z c H w− = + Ω              (23) 

More details can be found in [27]. 

2.3. The Cardassian Cosmology 

In flat Cardassian cosmology [28] [29] the Hubble distance is 

( )
( ) ( )( )

M 3 3
M M

1; , , ,
1 1 1

H n
D z w n

z z
Ω =

+ Ω + −Ω +
         (24) 

where n is a variable parameter, and 0n =  means the ΛCDM cosmology, see 
Equation (17) in [21]. The above equation can also be obtained inserting 

1n w= +  in Equation (14). Despite of this fact the FORTRAN code which de-
rives the cosmological parameters produces a small difference in the results be-
cause the variables are evaluated in a different way. The indefinite integral in the 
variable z of the above Hubble distance, Iz , is  

( ) ( )M M; , ; , d .HIz z n D z n zΩ = Ω∫                   (25) 

In order to obtain the indefinite integral we perform a change of variable 
1/31 z t+ = ,  

( )M 2/3
M M

1 1; , d .
3 n n

Iz t n t
t t t t

Ω =
− Ω +Ω +

∫               (26) 
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The indefinite integral is  

( )
( ) ( )1

1 M
2 1

M
M 6

M

16 72 , 6 6 ; ;
6 6

; ,
1

,
2

ntnF n
n

Iz t n
t

−
− Ω −−

− − −  − Ω Ω =
Ω

      (27) 

where ( )2 1 , ; ;F a b c z  is the regularized hypergeometric function. We now re-
turn to the original variable z and the indefinite integral is  

( )

( )
( )( ) ( )

( )

13
M1

2 1
M

M 36
M

1 16 72 , 6 6 ; ;
6 6

; , .

1

1

2

n
znF n

n
Iz z n

z

−

−

 + Ω −− − − − − Ω 
 Ω =

Ω +
  (28) 

We denote by ( )M; ,cF z nΩ  the definite integral,  

( ) ( ) ( )M M M; , ; , 0; , .cF z n Iz z z n Iz z nΩ = = Ω − = Ω           (29) 

In the case of the Cardassian cosmology, the luminosity distance is  

( ) ( ) ( )L 0 M M
0

; , , , 1 ; , ,c
cD z c H n z F z n

H
Ω = + Ω             (30) 

where ( )M; ,cF z nΩ  is given by Equation (29) and the distance modulus is  

( ) ( )( )10 L 0 M25 5log ; , , , .m M D z c H n− = + Ω              (31) 

In the flat Cardassian cosmology, there are three parameters: 0 M,H Ω  and n. 
More details can be found in [27]. 

2.4. The Flat Cosmology 

The starting point is Equation (1) for the luminosity distance in [30].  

( ) ( )
( )

L 0 M 0 3
0 M M

1 1; , , d ,
1 1

zc z
D z c H t

H t

+
Ω =

Ω + + −Ω
∫         (32) 

where the variable of integration, t, denotes the redshift. 
A first change in the parameter MΩ  introduces  

M3

M

1s −Ω
=

Ω
                          (33) 

and the luminosity distance becomes  

( ) ( )
( ) ( )

L 0 0 3
0 13

3

1 1; , , 1 d .
1

1 1
1

z
D z c H s c z t

H t
s

s
−

= +
+

+ − +
+

∫        (34) 

The following change of variable, 
s ut

u
−

= , is performed for the luminosity 

distance, which becomes  

( ) ( )( ) ( )
( )

3 3
3 1

L 0 2 3 3 3
0

1
; , , 1 1 d .

1 1

s
z

s

s uc uD z c H s z s u
H s u u s

+
+

= − + +
+ +∫     (35) 
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The integral for the luminosity distance is  

( ) ( )

( )

( )

3/4 3

L 0
0

4

4

1 3 1
; , ,

1 3
2

1 3

1 4 1 4

1

, 3 2
3 1

3 1
2 , 2 3 2 ,

1
4 1 4

3

c z s
D z c H s

sH

s s z
F

s s z

s s
F

s s

+ +
= −

  + +  × +
  + + + 

 +  − +
 + + 

      (36) 

where s is given by Equation (33) and ( ),F kφ  is Legendre’s incomplete elliptic 
integral of the first kind,  

( ) sin

0 2 2 2

d, ,
1 1

tF k
t k t

φ
φ =

− −
∫                  (37) 

see [26]. The distance modulus is  

( ) ( )( )10 L 025 5log ; , , ,m M D z c H s− = +               (38) 

and therefore,  

( ) ( )
( ) ( )3/4 3

1 2

0

1 3 11 125 5 ln ,
ln 10 3

c z F F s
m M

sH

 + − +
 − = + −
 
 

    (39) 

where,  

( ) 4

1

1 3
2 , 2 3 2

3 1
1 4 1 4

s s z
F F

s s z

 + +
 = +
 + + + 

          (40) 

and  

( )4

2

3 1
2 , 2 3 2 ,

3
1 4

1
1 4

s s
F F

s s

 +
 = +
 + + 

           (41) 

with s as defined by Equation (33). More details can be found in [31]. 

