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Abstract 
In “A Self-linking Field Formalism” I establish a self-dual field structure with 
higher order self-induced symmetries that reinforce the first-order dynamics. 
The structure was derived from Gauss-linking integrals in 3ℜ  based on the 
Biot-Savart law and Ampere’s law applied to Heaviside’s equations, derived in 
strength-independent fashion in “Primordial Principle of Self-Interaction”. 
The derivation involves Geometric Calculus, topology, and field equations. 
My goal in this paper is to derive the simplest solution of a self-stabilized 
solitonic structure and discuss this model of a neutrino. 
 
Keywords 
Self-Stabilized Field Theory, First-Order Dynamics, The Biot-Savart Law, 
The Ampere’s Law, Neutrino, Heaviside Equations, Gravitational Field, 
Solitons, Self-Dual, Gauss-Linking 

 

1. Introduction 

Many physicists share John Wheeler’s conviction that “nature would avail itself 
of all the opportunities offered by the equations of valid theories.” Influenced by 
special and general relativity, Wheeler adopted Einstein’s vision of the totally 
geometric world, in which everything was composed ultimately only of space- 
time. Space-time geometry is seen as dynamic, changing geometry influenced by 
mass, capable of propagating, and in turn, influencing mass. Einstein later con-
cluded that “there is no space absent field”, essentially replacing the abstraction 
of space with physically real fields that possess energy, and showing that all energy 
is a source of gravity. Wheeler asked how much light it would take to create so 
much energy that the light would hold itself together, black hole-like; concluding 
that this would be achieved with a doughnut the size of the sun with a mass of 
about 1 million suns. He called the gravitating body made up of electromagnetic 
fields a “geon”, but was able to show that these structures were unstable.  

In a recent paper, A Self-linking Field Formalism [1] I showed that the elec-
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tromagnetic field, which does support Gauss-linking, is not self-linking and 
hence not capable of forming stable final configurations. However, based on the 
work of DeTurck and Gluck, [2] I defined a self-dual, self-linking field and 
showed that the gravitomagnetic field of Heaviside’s equation [3] is self-dual and 
self-linking and that first-order induced fields inherently induce second and 
higher order induced fields; the higher order induced fields reinforce the prima-
ry source of induction.  

After finding the electromagnetic geon to be inherently unstable, Wheeler 
then imagined a “purer” geon—one made up of gravitational energy alone and 
hoped that quantum effects might make possible a geon as small as a particle: 
“mass without mass”, but he never succeeded in this quest. That is the quest we 
take up here. 

We are not alone in this quest. Recently [4] Alexander Burinskii has sought to 
unify gravity with particle physics—based on the Kerr-Newman metric solution 
to Einstein’s field equations. In this paper, I treat this problem based on the KNV 
extension of the Kasner metric. These two approaches illuminate several prob-
lems that doomed earlier attempts. We review Burinskii. 

2. Burinskii’s Theory of Gravity and Particle Physics 

Burinskii’s ingenious model of gravity-based particles combines Einstein field 
metrics with various concepts of quantum theory, including Compton radius, 
Higgs symmetry breaking, super-bag models, string theory and supersymmetry, 
closed Wilson loops, and branes of M-theory. After identifying the main mis-
conception of relativity approaches, he concludes that a supersymmetric path-
way exists to unify gravity with particle physics; the LHC however has offered no 
support for supersymmetry. 

Choosing to model his particle on the Kerr-Newman metric solution to Eins-
tein’s equations, Burinskii begins with the KN-metric: 

2g Hk kµν µν µ νη= + , 
( )

2

2 2 2

2
cos

mr eH
r a θ

−
=

+
             (1) 

Here µνη  is the metric of the Minkowski invariance, m is the mass of the 
object, r is the radius of the KN ring singularity, ( )cos 0r θ= = , which is a 
branch line of the Kerr space into two sheets r+  for 0r >  and r−  for 0r < . 
Acknowledging that “two sheetedness represents one of the main puzzles of the 
KN space-time”, Burinskii notes that it is not a priori clear that a valid model 
can be realized; he addresses links between the KN-metric model and quantum 
physics. We are most interested in his analysis of gravitational aspects of the 
problem. 