2.5. ϕCDM Cosmology 

The inflationary universe has been introduced by [32] [33] [34] and the term 
“quintessence” in a title of a paper appeared in [35]. At the moment of writing 
given a scalar field, φ , and the connected self-interacting potential, ( )V φ , ten 
different quintessence models are suggested by [36]. Here we start from Equa-
tion (12) in [37] where ( )E z , the “Hubble function”, is  

( ) ( ) ( )3
M0 f 0 M0 f 0; , 1 1 e ,zE z z z α βαβΩ Ω = + Ω +Ω +           (42) 

where 0
M0 2

03
m

H
ρ

Ω =  is the adimensional present density of matter, 0
f 0 2

03H
φρΩ =   

is the present adimensional density of the scalar field, 0H  is the present value 
of the Hubble constant, 0mρ  is the present density of matter, 0φρ  is the 
present density of the scalar field, α  and β  are two parameters which allow 
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to match theory and observations. In absence of curvature we have  

M0 f 0 1,Ω +Ω =                         (43) 

and therefore,  

( ) ( ) ( )( )3
M0 M0 M0; , , 1 1 1 e .zE z z z α βα βΩ = + Ω + −Ω +        (44) 

The luminosity distance is  

( ) ( )
( )L 0 M0 0

0 M0

1 1; , , , , d ,
; , ,

zc z
D z c H t

H E t
α β

α β
+

Ω =
Ω∫        (45) 

where the variable of integration, t, denotes the redshift. At the moment of writ-
ing there is not an analytical solution for the above integral and therefore we 
implement a numerical solution, ( )L,num 0 M0; , , , ,D z c H α βΩ . The distance 
modulus is  

( ) ( )( )10 L,num 0 M025 5log ; , , , , .m M D z c H α β− = + Ω          (46) 

An approximate value of the above integral (45) is obtained with a Taylor ex-
pansion of the integrand about 1z =  of order seven denoted by  

( )L,7 0 M0; , , , ,D z c H α βΩ . We report the numerical expression with cosmological 
parameters as in Table 1 relative to the Union 2.1 compilation:  

( ) ( ) ( )(
( ) ( ) ( )
( ) )

32
L,7

4 5 6

7

4282.7 1 0.91287 0.16562 0.039001 1

0.003084 1 0.0036858 1 0.0028217 1

0.00115816 1 0.03442 .

D z z z z z

z z z

z

= + − + −

− − − − + −

− − +

   (47) 

The approximate distance modulus is  

( ) ( )( )10 L,7 0 M07 25 5log ; , , , , ,m M D z c H α β− = + Ω           (48) 

which for the Union 2.1 compilation has the following numerical expression,  

( ) ( ) ( )(((
( ) ( ) ( )

( ) ( ) )))

2
7

3 4 5

6 7

525 ln 4282.7 1 0.91287 0.16562
ln 10

0.039001 1 0.0030847 1 0.0036858 1

0.0028217 1 0.0011581 1 0.03442 .

m M z z z

z z z

z z

− = + + −

+ − − − − −

+ − − − +

  (49) 

Figure 2 reports the percentage error, see formula (75), for ( )7m M−  as 
function of the redshift until the value of 0.02% is reached at 2.5z ≈ .  

2.6. The Einstein—De Sitter Cosmology 

In the Einstein—De Sitter model the luminosity distance, LD , after [38] [39], is  

( )
0

1 1
2 ,L

c z z
D

H

+ − +
=                      (50) 

and the distance modulus for the Einstein—De Sitter model is:  

( )
( )

0

1 1125 5 ln 2 .
ln 10

c z z
m M

H

 + − +
 − = +
 
 

           (51) 
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Figure 2. Percentage error of ( )7
m M−  in respect to 

the numerical value with data as in Table 1.  
 

There is one free parameter in the Einstein—De Sitter model: H0. The Eins-
tein—De Sitter model has been recently improved by [10], splitting the analysis 
in two: the Einstein—De Sitter flat, only-matter universe, referred to as EdesNa, 
and a flat, only-matter, including the Mach effect universe, referred to as EDSM. 
We limit ourselves to the EdesNA model and we start from Equation (37) of [10],  

( )( )
( )

0ln 5 3 1 ( )
5 25,

ln 10
GR z I z

m M
+

− = +                (52) 

where,  

0
0

,cR
H

=                            (53) 

and  

( )
( )

30
2

1 d .
21 1
3

z
GI z x

x
=

+ +
∫                     (54) 

Evaluating the integral yields:  

( )

( )

( ) ( )( )
( ) ( ) ( )

36
6

2
2 236 3 3

3 3 3 3 3 32

3/22/33 33 3

2
2 23 33 3333 32 2

2 3 2 33 arctan
3 3

2 3 2 3 12arctan 1 2 ln 2 3 2 3
3 3 12

2ln 2 3 2ln 23 1 3

ln 2 3 1 23 1 3 ln 3 .