Specifically, Burinskii identifies “weakness of gravity as an illusion”, as the 
primary impediment to the theory of quantum gravity. Referring to the famous 
MIT and SLAC bag models [5] which are similar to solitons, he observes that 
“the question of consistency with gravity is not discussed usually for solitonic 
models, as it is conventionally assumed that gravity is weak and not essential at 
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scale of electroweak interactions.” He then claims that the assumption of weak-
ness of gravity is “an illusion, related to underestimation of the role of spin in 
gravity.” He ties this perception to gravitational frame-dragging seen by Gravity 
Probe B [6] or the Lens-Thirring effect in Kerr geometry. In the KN-metric of 
Equation (1) the null field ( 0k k µ

µ = ) ( )k xµ  determines the direction of frame- 
dragging. Nevertheless, the spin of elementary particles is extremely high. In di-
mensionless units ( 1G c= = = ) the electron spin/mass ratio is about 1022. Fi-
nally, he concludes: “similar to cosmology where giant masses turn gravity into 
the main force”, the giant spin of particles makes gravity strong! 

3. Analysis of Gravitational Angular Momentum 

Burinskii observed that spin and mass are the two key parameters, both in the 
Kerr model and the quantum particle. Physicists generally learn classical me-
chanics before quantum mechanics, and quantum mechanics before general 
relativity; the progression is from the very real spin of a top, to the confusing 
quantum spin of a cubit, to the “frame-dragging” of a spinning mass. These 
conceptual frameworks tend to obscure the physical reality of the phenomena. 
This is unfortunate; in 1915 Einstein and deHaas [7] experimentally proved that 
the magnetic field possesses angular momentum. We observe that the gravito-
magnetic field is angular momentum! The circulation of the gravitomagnetic 
field, denoted by ×C∇  actually circulates, with magnitude C  providing the 
rotational frequency, 1~ t− . In other words, in Heaviside’s framework, the spin 
is the circulating C-field. In [8] I show that the Heaviside equations are valid at 
all field strengths, which contradicts the usual interpretation that the linearized 
equations are a “weak field approximation”, although recent analyses of gravita-
tional waves from inspiraling neutron binaries and colliding black holes have 
shown that these “weak field” equations work surprisingly well in strong field 
situations. 

In the rest of this paper we will view the primordial gravitational field as a 
perfect fluid universe, as treated by Kerson Huang in A Superfluid Universe [9]. 
The field has non-zero density; the fluid supports vortical spin (and particle spin 
if we can develop a stable particle field structure.) We relate the C-field to angu-
lar momentum as follows:  

= ×L r p  angular momentum as mental construct associated with spinning 
objects. 

~ ×C r p  angular momentum phenomena ( 1g c= = ) of the gravitomagnet-
ic field. 

A number of physicists, including Feynman, Weinberg, Ohanian & Ruffini, 
have pointed out that the “geometric” formulation of gravity is quite unneces-
sary, and that it is sufficient to regard the gravitational field as a physical field 
with energy density. In this field-based framework it is actually redundant to 
deal with “spin”, which is a useful concept for spinning objects, but much less 
suitable for field dynamics. 
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4. Induction of Angular Momentum in a Gravitational Field 

In The Primordial Principle of Self-interaction, I derive 

t
ρ ∂

× = − +
∂
GC v∇                        (2) 

where ~ρ ×v G C  and v c= . Equation (2) specializes Heaviside for all v  in-
cluding c<v . The ×G C  is analogous to Poynting vector ×E B  and 
represents a field disturbance propagating in the field with momentum density 

~ ~ ρ×p G C v  where 2~ cρ ×G C  and c≡v  is velocity of stress propaga-
tion in the field. The example given in the self-interaction paper is based on gra-
vitational waves radiating from inspiraling neutron stars or black holes. Alterna-
tively, we can consider a local energy density that travels in the local gravitation-
al field with c<v . This local energy has equivalent mass density 2

m E cρ ρ= . 
From Heaviside’s equation we see that this induces a local circulation of the field, 
represented by ×C∇  ( ~ ρ− v ). 

Equation (2) is valid for v c=  and v c≠ , but the physics is significantly dif-
ferent. If a discrete “particle” or localized density could move at the speed of 
light v c= , it could induce very little circulation, as the circulation at any point 
near the particle cannot be supported due to the fact that the local particle has 
moved away from the local induction at the speed of light, and no longer sup-
plies energy to the local induction. Gravitational waves, on the other hand, are 
not local, but are continuously generated by the inspiraling bodies over a period 
of time, ending with the merger of the bodies. Thus induction that is invoked at 
the head or leading edge of the wave may still be supported at a point by the 
equivalent mass density of the trailing wave, i.e., the energy of the extended wave 
as it continues to move past the point in question. Note that this is further af-
fected by the Wilson-loop-like nature of the plane wave which distributes ×G C  
energy across an (equal phase) surface. Unlike a local particle, which induces 
circulation at a distance r  from the particle, the wave-front “surrounds” the 
point r  and cancels the circulation of interior points. 