GI z

z

z

z z

  
= − −     

    
− + − − − + +           

− + + + +

 
   − + − + + −        

(55) 
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The integrand of (54) can be approximated with a Padé approximant with 
2, 2p q= = ,  

( )
2

22 20

3 36 144 d ,
67 204 240

z
G

x xI z x
x x

− + +
=

+ +∫                   (56) 

and therefore we have the approximate integral,  

( )
( )

( )

( )

2

22

1512ln 67 204 2403
67 4489

134 204 141964368 1419 arctan
2123297 5676

17 141964368 1419 arctan
4731512ln 240

,
4489 2123297

G

z zzI z

z

+ +
= − +

 +
+   

 
 
  
 − −

       (57) 

which generates the following approximate distance modulus,  

( )
( ) ( )( )
( )

0 22
22

ln 5 3 1
5 25.

ln 10
GR z I z

m M
+

− = +               (58) 

The percent error between the approximate distance modulus as given by Eq-
uation (58) and the exact distance modulus as given by Equation (52) is 

0.03%≈  when 4z =  and 0 69.1H = . 

2.7. Simple GR Cosmology 

In the framework of GR, the received flux, f, is  

2 ,
4 L

Lf
Dπ

=                          (59) 

where LD  is the luminosity distance, which depends on the cosmological mod-
el adopted, see Equation (7.21) in [40] or Equation (5.235) in [41]. 

The distance modulus in the simple GR cosmology is  

( )
( )
( ) ( )0

0

ln143.17 ln 5 1.086 1 ,
ln 10 70 ln 10

zH
m M q z − = − + + − 

 
     (60) 

see Equation (7.52) in [40]. There are two free parameters in the simple GR 
cosmology: H0 and q0. 

2.8. Flat Expanding Universe 

This model is based on the standard definition of luminosity in the flat expand-
ing universe. The luminosity distance, Lr′ , is  

0

,L
cr z

H
′ =                           (61) 

and the distance modulus is  

( )10 105log 5log 2.5log 1 ,Lm M r z′− = − + + +              (62) 

see formulae (13) and (14) in [42]. There is one free parameter in the flat ex-
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panding model, H0. 

2.9. The Milne Universe in SR 

In the Milne model, which is developed in the framework of SR, the luminosity 
distance, after [43] [44] [45], is  

2

0

1
2 ,L

c z z
D

H

 + 
 =                         (63) 

and the distance modulus for the Milne model is  

( )

2

0

1
1 225 5 ln .

ln 10

c z z
m M

H

  +    − = +
 
 
 

              (64) 

There is one free parameter in the Milne model: H0. 

2.10. Plasma Cosmology 

In a Euclidean static framework from among many possible absorption mechan-
isms, we have selected a plasma effect which produces the following relation for 
the distance d,  

( )
0

ln 1 ,cd z
H

= +                      (65) 

where the distance expressed in lower case underline the difference with the re-
lativistic case, see Equation (50) in [46]. 

In the presence of plasma absorption, the observed flux is  

( )0 0
2

exp 2
,

4
L bd H d H d

f
d

− −
=

π

⋅ −
                   (66) 

where the factor ( )exp bd−  is due to galactic and host galactic extinctions, 

0H d−  is the reduction due to the plasma in the IGM and 02H d−  is the re-
duction due to the Compton scattering, see the formula before Equation (51) in 
[46]. The resulting distance modulus in the plasma mechanism is  

( )( )
( )

( )
( ) ( ) 0

ln ln 1 ln 115 15 5 ln 25 1.086 ,
ln 10 2 ln 10 ln 10

z z cm M b
H

+ +  
− = + + + + 

 
  (67) 

see Equation (7) in [47]. There is one free parameter in the plasma cosmology: 
H0 when 0b = . A detailed analysis of this and other physical mechanisms 
which produce the observed redshift can be found in [48]. 