Although the induction Equation (2) is valid for v c=  and v c≠ , we are not 
interested here in macro-situations of the cosmological variety. We are instead 
interested in local disturbances moving in an ultra-high-density field. Such fields 
are assumed available at the big bang and potentially at the Large Hadron Col-
lider. Let us to note the local density by ρ  and the velocity of this moving den-
sity by v , and let us ignore t∂ ∂G . This simplifies our equation to: 

ρ× = −C v∇ .                       (3) 

Our goal is to be compatible with Einstein’s metric-based approach to gravity 
in general and comparable to Burinskii’s treatment of gravity in particular. 

5. The KNV-Metric Theory-of-Gravity 

The general metric solution to Einstein’s equations has the form 2d d ds g x xµ ν
µν=  

where µ  and ν  range 0 to 3, with 0d dx c t= . Thus 00g  is the metric cor-

https://doi.org/10.4236/jhepgc.2021.73054


E. E. Klingman 
 

 

DOI: 10.4236/jhepgc.2021.73054 940 Journal of High Energy Physics, Gravitation and Cosmology 
 

responding to 2 2dc t  and 
2 2 2

00 other terd d mss g c t= + . 

In the Schwarzschild metric ( ) 2
00 1 2 ~ eg φφ −= − +  with ~ M rφ  the position- 

dependent gravitational potential. In Physics of Clocks in Absolute Space and 
Time [10] the dt increment is a time measurement performed by a clock so the 
clock rate is seen to be a function of potential energy at the location of the clock. 
As a consequence, the solution to Einstein’s equations are static; the metric de-
pends only on position, not on time. The Kerr metric is complicated by the addi-
tion of angular momentum terms, but remains static, distributed over all space 
but unchanging in time. General relativity, in the case of Schwarzschild and Kerr, 
is the “one-body” problem; a small test mass m is assumed not to have any effect 
on the system, which consists of mass M, with or without rotation. Mass M is 
assumed to exist a priori, thus solutions do not evolve; they are distributed over 
all space for all time, making it difficult to explain the evolution of particles from 
a gravity field. 

Burinskii, in searching for soliton-like solutions of the nonlinear gravitational 
field invokes the famous MIT and SLAC bag models, “which are similar to soli-
tons”, but notes that these models are “soft, deformable, and oscillating.” These 
characteristics do not describe the static metrics mentioned above; however they 
do provide features desirable for evolving fields into particles. We next investi-
gate metric solutions of Einstein’s equations that are “soft, deformable, and os-
cillate”, in other words, metrics that do evolve over time. We search for solutions 
of the type described by Petrov [11] wherein: 

“(Space-time) is an arena; in which physical fields interact and propagate (…) 
The space-time itself is a dynamic object.” 

This is compatible with Einstein’s contention that “space-time does not claim 
existence on its own, but only as a structural quality of this field”, consistent 
with our search for a stable structure of the field, which we hope will explain the 
existence of particles. Rejecting the static metrics we focus on Kasner’s exact so-
lution for 3D >  space-time dimensions, in the Narlikar and Karmarkar for-
mulation, 

( )
1 22 2 2 2

1
d d 1 dj

D p
j

j
s c t nt x

−

=

= − +∑                  (4) 

subject to 
1

1
1

D

j
j

p
−

=

=∑  and 
1

2

1
1

D

j
j

p
−

=

=∑ . 

Vishwakarma [12] observes that the conventional Kasner metric interpreta-
tion is “obscure and questionable”. In [13] I have interpreted the Kasner metric 
based upon my ideas and upon work done by Narlikar, Karmarkar, Vishwakar-
ma, and Kauffmann. This is the KNV-metric; KNV represents Kasner, Karmarkar, 
Klingman, Kauffmann, Narlikar and Vishwakarma. I describe this next. 

Vishwakarma, attempting to explain the metric, chooses to interpret momen-
tum density ρ=p v , and observes that ( ) 11 nt n t−+ ⇒ = . He then formulates 
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the dimensionally correct relation ( ) 1~n gp c g v c tρ −= = , but the physi-
cal meaning of parameter n  remains mysterious. 