2.11. Modified Tired Light 

In a Euclidean static universe, the concept of modified tired light (MTL) was in-
troduced in Section 2.2 of [49]. The distance in the MTL is  

( )
0

ln 1 ,cd z
H

= +                        (68) 
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where the distance expressed in lower case underline the difference with the re-
lativistic case. The distance modulus in MTL is  

( )
( ) ( )

( )
0

ln 1 ln 15 15 ln 25,
2 ln 10 ln 10

z z c
m M

H
β + + 

− = + + 
 

       (69) 

where β  is a parameter lying between 1 and 3 which allows matching theory 
with observations. There are two free parameters in MTL: H0 and β . 

3. Astrophysical Results 

We first review the statistics involved and then we process the 12 × 4 cosmolog-
ical cases. 

3.1. The Adopted Statistics 

In the case of the distance modulus, the merit function 2χ  is  

( ) ( )( ) 2

2

1
,

N
ii th

i i

m M m M z
χ

σ=

 − − −
=  

  
∑              (70) 

where N is the number of SNs, ( )im M−  is the observed distance modulus 
evaluated at a redshift of iz , iσ  is the error in the observed distance modulus 
evaluated at iz , and ( )( )i th

m M z−  is the theoretical distance modulus eva-
luated at iz , see formula (15.5.5) in [50]. The reduced merit function 2

redχ  is:  
2 2 ,red NFχ χ=                       (71) 

where NF N k= −  is the number of degrees of freedom, N is the number of 
SNs, and k is the number of free parameters. Another useful statistical parameter 
is the associated Q-value, which has to be understood as the maximum probabil-
ity of obtaining a better fitting, see formula (15.2.12) in [50]:  

2

1 GAMMQ , ,
2 2

N kQ χ −
= −  

 
               (72) 

where GAMMQ is a subroutine for the incomplete gamma function. The Akaike 
information criterion (AIC), see [51], is defined by  

( )AIC 2 2ln ,k L= −                     (73) 

where L is the likelihood function. We assume a Gaussian distribution for the 
errors; then the likelihood function can be derived from the 2χ  statistic 

2

exp
2

L χ 
∝ − 

 
 where 2χ  has been computed by Equation (70), see [52] [53]. 

Now the AIC becomes  
2AIC 2 .k χ= +                       (74) 

The goodness of the approximation in evaluating a physical variable p is eva-
luated by the percentage error δ ,  

100,approxp p

p
δ

−
= ×                     (75) 
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where approxp  is an approximation of p. 

3.2. The Numerical Techniques 

The parameters of the twelve cosmologies here analyzed are found minimizing 
the 2χ  as given by Equation (70). We now report the adopted numerical tech-
niques:  

1) In absence of an analytical solution for the distance modulus we do k (the 
number of free parameters) nested numerical loops for the evaluation of the 2χ . 
The parameters which minimize the 2χ  are selected. This method allows to 
find, as an example, the parameters of the ΛCDM and ϕCDM cosmologies.  

2) In presence of an analytical solution, an approximate Taylor series and a 
Padé approximant for the distance modulus we derive the parameters through 
the Levenberg—Marquardt method (subroutine MRQMIN in [50]) once an 
analytical expression for the derivatives of the distance modulus with respect to 
the unknown parameters is provided. In absence of a human expression for the 
derivatives, we implement the numerical derivative. This method was used to 
evaluate the parameters of the MTL, the simple GR, the plasma, the Milne, the 
Einstein—De Sitter, the flat, the wCDM and the Cardassian cosmologies.  

The above techniques allow to derive the cosmological parameters with un-
precedented accuracy, as an example, an error of 0.1 km·s−1·Mpc−1 can be asso-
ciated with the Hubble constant. The advantage to have approximate results, i.e. 
the Padé approximant for the distance modulus ( )2,2m M−  as given by Equa-
tion (11), is that we can evaluate in an analytical way the first derivative required 
by the Levenberg-Marquardt method and the numerical integration is not ne-
cessary. 

3.3. The Four Compilations 

In order to avoid the degeneracy in the Hubble constant-absolute magnitude 
plane we deal only with already calibrated distance modulus. The first astro-
nomical test we perform is on the 580 SNs of the Union 2.1 compilation, see [5], 
which is available at  
http://supernova.lbl.gov/Union/figures/SCPUnion2.1_mu_vs_z.txt: in this com-
pilation a calibrated distance versus redshift is provided. The cosmological pa-
rameters are reported in Table 1 and Figure 3 reports the best fit in the ΛCDM 
cosmology. 

The second test we perform is on the joint light-curve analysis (JLA), which 
contains 740 SNs [6] with data available on CDS at  
http://cdsweb.u-strasbg.fr/. The above compilation consists of SNe (type I-a) for 
which we have a heliocentric redshift, z, apparent magnitude Bm  in the B band, 
error in Bm , 

Bm
σ  , parameter 1X , error in 1X , 1Xσ , parameter C, error in 

the parameter C, Cσ  and ( )10log stellarM . The observed distance modulus is 
defined by Equation (4) in [6],  

1 .b Bm M C X M mβ α− = − + − +                  (76) 
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Table 1. Numerical values of 2χ , 2
redχ , Q and the AIC of the Hubble diagram for the Union 2.1 compilation: k stands for the 

number of parameters, H0 is expressed in km·s−1·Mpc−1; 580 SNs.  

cosmology Equation k parameters 2χ  2
redχ  Q AIC 

ΛCDM (11) 3 0 69.56 0.1H = ± ; M 0.238 0.01Ω = ± ; 0.661 0.01ΛΩ = ±  562.59 0.975 0.658 569.39 

wCDM (23) 3 0 70.02 0.35H = ± ; M 0.277 0.025Ω = ± ; 1.003 0.05w = − ±  562.21 0.974 0.662 568.21 

Cardassian (31) 3 0 70.15 0.38H = ± ; M 0.305 0.019Ω = ± ; 0.081 0.01n = − ±  562.35 0.974 0.661 568.35 

flat (39) 2 0 69.77 0.33H = ± ; M 0.295 0.008Ω = ±  562.55 0.9732 0.66 566.55 

ϕCDM (46) 4 0 70 0.1H = ± ; M0 0.28 0.02Ω = ± ; 0.08 0.2α = − ± ; 

0.05 0.02β = ±  
562.23 0.976 0.65 570.23 

Einstein--De Sitter (51) 1 0 63.17 0.2H = ±  1171.39 2.02 2 × 10−42 1173.39 

EdesNa (52) 1 0 69.04 0.22H = ±  569.46 0.98 0.603 571.46 

simple GR (60) 2 0 73.79 0.024H = ± , 0 0.1q = −  689.34 1.194 9.5 × 10−4 693.34 

flat expanding model (62) 1 0 66.84 0.22H = ±  653 1.12 0.017 655 

Milne (64) 1 0 67.53 0.22H = ±  603.37 1.04 0.23 605.37 

plasma (67) 1 0 74.2 0.24H = ±  895.53 1.546 5.2 × 10−16 897.5 

MTL (69) 2 2.37β = , 0 69.32 0.34H = ±  567.96 0.982 0.609 571.9 

 

 

Figure 3. Hubble diagram for the Union 2.1 compilation, green points with error 
bar. The solid red line represents the best fit for the distance modulus in ΛCDM 
cosmology as represented by Equation (11). The theoretical uncertainties are 
represented through blue vertical lines by applying the law of errors of Gauss 
with the uncertainties and parameters as in the first line of Table 1.  

 
The adopted parameters are 0.141α = , 3.101β =  and  

10

10

19.05 if 10
,

19.12 if 10
stellar

b
stellar

M M
M

M M
− <= 
− ≥





              (77) 

where M


 is the mass of the sun, see line 1 in Table 10 of [6]. The uncertainty 
in the observed distance modulus, m Mσ − , is found by implementing the error 
propagation equation (often called the law of errors of Gauss) when the cova-
riant terms are neglected, see Equation (3.14) in [54],  
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2 2 2 2 2
1 .

B
m M X C m

σ α σ β σ σ− = + +                  (78) 

The cosmological parameters with the JLA compilation are reported in see 
Table 2 and Figure 4 reports the best fit in the MTL cosmology.  

The third test is performed on the Union 2.1 compilation (580 SNs) + the dis-
tance modulus for 59 calibrated high-redshift GRBs, the so called “Hymnium” 
sample of GRBs, which allows to calibrate the distance modulus in the high red-
shift up to 8z ≈  [55], see Table 3 and Figure 5 for the best fit in the Cardas-
sian cosmology. 

 
Table 2. Numerical values of 2χ , 2

redχ , Q and the AIC of the Hubble diagram for the JLA compilation, k stands for the number 
of parameters, H0 is expressed in km·s−1·Mpc−1; 740 SNs.  

cosmology Equation k parameters 2χ  2
redχ  Q AIC 

ΛCDM (11) 3 0 70.71 0.1H = ± ; M 0.238 0.01Ω = ± ; 0.621 0.01ΛΩ = ±  626.53 0.85 0.998 632.53 

wCDM (23) 3 0 69.38 0.31H = ± ; M 0.2 0.016Ω = ± ; 0.8 0.031w = − ±  626.01 0.849 0.998 632.01 

Cardassian (31) 3 0 70.03 0.44H = ± ; M 0.3 0.019Ω = ± ; 0.055 0.004n = − ±  628.73 0.853 0.998 634.73 

flat (39) 2 0 69.65 0.23H = ± ; M 0.3 0.003Ω = ±  627.91 0.85 0.998 631.91 

ϕCDM (46) 4 0 69.6 0.1H = ± ; M0 0.24 0.02Ω = ± ; 0.31 0.2α = ± ; 0.03 0.02β = ±  626.52 0.851 0.998 634.52 