In [14] I prove that ( ) ( ) 1−× ≡ ×r ∇  therefore our previous relation = ×C r p  
is equivalent to ~×C p∇  (when 1g c= = ); dimensional scale factor ( 2g c ) 
leads to ( )2 1~g c t−= ×C r p . This is seen to agree with 1n t−=  so I exchange 
the mysterious term n for the well understood C-field and write the VK N  
metric as: 

( )
1 22 2 2 2

1
d d 1 dj

D p
j

j
s c t Ct x

−

=

= − +∑ .                  (5) 

I choose the simplest momentum density ( ) ( )1 2 3, , 0,0,1p p p= =p  thus re-
ducing the metric to: 

( )22 2 2 2 2 2d d 1 d d ds c t Ct z x y= − + − −                 (6) 

which represents a space-time defined by a gravitational field evolving in the 
z-direction. 

Recall that the gravitomagnetic field of Heaviside’s equation is self-dual and 
self-linking; first-order fields induce higher order fields with positive feedback, 
potentially self-stabilizing. Assume that a “vacuum fluctuation” or “symmetry 
breaking” event occurs at a local origin and results in gravitational waves propa-
gating along the z-axis. The linearized metric yields: 

( )0 0

0 0 0 0
0 0

, ,
0 0
0 0 0 0

xx xy
z

yx yy

h h
h h t z h h h

h hµν µ µ µ µν

 
 
 = − = − =
 
 
 

        (7) 

where hµν  is considered the wave’s metric perturbation. We focus on the 
transverse behavior of the field: the plane wave propagates in z, so non-zero 
components are:  

xx yyh h= −  traceless; 

xy yxh h= +  transverse. 
This last relation 0xy yxh h− =  corresponds to angular momentum which, 

recall, is the nature of the C-field. 
We next consider an arbitrary point at position r  with respect to the origin 

of the event, as shown in Figure 1. The C-field invoked at r  by + p  and − p  
is given by: 

( ) ( )( ) ( )( )( ), t z t z t= × − −C r r p p                  (8) 

and the local energy density at r  is ( ) 2
, tC r . The axial symmetry implies that 

( ),θ φr  is independent of φ  hence the energy distribution is symmetrical with 
respect to the z-axis and time-energy history at r  is shown in Figure 2. 

6. Evolution of Local Energy Propagation through the Field 

We have shown above that continuous waves generated by collapsing astro-bodies 
propagate at the speed of light, but, by virtue of their continuous distribution  
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Figure 1. An event or fluctuation at the origin causes 
density variations to move away along an axis. This effect 
is calculated at a position r  with respect to the origin. 

 

 
Figure 2. The energy-time history of the C-field energy 
induced that point r  by outgoing momentum. Axial 
symmetry about the z-axis is φ -independent. 

 
over region of space, have the ability to induce circulation at surrounding points. 
As we are most interested in micro-bodies, i.e., particles, we now focus on local 
induction from slower-than-light propagation of dense regions of fields, de-
scribed by ρ× = −C v∇ , v c< . We assume the existence of turbulence in an 
ultra-high-density region of the field and begin our analysis with the local vortex 
field. We’ve seen for the KNV-metric solution that the motion of a locally dense 
region through the field induces vortical circulation at any point near the axis of 
propagation, yielding essentially a vortex moving through the field. Our ener-
gy-time-history diagram (Figure 2) is based on the existence of energy density 
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⋅C C  at r  over a period of time, beginning with the approach of the locally 
dense region to the point, peaking at the moment of closest approach to r , and 
trailing off as the dense region moves away from the specified point of interest. 

There appear to be to two physical possibilities inherent in this situation. As 
the induced local energy at r  must be sourced from the momentum density of 
the moving high-density region, this loss of energy occurring at every point r  
will dissipate energy of the original moving source, slowing down the source re-
gion, decreasing its momentum, and dispersing the energy of the source and the 
induced field over an expanding region of space. This process may be thermo-
dynamically interesting but would not seem to contribute to particle formation. 

An alternative possibility is that the process is self-stabilizing, and will sustain 
the propagation of a locally dense region through space in solitonic fashion. This 
is the process we now investigate. 

7. Analysis of Solitonic Mechanisms 

Recall that the self-linking field formalism shows that second-order induction 
reinforces the primary inducing agent, i.e., local momentum density ρv . Fol-
lowing Duckworth’s description of the electromagnetic force ijF  between two 
current elements d ij  and d jj  a distance ijr  apart we write the gravitomag-
netic equivalent, 

3

d d
d d d ,j i ij

ij j i
ijr

   × ×   = ⇒ ×
p p r

F p C              (9) 

since 3d d ij
i i

ijr
= ×

r
C p  where d ip  is the mass current element inducing the 

field. 
Thus Equation (9) is seen to be compatible with the Lorentz force law 
= ×F p C  for the force on momentum p  in gravitomagnetic field C . In A 

Self-linking Field Formalism I show first-order C-field induction from momen-
tum source density 0p , and then derive the second order C-field induction 
from the momentum of the first-order field, 1 1 1~ ⋅p C C . as shown in Figure 3. 

From the above it follows that: 

01 1 0d d d 0= × =F p C  since 0 1||C p  

02 2 0d d d 0= × ≠F p C  since 0 2⊥C p  
The force between 0p  and 1p  is zero since these mass density current flows 

are orthogonal to each other. On the other hand, the force acting between 0p  
and 2p  is maximal or minimal according to whether these flows are parallel or 
anti-parallel. 

In Figure 3 we see that first order momentum 1p  associated with the circu-
lation of 0C  induced by 0p  will induce the second order circulation represented 
by the circle of radius δ  about 1p . This circulation presents two momentum 
components 2+ p  at distance δ−r r  and 2− p  at δ+r r  which are parallel 
and anti-parallel, respectively, to the primary source momentum 0p . We con-
sider the forces of each component.  
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Figure 3. Momentum density 0p  (red) induces C-field circu-
lation at position r . The C-field circulation at r  yields mo-
mentum density 1p  (green) orthogonal to 0p . Momentum 

1p  induces the C-field at distance δ  from 1p . This induced 
C-field yields momentum density 2p  (red) with components 
parallel and anti-parallel to 0p . 

 
02 02

2 2 2
d dForce 0

r δ δ
≅ + − >

+ −

F F
r r r r

                 (10) 

Thus the attractive force on flow 2+ p  at distance δ−r r  is always stronger 
than the repulsive force due to 2− p  at δ+r r , therefore the net force acts to 
move 1p  nearer to 0p . This effectively reduces the radius r  and consequently 
increases the velocity 1 1 m=v p  due to conservation of angular momentum, 
mvr const= . 

We observe that the distance r  was arbitrary, therefore the same logic ap-
plies to δ−r r  and the net positive (attractive) force continues to shrink the 
vortex radius, while speeding up the velocity of the vortex wall. The geometry is 
shown in Figure 4. (black = radius r, red = velocity v) 

There is a further consequence of the shrinking vortex radius. The mass den-
sity of the induced C-field increases with velocity according to special relativistic 
inertial formula ( ) 0,m v c mγ= . We denote this by writing: 

( ) ( ) ( )1 1 1 1 1v v vρ γ ρ′ ′=                    (11) 

Therefore, the naïve interpretation of the shrinking radius and increasing 
speed is that the vortex would shrink to a point on the 0p  axis, however v  is 
assumed to be limited by ( ),v cγ  to less than the speed of light, and the in-
creased mass density decreases the centripetal force and acts to limit the shrin-
kage. The net result is that a vortex with arbitrary finite radius will shrink to a 
smaller but still finite vortex! All of these consequences point toward a soliton- 
like stability! 

8. Analysis of Vortex Propagation 

( ) ( )× = − ⋅C C r C r v∇                     (12) 
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Figure 4. The C-field vortex shrinks such that the 
wall velocity v  increases as radius r  decreases, 
analogous to a spinning skater pulling in her arms. 