Einstein--De Sitter (51) 1 0 62.57 0.17H = ±  1307.75 1.76 3.27 × 10−34 1309.75 

EdesNa (52) 1 0 68.91 0.19H = ±  630.46 0.853 0.998 632.46 

simple GR (60) 2 0 73.79 0.023H = ± , 0 0.14q = −  749.14 1.016 0.369 755.14 

flat expanding model (62) 1 0 66.49 0.18H = ±  717.3 0.97 0.709 719.3 

Milne (64) 1 0 67.19 0.18H = ±  656.11 0.887 0.986 658.11 

plasma (67) 1 0 74.45 0.2H = ±  1017.79 1.377 3.59 × 10−11 1019.79 

MTL (69) 2 2.36β = , 0 69.096 0.32H = ±  626.27 0.848 0.998 630.27 

 
Table 3. Numerical values of 2χ , 2

redχ , Q and the AIC of the Hubble diagram for the Union 2.1 compilation + the “Hymnium” 
GRB sample, k stands for the number of parameters, H0 is expressed in km·s−1·Mpc−1; 580 SNs + 59 GRBs.  

cosmology Equation k parameters 2χ  2
redχ  Q AIC 

ΛCDM (11) 3 0 67.8 0.2H = ± ; M 0.259 0.02Ω = ± ; 0.691 0.02ΛΩ = ±  586.04 0.921 0.922 592.04 

wCDM (23) 3 0 69.34 0.32H = ± ; M 0.2 0.016Ω = ± ; 0.626 0.015w = − ±  592.1 0.93 0.892 598.1 

Cardassian (31) 3 0 70.1 0.42H = ± ; M 0.299 0.019Ω = ± ; 0.063 0.009n = − ±  585.43 0.92 0.924 591.43 

flat (39) 2 0 69.82 0.24H = ± ; M 0.295 0.003Ω = ±  585.74 0.919 0.927 589.74 

ϕCDM (46) 4 0 70 0.1H = ± ; M0 0.28 0.02Ω = ± ; 0.07 0.2α = − ± ; 0.05 0.02β = ±  585.41 0.922 0.92 593.41 

Einstein--De Sitter (51) 1 0 63.14 0.2H = ±  1205.2 1.88 3.58 × 10−37 1205.21 

EdesNa (52) 1 0 69.05 0.22H = ±  592.79 0.929 0.899 594.79 

simple GR (60) 2 0 73.79 0.023H = ± , 0 0.01q = −  809.5 1.27 3.85 × 10−6 813.5 

flat expanding model (62) 1 0 66.851 0.22H = ±  676.36 1.06 0.141 678.36 

Milne (64) 1 0 67.55 0.22H = ±  634.27 0.994 0.534 636.27 

plasma (67) 1 0 74.25 0.24H = ±  951.16 1.49 9.39 × 10−14 953.16 

MTL (69) 2 2.35β = , 0 69.23 0.34H = ±  594.69 0.933 0.883 598.69 
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Figure 4. Hubble diagram for the JLA compilation, green points with error bar. 
The solid red line represents the best fit for the distance modulus in MTL cos-
mology as represented by Equation (69). The theoretical uncertainties are 
represented through blue vertical lines.  

 

 

Figure 5. Hubble diagram for the Union 2.1 compilation + the “Hymnium” GRB 
sample, green points with error bar. The solid red line represents the best fit for 
the distance modulus in Cardassian cosmology as represented by Equation (31). 
The theoretical uncertainties are represented through blue vertical lines.  

 
The fourth test is performed on the Pantheon sample of 1048 SN Ia [7] [8] 

with calibrated data available at  
https://archive.stsci.edu/prepds/ps1cosmo/jones_datatable.html, see Table 4 and 
Figure 6 for the best fit in the flat cosmology.  

In order to see how 2χ  varies around the minimum for the Pantheon sample 
in the case of the ΛCDM cosmology, Figure 7 presents a 2D colour map for the 
values of 2χ  for the Pantheon sample when H0 and MΩ  are allowed to vary 
around the numerical values which fix the minimum.  

Figure 8 presents the map for 2χ , for wCDM and for the Pantheon sample 
when H0 is fixed and MΩ  and w are allowed to vary.  
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Figure 6. Hubble diagram for the Pantheon sample, green points with 
error bar. The solid red line represents the best fit for the distance mod-
ulus in flat cosmology as represented by Equation (39). The theoretical 
uncertainties are represented through blue vertical lines.  

 

 

Figure 7. Color contour plot for 2χ  of the Hubble diagram for the Pantheon 
sample in ΛCDM cosmology when H0 and MΩ  are variables and 0.626ΛΩ = . 

 

 

Figure 8. Map of 2χ  for the wCDM cos-
mology when 0 69.8H = .  

https://doi.org/10.4236/jhepgc.2021.73057


L. Zaninetti 
 

 

DOI: 10.4236/jhepgc.2021.73057 982 Journal of High Energy Physics, Gravitation and Cosmology 
 

Table 4. Numerical values of 2χ , 2
redχ , Q and the AIC of the Hubble diagram for the Pantheon sample, k stands for the number 

of parameters, H0 is expressed in km·s−1·Mpc−1; 1048 SN Ia.  

cosmology Equation k parameters 2χ  2
redχ  Q AIC 

ΛCDM (11) 3 0 68.209 0.2H = ± ; M 0.278 0.02Ω = ± ; 0.651 0.02ΛΩ = ±  1054.71 1.01 0.41 1060.71 

wCDM (23) 3 0 69.8 0.27H = ± ; M 0.3 0.016Ω = ± ; 0.989 0.03w = − ±  1053.67 1 0.419 1059.67 

Cardassian (31) 3 0 70.01 0.31H = ± ; M 0.329 0.014Ω = ± ; 0.091 0.005n = − ±  1054.49 1 0.412 1060.49 

flat (39) 2 0 69.94 0.171H = ± ; M 0.296 0.002Ω = ±  1053.53 1 0.429 1057.53 

ϕCDM (46) 4 0 69.7 0.1H = ± ; M0 0.28 0.02Ω = ± ; 0.12 0.2α = ± ; 

0.05 0.02β = ±  
1053.84 1 0.4 1061.84 

Einstein--De Sitter (51) 1 0 62.71 0.2H = ±  2387.62 2.28 0 2389.62 

EdesNa (52) 1 0 69.1 0.13H = ±  1059.84 1.01 0.384 1061.8 

simple GR (60) 2 0 73.79 0.015H = ± , 0 0.063q = −  1476.59 1.411 2.67 × 10−17 1480.59 

flat expanding model (62) 1 0 66.67 0.12H = ±  1219 1.16 1.6 × 10−4 1221 

Milne (64) 1 0 67.37 0.12H = ±  1132.6 1.08 0.033 1134.6 

plasma (67) 1 0 74.7 0.14H = ±  2017.3 1.92 0 2019.3 

MTL (69) 2 2.31β = , 0 68.95 0.222H = ±  1069.7 1.022 0.298 1073.7 

3.4. Angular-Diameter Distance 

In the relativistic models the angular diameter distance, AD  [56], is  

( )
L

A 2 .
1

DD
z

=
+

                       (79) 

We now introduce the minimax approximation. Let ( )f x  be a real function 
defined in the interval [ ],a b . The best rational approximation of degree ( ),k l  
evaluates the coefficients of the ratio of two polynomials of degree k and l, re-
spectively, which minimizes the maximum difference of:  

( ) 0 1

0 1

max ,
k

kp p x p x
f x

q q x q x
+ + +

−
+ + + 







                (80) 

on the interval [ ],a b . The quality of the fit is given by the maximum error over 
the considered range. The coefficients are evaluated through the Remez algo-
rithm, see [57] [58]. The minimax approximation for the angular distance in the 
interval 0 8z< <  with data as in Table 3 for ΛCDM cosmology when 2k =  
and 2p =  is:  

( )
( ),2,2

0.08126207 296.9974312 2.715947207
Mpc

0.0672056121 0.0810298760 0.02498056665A

z z
D

z z
− + +

=
+ +

  (81) 

maximum error 0.6911273 Mpc,=  

for wCDM cosmology when 3k =  and 2p =  is:  

( )( )
( ),3,2

0.034977336 287.18685 1.1871126 0.0002567152
Mpc

0.0665238 0.09134443 0.023282807A

z z z
D

z z
+ + +

=
+ +

(82) 

maximum error 0.07 Mpc,=  
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for Cardassian cosmology when 2k =  and 2p =  is:  

( )
( ),2,2

0.11928613 273.3160492 2.420885784
Mpc

0.0638700712 0.0750594027 0.02611741351A

z z
D

z z
− + +

=
+ +

   (83) 

maximum error 0.8346776 Mpc,=  

for flat cosmology when 2k =  and 2p =  is:  

( )
( ),2,2

0.03653022 274.6370918 2.192330157
Mpc

0.0641307653 0.0767316787 0.02582682170A

z z
D

z z
− + +

=
+ +

  (84) 

maximum error 0.629004 Mpc,=  

and for ϕCDM cosmology when 2k =  and 2p =  is:  