 
The above analysis implies that the local vortex in the gravitational field, travel-
ing through the field with initial velocity 0v , self-induces circulation in the vor-
tex wall that shrinks the vortex radius and increases the mass density (inertia) 
and the velocity of the wall. Two facts of physics tend to limit the shrinkage: the 
wall velocity is limited by the speed of light, and the angular momentum is con-
served. As we are most interested in microscopic regions of ultra-high density, 
we make the further assumption that the angular momentum is quantized, i.e., 
mvr h= , where 

3 3d dm x xρ= = ⋅∫ ∫ C C .                   (13) 

We can obtain the mass m by integrating over both sides of Equation (12) as 
follows: 

( ) ( ) ( )3 3d dx x× = − ⋅∫ ∫C r C r C r v∇               (14) 

which can be rewritten: 

( )3d x m× = − = −∫ C r v P∇                  (15) 

We now analyze the momentum P  of the moving vortex represented by the 
integration over the C-field circulation shown as the left-hand term of Equation 
(15). As these sections have detailed the shrinkage of the vortex, the left-hand 
side obviously changes (at least initially) as a function of time, hence we can 
write the time derivative of Equation (15) as: 

( )3d dd
d d

x
t t

× = −∫
PC r∇ .                 (16) 

Here the right-hand term, d dtP  is a force, in particular, a Lenz-law-like 
force acting on the vortex due to the change in circulation integrated over the 
region of the vortex. This region, as we have described, shrinks as the vortex 
shrinks; this implies a negative change on the left-hand side, canceling the minus 
sign on the right, and leading to a positive force on the moving vortex, accele-
rating it from an unknown initial value to a final velocity limited by the speed of 
light. 
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9. Interpretation of Vortex Dynamics of Neutrino 

Previous papers develop the Heaviside equations from a primordial principle of 
self-interaction, in a manner that is field-strength independent. We have shown 
that this formulation is completely equivalent to Einstein’s general relativistic 
field equations. This key result conflicts with the GR conception of the “linea-
rized” field equations leading to a “weak field approximation” from which Hea-
viside’s equations are derived. Our derivation does not require or imply any 
“weak field” conception, instead, our derivation implies that these equations 
work for all field strengths, up to and including the strengths expected at the big 
bang, thus enabling the use of these equations in all gravitational regimes. Clif-
ford Will [15] and others have written of the apparent validity of this assump-
tion, but have been unable to explain this fact. 

Another key result is provided by the KNV-metric solution of Einstein’s field 
equations, which have only density-dependent solutions. This too conflicts with 
many physicists’ stated belief that general relativity applies only to “large mass” 
problems. This is clearly not the case. 

Additionally, we recall Burinskii’s invocation of the MIT and SLAC “bag” 
models which are “similar to solitons”, but are soft, deformable, and oscillating. 
We’ve seen that this dynamic model is compatible with our KNV-metric solution 
and with the enhanced Heaviside treatment of vortices arising in turbulent high 
density fields. 

Our conclusion is that vortices in gravitomagnetic fields are potentially self- 
stabilizing and dynamically shrink and speed up, limited by speed of light c and 
by quantum spin  . 

I postulate that this solitonic behavior describes neutrinos generated from lo-
cal ultrahigh density gravitomagnetic field turbulence, of the kind expected post- 
big bang and in the “perfect fluid” generated at the Large Hadron Collider in 
collisions of heavy nucleons. I’ve not yet modeled the “oscillations” currently 
assumed for neutrinos, but such oscillations would appear to be compatible with 
this neutrino model. 

Neutrinos are typically associated with weak nuclear interactions. For most 
of the history of the Standard Model neutrinos were considered to be massless, 
and move at the speed of light. Circa 1980 it was realized that neutrinos have 
small but finite mass and circa 2011 neutrinos were measured propagating at 
approximately the speed of light over many kilometers; even through mountain 
ranges [16]. 

In 1981 Mohapatra and Senjenovic [17] proposed a “seesaw mechanism” for 
understanding neutrinos. In particular their theory addressed the strange beha-
vior of neutrinos with regard to left-right symmetry. All neutrinos are “left- 
handed”, i.e., the spin is given by the left-hand rule, which states that the circula-
tion curls in the direction of the left fingers when the left thumb points in the 
direction of the source momentum. Almost a half-century of experiments has 
failed to detect a neutrino with right-hand spin; the reason is not known for this 
handedness; other electromagnetic and strong nuclear reactions exhibit both left 
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and right spin symmetry. Therefore it is significant that our gravitational model 
of the neutrino is left-handed. This is the meaning of the minus sign associated 
with the momentum: ~× −C p∇ ; a plus sign would indicate right-hand circu-
lation. 

Therefore our gravitational model is compatible with and provides a still- 
missing explanation of, neutrino handedness. It supports the Majorana particle 
model in which the neutrino is its own anti-particle; a collision between a left- 
handed neutrino traveling right and a left-handed neutrino traveling left will 
cancel both spin and momentum, thus annihilating both particles. 
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