( )
( ),2,2

0.01852238 278.5646306 2.230340777
0.0652823706 0.0768568011 0.02575830541A

z z
D

z z
− + +

=
+ +

    (85) 

maximum error 0.6261293 Mpc.=  

In MTL there is no difference between the distance d, see Equation (68), and 
the angular distance. We report the numerical value of d in the interval 0 8z< <  
with data as in Table 3,  

( )4330.383620ln 1 Mpc.d z= +                  (86) 

A promising field of investigation in applied cosmology is the maximum of 
the angular distance as function of the redshift [59] [60], maxz , which is finite in 
relativistic cosmologies and infinite in the Milne, plasma and MTL cosmologies, 
see Figure 9.  

The numerical value of maxz  is reported in Table 5, as a reference max 1.594z =  
for flat Planck ΛCDM cosmology [61]. 

Another example is given by the ring associated with the galaxy SDP.81, see 
[62], which is generally explained by the gravitational lens. In this framework we 
have a foreground galaxy at 0.2999z =  and a background galaxy at 0.3042z = . 
This ring has been studied with the Atacama Large Millimeter/sub-millimeter 
Array (ALMA) by [63]-[68]. The system SDP.81 has been analysed by ALMA 
and presents 14 molecular clumps along the two main lensed arcs: the averaged 
radius in arcsec is ave 1.54 arcsecR =  [69]. 

 
Table 5. Numerical values of maxz  and radius of Einstein ring in kpc when  

ave 1.54 arcsecR = . 

cosmology maxz  radius (kpc) 

ΛCDM 1.691 13.333 

wCDM 1.716 11.797 

Cardassian 1.607 11.938 

flat 1.615 11.907 

ϕCDM 1.632 12.05 

MTL ∞  45.15 
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Table 6. The first, second, third and fourth best fitting models for the four compilations.  

Compilation first model second model third model fourth model 

Union 2.1 
wCDM  

Hypergeometric 
Cardassian ϕCDM flat 

JLA 
wCDM  

Hypergeometric 
MTL ϕCDM ΛCDM 

Union 2.1 + GRBs ΛCDM ϕCDM Cardassian flat 

Pantheon 
wCDM  

Hypergeometric 
Cardassian flat ϕCDM 

 

 

Figure 9. Angular distance in MTL (red), ΛCDM (green) 
and ϕCDM (blue) cosmologies with data as in Table 3. 

 

 

Figure 10. Values of the Newtonian constant of gravitation G as given by 
Table XXIV in [70].  
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Figure 11. The present tension on H0 (black line with two arrows) and our 
results in the case of the Pantheon sample with the connected averaged 
value which is marked as “Pantheon”; parameters as in Table 4.  

4. Conclusions 

Cosmological models: We list according to increasing order of the values of the 
merit function, 2χ , the first, second, third, and fourth cosmological models, see 
Table 6. 

The Einstein—De Sitter, simple GR, and plasma models produce the highest 
values in the 2χ  and are here considered only for historical reasons. 

Physics versus Astronomy: The value of the Newtonian gravitational constant, 
denoted by G, is derived applying the weighted mean, but the uncertainties were 
multiplied by a factor of 14, of 11 values available in Table XXIV in [70], see 
Figure 10.  

By analogy, we average the values of H0 for the Pantheon sample and we re-
port as error for H0 the standard deviation,  

( ) 1 1
0 69.29 3.18 km s Mpc Pantheon sample,H − −= ± ⋅ ⋅         (87) 

see Figure 11.  
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Appendix A. The Padé Approximant 

Given a function ( )f z , the Padé approximant, after [71], is:  

( ) 0 1

0 1

,
p

p
q

q

a a z a z
f z

b b z b z
+ + +

=
+ + +





                      (1) 

where the notation is the same as in [26]. 
The coefficients ia  and ib  are found through Wynn’s cross rule, see [72] 

[73] and our choice is 2p =  and 2q = . The choice of p and q is a compro-
mise between precision (associated with high values for p and q) and the sim-
plicity of the expressions to manage (associated with low values for p and q). The 
argument of the integral to be done is the inverse of ( )E z , see Equation (6),  

( ) ( ) ( )3 2
M

1 1 ,
1 1K

E z z z Λ

=
Ω + +Ω + +Ω

               (2) 

and the Padé approximant is  

( )
2

0 1 2
2

0 1 2

1 ,
a a z a z

E z b b z b z
+ +

=
+ +

                       (3) 

where,  

(

)( )

3 2 2 2 2 2
0 M M

2 2 3 2 2
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Λ Λ Λ

Λ Λ
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        (4) 

(

)( )

4 3 2 3 2 2
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The indefinite integral of (3), 2,2F , is:  
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